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1. The Weight Matrix Representation of Bind-
ing Sites

In this section we briefly explain which assumptions are implied in the weight
matrix (WM) representation of transcription factor binding sites. Transcription
factors (TFs) will bind specifically to certain DNA segments in the genome. We
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wish to mathematically represent the sequence features, shared by these seg-
ments, that are responsible for the specific recognition by the TF. It is generally
assumed (4) that the binding energy E(s) of the TF to a DNA sequence segment
s can be written as a sum of binding energies Ei(si) for the different bases in
the segment:

E(s) =
l∑

i=1

Ei(si) [1]

The probability Pbound(s) that the TF binds to a sequence s in the genome
is then proportional to

Pbound(s) ∝ eβE(s), [2]

where β = 1/(kT ). We now further assume that binding sites for a particular TF
are distinguished from all other DNA segments in that they have higher binding
energies. That is, binding sites are characterized by having some expected bind-
ing energy 〈E〉 which is substantially higher than the expected binding energy of
random sequences. Under these assumptions, the probability distribution P (s)
that segment s is a binding site for the TF is given by the maximum entropy
distribution under the condition 〈E(s)〉 = 〈E〉,

P (s) =
eλE(s)

∑
s′ eλE(s′)

=
l∏

i=1

eλEi(si)

∑
α eλEi(α)

, [3]

where the sum over s′ is over all length-l sequences, and the sum over α is over
the four bases. The Lagrangian multiplier λ is chosen such that

∑
s E(s)P (s) =

〈E〉. If we define the WM

wi
α =

eλEi(α)

∑
α′ eλEi(α′)

, [4]

then we can represent TFs by WMs, and write for the probability P (s|w) that
s is a binding site for the TF represented by w as

P (s|w) =
l∏

i=1

wi
si

. [5]

In summary, under the assumption that the binding energy of a TF to a DNA
segment s can be written as a sum of the binding energies of the individual bases
in s to the TF, and assuming that binding sites for a TF can be characterized by
having a certain expected binding energy 〈E〉, we can represent TFs by WMs
w. For each length-l DNA segment s, the probability of this segments being a
binding site for TF w is simply given by a product of the WM probabilities of
the individual bases, as described above.

1.1. Information Scores

If we have an alignment of n length-l sequences, with ni
α occurrences of base

α at position i, we can ask for the probability P (ni
α|bα) of observing these
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base counts under the assumption that all these sequences are random, with
probabilities bα for base α occurring at each position. This probability is given
by

P (ni
α|bα) =

l∏

i=1

n!
∏

α

(bα)ni
α

ni
α!

. [6]

If we use the Stirling approximation for the factorials (valid for n moderately
large):

log(n!) ≈ n log(n) − n, [7]

and write for the WM entries
ni

α = nwi
α, [8]

we obtain

P (ni
α|bα) = exp



−n
∑

i,α

wi
α log(wi

α/bα)



 ≡ e−nI , [9]

where we have defined the WM information score I as

I =
∑

i,α

wi
α log(wi

α/bα). [10]

Thus, the higher the information score of the observed alignment, the less likely
it is to occur by chance from sampling random bases. This is the main reason
that most authors use the information score to assess the quality of alignments
of putative binding sites.

Obviously, for small ni
α and especially if some of the ni

α become zero, the
Stirling approximation breaks down, and it would be best to use the exact Eq.
9. The information score can thus best be defined as

I = − log[P (ni
α|bα)]

n
[11]

from the exact expression for all values of n.

2. The Partition Likelihood Function

We recall that the probability P (S|w) that all sequences of a set S were drawn
from a WM w is given by

P (S|w) =
∏

s∈S

l∏

i=1

wi
si

, [12]

where si is the base occurring at position i in sequence s. To calculate the
probability P (S) that all sequences in a set S were drawn from the same WM,
independent of what this WM may be, we integrated over the hypersimplex

∑

α

wi
α = 1, ∀i ∈ {1, 2, . . . l}. [13]
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Generally, one would have to choose some integration measure π(w) on this
space (which is equivalent to choosing a prior). We then have

P (S) =
∫

π(w)P (S|w)dw. [14]

We chose a uniform prior that normalizes the integrals

π(w) = (3!)l. [15]

In cases where the sampling distribution is multinomial (as it is in our case), it
is customary to use so-called Dirichlet priors

π(w) =
∏

i,α

(wi
α)λα−1. [16]

Demanding a prior that is invariant under scale transformations of the wi
α, one

would arrive at λα = 0. There are good arguments for suggesting that this
corresponds to a complete ignorance prior for w (5). It is also easy to derive
that setting λα to some value larger than zero is equivalent to adding λα counts
for each letter α to the data. For this reason, the λα are also referred to as
pseudo-counts. We interpret our use of λα = 1 as representing the knowledge
that it is definitely possible for each base α to occur at each position. That is,
we known wi

α > 0 for all α. In any case, these are subtleties that hardly affect
the inference. For instance, some authors (e.g., ref. (6)) prefer to choose λα

proportional both to the frequency of α in the “full” data set (being for instance
the genome or all of its intergenic regions) and proportional to the square root
of the number of sequences in the alignment. We, however, fail to see how a
representation of our prior knowledge should depend on the data set, nor why
WMs should a priori be likely to be skewed toward bases that have a higher
frequency of occurrence in the full genome or its upstream regions (which consist
mostly of DNA that is not part of a binding site). Still, we have experimented
with such priors and noticed that the clustering behavior is hardly affected at
all. We thus chose to use the uniform prior since it is simpler, and more easily
justifiable theoretically.

Finally, some remarks on the importance of the integration over w in calcu-
lating the probability of a cluster. First of all, it is of course simply a matter of
probability theory that if we want to calculate the probability that all sequences
in the cluster came from the same WM, in absence of any knowledge about this
WM, we have to integrate over w. However, one may for instance be tempted
to assign a “score” to each cluster by finding the WM w∗ that maximizes the
likelihood P (S|w∗) that all sequences in the cluster came from this WM. One
would find

P (S|w∗) =
l∏

i=1

∏

α

(
ni

α

n

)ni
α

, [17]

where the maximum likelihood (ML) WM has entries (w∗)i
α = ni

α/n.
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The problem with an approach like this is that, trivially, the partition in
which each sequence forms its own cluster will be the partition that maximizes
the score. That is, for single-sequence clusters one can always find a WM that
gives rise to that sequence with probability 1. Obviously, we would not want this
totally “unclustered” state to have the highest score. The source of the problem
is that to obtain these ML scores, one has to choose all WMs such that the
likelihood is maximized. The more clusters there are in the partition, the more
WMs have to be set to their ML values. One thus allows oneself to optimize over
more degrees of freedom for a partition with many clusters than for a partition
with a small number of clusters. One then might be tempted to introduce some
kind of “penalty” per degree of freedom that has to be optimized to obtain the
ML score. However, these problems are solved automatically when one applies
probability theory correctly, that is, when one performs the integration over w.

2.1. Estimating WM Entries

Given an alignment of sequences that we believe to be sampled from the same
WM, we would like to estimate the WM entries wi

α from which these sequences
were sampled. In general we have for the expected WM entry 〈wi

α〉

〈wi
α〉 =

∫
wi

αP (S|w)π(w)dw∫
P (S|w)π(w)dw

, [18]

where the integral is again over the hypersimplex, and π(w) is again the prior
on this space. With the general Dirichlet prior one finds

〈wi
α〉 =

ni
α + λα∑

β ni
β + λβ

. [19]

With our prior λα = 1, we thus have 〈wi
α〉 = (ni

α + 1)/(n + 4).

2.2. Relation to the Gibbs Sampler

Consider a situation in which there only two clusters: one very large “reservoir”
cluster and one small cluster (which contains the estimated alignment of binding
sites for a single TF). Under our model, this partition has a certain probability
P . We are now interested in calculating the change P → P ′ in that probability
when a single sequence is moved out of the reservoir cluster into the smaller
cluster. With ni

α, the number of bases α in column i before the move and Nα

the number of bases α in the “background reservoir” (which is assumed to have
equal base frequencies bα in each column), this is given by

P ′ = P
l∏

i=1

ni
α + 1
n + 4

N + 3
Nα

≡ PQ. [20]

In the limit of N goes to infinity the factor Q reduces to

Q =
l∏

i=1

ni
α + 1

(n + 4)bα
=

l∏

i=1

〈wi
α〉

bα
, [21]
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with bα the background base frequencies and 〈wi
α〉 the expected WM entries

based on the n members of the smaller cluster prior to the addition of the
new sequence. This factor Q is precisely (assuming uniform pseudo-counts)
the scoring that is used by the Gibbs sampler algorithm. Thus, under the
assumption that the data set consists of a large set of “background” sequences
plus a set of binding sites for a single TF, our scoring reduces to the scoring of
Gibbs sampler. Note, however, that assuming a single cluster plus background
is of course not correct for data sets of the type that we cluster in the paper.

2.3. Prior on the Space of Partitions

In the paper, we are using a uniform prior over all possible partitions. The
argument for using such a prior is that it is the maximum entropy prior with
respect to the space of partitions. In absence of any prior knowledge about which
partitions are more or less likely, a uniform prior is the least “assuming” of any
prior. We note, however, that there are some subtleties with this reasoning.
Instead of saying that we are a priori completely ignorant regarding which
partition is more or less likely, it may seem that we may just as well have
said that we are completely ignorant regarding the number of clusters that
underlie the data. These two statements are mutually inconsistent, however.
The number of ways of partitioning a set of N objects into n subsets is given by
a so-called Stirling number of the second kind SN

n . The total number of ways
of partitioning a set of N objects into subsets is

bN ≡
N∑

n=1

SN
n . [22]

A uniform prior over the partitions thus corresponds to a probability distribution

Pn =
SN

n

bN
[23]

over the number of clusters n. This distribution has, for large N , a relatively
sharp peak at some value of n. Therefore, complete ignorance regarding the
partition “induces” knowledge regarding the number of clusters.

We could of course have chosen a uniform prior over the number of clus-
ters, thereby increasing the relative weight of partitions with cluster numbers
that can be realized in fewer ways. We are, however, not trying to infer the
cluster number, we are inferring which particular partitions are most likely. We
therefore feel that a uniform prior of partitions is the most relevant for our
purposes.

3. Monte Carlo Sampling

In this section we explain in more detail how our Monte Carlo sampling is
implemented. First of all, we want to implement a move set that would sample
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all partitions of our set of mini-WMs equally often if the probability distribution
P (D|C) were constant. That is, we want to implement a move set that respects
the uniform prior. This can be done as follows.

Let our data set contain N mini-WMs and imagine that we have N boxes.
A clustering state can be specified by assigning the N mini-WMs to the N
boxes (leaving some boxes empty of course). There are NN such states. This
state space (call it X) can be easily uniformly sampled by, at each time step,
picking one of the N objects at rando, and moving it to one of the N − 1 other
boxes, which is also to be chosen at random. However, a uniform sampling of
X does not correspond to a uniform sampling of the space of partitions. For
each possible partition C of the data set, there is a multitude of states in the
state space X that correspond to this partition C. To be precise, for a partition
C containing n clusters there are N !/(N − n)! states in the state space X that
correspond to the same partition C (all ways of permuting the N boxes, divided
by all ways of permuting the empty boxes). Therefore, partitions with n + 1
clusters have N − n times as many states in X as partitions with n clusters.
We thus bias the move-set on X such that the rate of moving from a state with
n + 1 clusters to a state with n clusters is N − n times as high as the backward
rate. This will ensure a uniform sampling of the space of partitions.

A second issue that the Monte Carlo walk has to deal with is the aligning
of the mini-WMs with respect to each other. As mentioned in the text, all our
mini-WMs are 32 bases long, while we assume that the binding sites are 27
bases long. There are six ways of placing a length 27 window over the length 32
mini-WM. Every time a mini-WM is moved during the random walk, we sample
over these six possible shifts and over both strands of the DNA (leading to 12
possible ways of picking the “site” from the length 32 window). This sampling
is done by so-called importance sampling.

Assume that we want to consider moving mini-WM m from a cluster con-
taining the set of sequences S into a cluster containing the set of sequences S′.
Let P (S′) be the probability of the set S′ without m added, and let P (S−)
be the probability of the set of sequences S when m is removed. Further, let
P (S′, i, s) be the probability of the cluster S′ when mini-WM m is added, with
a shift i and using strand s (where i runs from 0 to 5, and s is either positive
or reverse complement). Finally, let P (S−, i, s) be the probability of cluster S
with m added at shift i and strand s. We then define

Z = P (S′)
5∑

i=0

∑

s∈{+,−}

P (S−, i, s), [24]

and

Z ′ = P (S−)
5∑

i=0

∑

s∈{+,−}

P (S′, i, s). [25]

The move of m from S to S′ is accepted when Z ′ ≥ Z, and accepted with
probability Z′/Z when Z ′ < Z. After m is assigned to either S or S′, one of
the 12 strand/shift combinations is sampled with probability P (S−, i, s)/Z (or

7



P (S′, i, s)/Z′ depending on which cluster m was assigned to). This extension
of the move set will sample over all possible shift and strand combinations that
the clusters can take.

With this move set, it still seems that stable clusters may get “trapped”
into an unfavorable positioning of their window. That is, assume that some
subset of mini-WMs has high similarity and can form a stable cluster. Let us
also assume that these sites are not shifted with respect to each other, so that
with high likelihood an alignment will be sampled in which all mini-WMs in the
cluster occur with the same shift. Still, one may choose different values for this
shift, i.e. the alignment may contain bases 0-26, or bases 1-27, etc. Once one
of these shifts is chosen our move set makes it very unlikely for the cluster to
revert to another shift unless it evaporates. To defeat clusters getting trapped
in a particular shift this way we implemented one more move: the “coherent
shift”. In this move, we sample, according to their probability, from all ways
of shifting all mini-WMs in the cluster by the same amount. This sampling
is performed (with probability p) on the cluster that contains the mini-WM
that was randomly selected to be reassigned. In our implementation we chose
p = 0.05. The behavior of the algorithm is insensitive to this value. One only
has to make sure that the coherent shift is tried at least once during the lifetime
of a typical cluster.

Finally, we altered the probability P (S) for clusters consisting of a single
mini-WM. For those single mini-WM clusters, we interpret the mini-WM as
stemming from a random background distribution as opposed to it consisting of
samples from a binding sites. That is, instead of a score 4ln (with l the length
and n the number of sequences in the mini-WM) we use a probability

P =
∏

s∈S

l∏

i=1

bsi , [26]

where S is the set of sequences that make up the mini-WM, and bα is the back
ground frequency of letter α in the upstream regions. It must be admitted that
this is somewhat of a hybrid procedure. If we had really wanted to consider
a hypothesis space in which some of the mini-WMs can be “background” se-
quences as opposed to WM samples, then we should have chosen a prior on the
space of partitions that properly reflects this.

A typical Monte Carlo run has on the order of 1010 (considered) moves. It
takes less than 109 moves to reach “equilibrium”. That is, for the first 108−109

time steps the sampled values of P (D|C) are decreasing, whereas they fluctuate
around some fixed value after 109 time steps. For the data set from ref. (1) this
equilibrium value is given by

log[Pss] ≈ 0.93 log[Puc], [27]

where Pss is the steady-state value of the probability P (D|C) and Puc is the
probability of the entirely unclustered state where each mini-WM forms a cluster
by itself.
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3.1. Annealing

The annealing is performed by raising all probabilities to the power β and slowly
raising β over time. That is, a move form partition C to C′ is accepted with
probability [P (D|C′)/P (D|C)]β .

We experimented with different annealing schedules, and a simple linear
increase of β with time gives the best results. We let the algorithm run at β = 1
for 108 steps and then start increasing β linearly with time, such that β ≈ 3
in the end phase of the annealing. The last 5 ∗ 107 time steps are then done
with a very high value of β, essentially only accepting moves that increase the
probability P (D|C), thereby leading to a locally optimal partition at the end of
the run.

4. Extracting Significant Clusters

The simplest way in which we could use our assignment of probabilities to
partitions to extract clusters is by treating the probabilities simply as a “scoring”
function and attempting to find a partition of optimal score. One could for
instance use hierarchical clustering:

1. Start with each mini-WM forming its own cluster.

2. Calculate, for all pairs of clusters, the change in the probability of the
partition when these clusters are fused (maximizing for each pair over all
possible shift and strand combinations).

3. When there is no fusion that increases the partition’s probability: stop.
Else, fuse those clusters that increase the partition’s probability most and
go to step 2.

Experiments with the test set of 397 known TF binding sites (3) show that
(choosing cut offs as favorably as possible) no more than 10 regulons are cor-
rectly inferred using this procedure. Moreover, such greedy-search algorithms
only search a minute portion of the state space. But most importantly, such
schemes ignore one of the key advantages of our method, which is that it auto-
matically assigns probabilities to clusters.

4.1. Tracking Stable Clusters

One way of identifying significant clusters from the Monte Carlo sampling is to
look for clusters that are long-lived. A cluster is “born” when a mini-WM is
assigned to form a pair with a mini-WM that is forming a cluster by itself. We
then follow this cluster until it “evaporates”, which occurs when only a single
mini-WM is left. We record which mini-WMs were part of this cluster during its
lifetime. That is, we compile a probabilistic membership distribution p, where
pi is the percentage of the lifetime of the cluster that mini-WM i was assigned
to this cluster. We only keep track of such lifetime membership distributions
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for clusters whose lifetimes are over some threshold (short transient formations
of pairs, for instance, are not recorded).

At the end of the Monte Carlo run, we will have a large collection of such
clusters c, with their lifetimes Tc, and their membership distributions pc. There
generally will be sets of clusters that have very similar membership distribu-
tions. We want to consider such sets of similar clusters as different samples
of the same cluster. That is, we imagine that there is some set of “real” and
“unique” clusters, and that the clusters that we recorded during the Monte
Carlo random walk are samples from this set of underlying clusters. We intro-
duce a probability P (pc, pc′) that clusters c and c′ are samples from the same
underlying cluster. We imagine that each underlying cluster has some intrinsic
membership distribution p and that our example clusters pc and pc′ are samples
of size Tc and Tc′ of this intrinsic membership distribution. The probability
P (pc, pc′) then can be derived analogously to the way in which we derived the
probability P (S) for all sequences in a set S to come from the same WM.

For each component i, we have nc
i = Tcpc

i for the number of times that mini-
WM i occurred in cluster c. Now given the intrinsic membership probability pi

we would have

P (nc
i , n

c′

i |pi) = (pi)nc
i +nc′

i (1 − pi)Tc+Tc′−nc
i−nc′

i . [28]

Because we do not known the value of pi, we again integrate over it

P (nc
i , n

c′

i ) =
∫ 1

0
P (nc

i , n
c′

i |pi)dpi =
(nc

i + nc′
i )!(Tc + Tc′ − nc

i − nc′
i )!

(Tc + Tc′ + 1)!
[29]

Similarly, for the probability that these two samples did not come from the same
distribution, we have

P (nc
i )P (nc′

i ) =
nc

i !nc′
i !(Tc − nc

i )!(Tc′ − nc′
i )!

(Tc + 1)!(Tc′ + 1)!
. [30]

Therefore, the increase in the probability P → P ′ when clusters c and c′ are
fused, is given by

P ′ = P
N∏

i=1

P (nc
i , n

c′
i )

P (nc
i )P (nc′

i )
. [31]

We have implemented a hierarchical clustering that starts out assuming that
all recorded clusters are unique and then iteratively fuses those clusters for which
the increase in probability is highest. We then cut this procedure off at a more
or less arbitrarily chosen point.

We found this procedure (although workable and giving similar results for
the significant clusters) ultimately unsatisfactory because there is no natural
way to cut off the hierarchical clustering, and because this is again a greedy
algorithm that only searches a small part of the space. In a sense, we end up
with the same clustering problem all over again. We sampled the distribution
P (C|D) and obtained a set of clusters. However, since these clusters are clearly
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not unique, we essentially have to cluster this set of clusters to obtain unique
ones! (We could of course sample again all ways of fusing the clusters... and
then end up with probabilistic clusters of clusters... and so on ad infinitum).

The key conceptual difficulty here is that there is no clear definition of a
probabilistic cluster. A partition is a rigid assignment of objects into groups,
and since our probability assignment gives an essentially fluid assignment of
objects into groups, it it not clear how to extract “clusters” from this fluid
assignment.

It is therefore that we chose to simply identify the ML rigid assignment of
the mini-WMs into clusters by annealing. At the end of the annealing, we have
a rigid assignment of mini-WMs into groups. Our Monte Carlo sampling is then
used to estimate the significance of these clusters. This is currently the most
satisfying approach that we have for identifying significant clusters, and it is the
one we used on the test set of 397 known binding sites from ref. (3).

4.2. Estimating Significance of ML clusters

The annealing essentially gives us a set of “candidate” clusters without deter-
mining the significance of these clusters. We only know that a search for the
ML partition has partitioned the data into these clusters. We measure the
significance of these candidate clusters by a Monte Carlo sampling run.

Let M be the set of mini-WMs making up a particular candidate cluster.
At each particular time step during the Monte Carlo sampling this set of mini-
WMs will be partitioned over a certain number of clusters. Some members may
occur together in a cluster, while other members may be partitioned with some
other mini-WMs. In general, the set of members M of the candidate cluster
will be spread over a set of clusters c, that each contain mc members of the set
M (with

∑
c mc = |M |, of course). We now find the maximum m∗ = maxc(mc)

of these values mc and say that at this particular time step m∗ members of the
candidate cluster M are “coclustered” (that is, we find the cluster that contains
most of the members of M and count how many members of M are in this
cluster). By recording m∗ at each time step, we calculate a distribution p(m)
for the probability of m members of M coclustering. We can then of course
calculate mean, variance and so forth of this distribution. In particular we will
calculate the shortest interval [m−,m+] that contains 95% of the probability:∑m+

m=m−
p(m) ≥ 0.95. If m− > 1 we consider the cluster to be “significant”.

We can also measure, for each member of M , what fraction of the time p it is
a member of the set of m∗ members. We then obtain a probabilistic membership
list for this cluster. That is, for each member m we obtain the probability pm

that m is “in” the cluster.

4.3. Extracting Significant Clusters from Pairwise Statis-
tics

For larger data sets it may be computationally unfeasible to converge all of the
statistics just mentioned. We may then need to resort to measuring a simpler
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set of statistics to infer significant clusters.
Our approach is to measure, for each pair of mini-WMs i and j, the fraction

of the time pij that these mini-WMs are coclustered, i.e. occur in the same
cluster. We do several (20 or so) Monte Carlo runs and measure all pij in each
of them. By comparing the measured pij from the different runs we can obtain
both the mean and the standard deviation between different runs for each pij

(giving us a direct handle on the convergence). For a data set of N mini-WMs,
we thus measure mean µ and standard deviation σ for each of the N(N − 1)/2
pair statistics pij . In order to illustrate the convergence attained in our runs
Fig. 6 shows the cumulative distribution of the ratio r = σ/µ of the standard
deviation and mean for all pairs that have a mean of over half, µ > 1/2. (We
focus on these because these are the pair statistics that will be used below.)
The figure shows, for instance, that 50% of the pairs have a standard deviation
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Fig. 6. Cumulative distribution of the ratio r of standard deviation to mean for
all pair statistics with a mean larger than 1/2.

smaller than 10% of the mean.
We now use the pair statistics to define “candidate” clusters. We construct

a graph where each node represents a mini-WM and connect those nodes i and j
for which pij > pcrit, where pcrit is some connectivity threshold. This graph will
contain a certain number of connected components. Some of these components
will consist of single nodes. These unconnected mini-WMs are “orphans” in
the sense that there are no other mini-WMs with which they cluster more than
pcrit of the time. All other mini-WMs have at least one partner with which
they cluster more than a fraction pcrit of the time. Fig. 7 shows the fraction of
the data set that has at least one partner over pcrit as a function of pcrit. Fig.
8 shows the number of connected components, i.e. the number of candidate
clusters, as a function of pcrit. We see that when the threshold pcrit is set
very high, for instance at 95%, that there are slightly less than 100 connected
components, containing somewhere between 10 and 20% of the data set. As the
threshold pcrit is lowered, many new components appear, and the fraction of
the data set contained in these components grows along with it. At some point
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Fig. 7. Fraction of the data set that has at least one other mini-WM with which
it clusters more than a fraction p of the time. The data set consists of the top
2, 000 sites from ref. (1).
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Fig. 8. Number of connected components (with more than 1 member) as a
function of the connectivity threshold p. The data set consists of the top 2000
sites from ref. (1).

13



(around pcrit = 0.45), the number of components reaches a maximum. For lower
thresholds the number of components drops quickly. What happens here is that
the different clusters start fusing rapidly for lower thresholds.

We chose to set the threshold at pcrit = 1/2. One reason for setting the
threshold at this value is that it is conceptually most appealing: a mini-WM
belongs to a cluster if there is a mini-WM within that cluster with which it co-
clusters most of the time. By setting the threshold at 1/2 we are guaranteed that
each mini-WM cannot cluster more with any other mini-WM than with those
in the cluster that it is assigned to. A second reason is pragmatic: Fig. 8 shows
that around this value of the threshold the number of different components is
maximal, i.e. we will obtain a maximal number of candidate clusters.

Now that we have our candidate clusters, we want to calculate their signif-
icance by calculating the distribution p(m) of the number of its coclustering
members (see section 4.2). We also want to assign, to each of its members m, a
membership probability pm. Both of these we want to infer from the pairwise
statistics (since it is computationally prohibitive to measure all these statistics
directly by sampling).

The coclustering probabilities p(m) should in principle be inferred by first
estimating the probability of coclustering for all possible subsets of the candidate
cluster. We would for instance need to estimate, from the pair statistics, the
probability pijk that members i, j, and k all three co-occur in a single cluster.
That is, we need to estimate higher order coclustering statistics from the pair
statistics, i.e. given pij , pik, and pjk we want to estimate pijk. This is, in
principle, a well defined probability theory problem. We have equalities such as

pij = pijk + pij,k, [32]

where pij,k is the probability that i and j but not k occur together in a cluster.
There are two analogous equalities for pik and pjk. Finally, the probability pi,j,k

for all three to occur in separate clusters has to be nonnegative, pi,j,k ≥ 0, and
the sum over all possible ways of partitioning i, j, and k should of course be 1:

pijk + pij,k + pi,jk + pik,j + pi,j,k = 1. [33]

Given no other information than the pair statistics and the above constraints
one then finds a uniform distribution over pijk within the interval bounded by
max({(pij +pik +pjk−1)/2, 0}) from below and min({pij , pik, pjk}) from above.
The expected value 〈pijk〉 would then be given by

〈pijk〉 =
min({pij , pik, pjk}) + max({(pij + pik + pjk − 1)/2, 0})

2
. [34]

In principle, all higher order statistics could be estimated in this way. However,
this sort of inference quickly becomes very cumbersome as more indices are
involved.

Instead, we estimate membership probabilities by a simpler (approximate)
procedure. We assume that one of the members of the connected component,
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can be considered the “anchoring” or central member of the cluster and that the
probability for a mini-WM to be a member of the cluster is the probability that
it coclusters with the anchoring member. We first calculate the probabilities
Ai that mini-WM i is the anchoring member. Then, given the Ai, the cluster
membership probability pi of mini-WM i is given by

pi = Ai +
∑

j %=i

pijAj . [35]

That is, either i is the anchoring member itself, or j is the anchoring member
and i coclusters with it. We now define the Ai to be the normalized solution to

Ai = λ
∑

j

pijAj . [36]

The idea is that the probability that i is the central member of the cluster, should
be proportional to the probability that i coclusters with the central member.

We thus solve the above eigenvector equation for each connected component
of the graph, obtain the anchor probabilities Ai and calculate the membership
probabilities for all its nodes using Eq. 35.

Finally, we now use the membership probabilities to calculate the probabil-
ities p(k) that k members from a connected component cocluster at any point
in time. To this end, we will assume that for each member m, the probability
pm of this member being part of the cluster, is independent of the probability
of any of the other members being part of the cluster. That is, each member m
has an independent probability pm to be “in” the cluster. If we then define the
generating function

G(z) =
∏

m

(pmz + 1 − pm) =
∑

k

p(k)zk, [37]

the probabilities p(k) can be easily obtained by expanding G(z), and we can
again calculate the 95% probability interval [k−, k+]. Significance of the cluster
again is defined by k− > 1.

4.4. Estimating a Cluster’s WM

We now want, for each cluster, to estimate a WM from the membership prob-
abilities pm of its members m. The approach is that if m is in the cluster with
probability pm, that, with the same probability pm, the cluster WM is given by
the alignment of sites that m belongs to. Therefore, we want to calculate the
average alignment of sites that each member m belongs to. Thus, during the
Monte Carlo sampling, we keep track, for each mini-WM i, of the alignment
of the mini-WMs of the cluster in which i finds itself. That is, at any point
during the run, mini-WM i will find itself in some cluster c, containing some
set of other mini-WMs. The alignment of the cluster is simply described by the
numbers of ni

α of bases α at column i of the cluster. We will now keep track,
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for each mini-WM, of the running average of this alignment. We of course have
to take into account that the mini-WMs under consideration may occur in the
cluster with a different length 27 window sampled at different time steps. Thus
if at a certain point in time, the mini-WM occurs in the cluster with the window
s through s + 27, then we will add the base counts ni

α of the current cluster to
columns i + s of the mini-WMs WM running average. In this way, we get an
average alignment for each of the 32 columns of the mini-WM.

At the end of the sampling, we thus have, for each mini-WM, the averaged
alignment of the sites in the clusters that it visited during the run. We will
now reconstruct the WM of each “candidate” cluster (be it a ML cluster, or
one inferred from pair statistics) by summing the averaged alignments of all
members m of the cluster, each weighted with their membership probability
pm. To meaningfully do this sum, we still have to align the averaged alignments
of the different cluster members with respect to each other. To this end, we
start with the averaged alignment of the member with the largest membership
probability pm. We then align the averaged alignment of the member with the
second highest membership probability to this first member. After that, we
align the member with the third highest membership probability to this pair,
and so on, until all members have been added to the alignment. For each column
we then obtain averaged base counts 〈ni

α〉. We finally obtain the WM estimates
from these averaged base counts:

〈wi
α〉 =

〈ni
α〉 + 1

〈n〉 + 4
[38]

4.5. Membership Based on WM Match

For each cluster that occurred at the end of annealing (in the annealing ap-
proach) or that forms a connected component of the pairwise clustering graph
(in the approach via pair statistics) we reconstruct the WM as described in
the previous section. We now classify the full data set of mini-WMs in terms of
these estimated cluster WMs. Let P (S|wj) be the probability that the sequences
in mini-WM S arise from sampling from the cluster WM wj . The probability
P (wj |Si) that mini-WM i was sampled from WM wj , as opposed to any of the
other cluster WMs, is given by:

P (wj |Si) =
P (Si|wj)P (wj)∑
k P (Si|wk)P (wk)

, [39]

where the P (wk) are the prior probabilities of cluster WMs, and the sum in the
denominator is over all cluster WMs (from either the set of ML WMs or the set
of connected components of the connectivity graph.) With respect to the prior,
we chose to use the prior that maximizes the likelihood of the full data set D
given the cluster WMs. That is, choose P (wj) such that

P (D) =
∏

S∈D




∑

j

P (S|wj)P (wj)



 [40]
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is maximized, where the product is over all mini-WMs in the data set. Once
we have determined the prior, we obtain the posterior probabilities of Eq. 39
and in this way obtain another membership list for each cluster, but now for
the full data set. For each significant cluster these membership probabilities are
also shown on the website (www.physics.rockefeller.edu/∼erik/website.html).

4.6. Finding Matches in Upstream Regions of a Genome

We can search for additional members of our clusters by scanning the upstream
regions of all operons in E. coli for matches to the cluster WMs. For each
cluster WM, and each upstream region U , we will calculate the probability
that this upstream region contains no sites for the cluster WM. To calculate
this, consider first some particular length 27 sequence s in the upstream region
U . The probability that s arose from WM w is P (s|w) (given by the usual
expression). The probability P (s|r) that this sequence arises “by chance” is
P (s|r) =

∏
i bsi , where bα is the background frequency of base α. Therefore,

the probability that sequence s is a binding site rather than a “random” sequence
is given by the posterior

P (w|s) =
P (s|w)π

P (s|w)π + (1 − π)P (s|r) , [41]

where π is the a prior probability that a particular segment of the upstream
region U is a binding site for a particular TF. We will choose this prior so as
to reflect the guess that, on average, an upstream region contains about 2-3
binding sites (a conservative estimate). Since there are ≈ 300 different TFs,
the probability that an upstream region has a binding site for a particular TF
is, on average, about 1/100. Furthermore, we would like to bias the prior such
that binding sites are more likely to be found close to the translation start. We
will therefore let the prior depend on the distance d from the sequence s to the
translation start. That is, we take π(d) = C/d, where the constant C is chosen
such that

∑
d π(d) = 1/100 over the whole upstream region. Finally, to obtain

the probability that the upstream region contains no binding sites for the TF,
we take the product over P (w|s) for all ways of picking a length 27 sequence
from the upstream region, which gives the probability P̄ that the upstream
region contains no site for w:

P̄ =
∏

s∈U

P (w|s). [42]

On the website we report, for each significant cluster, the 35 operons with the
highest scores − log[P̄ ] for their upstream regions.

17



5. Resampling Test for Identifying Significant
Clusters

In the paper, we assay the significance of our clusters within a Bayesian frame-
work: given our set of putative sites we find clusters of sites that are more likely
to cluster with each other than to cluster in any other combination with other
sites. That is, we calculate how likely it is that certain sets of sites belong to-
gether relative to these sites clustering with other sites. In contrast, it is quite
customary to assay the significance of a cluster by comparing some statistic
that measures its “quality” against the typical quality of clusters obtained by
clustering “random” sequences. That is, one assumes some null hypothesis re-
flecting “randomness” and calculates how unlikely it is for a cluster of a certain
quality to arise from such random data. For instance, to test the significance of
a cluster of n sequences having a WM score I that was obtained from clustering
a data set of N sequences in total, one may ask: how likely is it that a set of n
sequences can be found, in a set of N random sequences, that has a WM score
at least as high as I?

There are several problems with such an approach. First of all, one must
be very careful when interpreting such a test. Rejecting the null hypothesis
of randomness means no more than: the null hypothesis does not explain the
data well. What kind of other hypotheses would explain the data better is not
addressed by such a test. That is, for our problem, one can not logically make
the step: since the null hypothesis is rejected, the cluster must correspond to
a “real” regulon. To make that inference one has to introduce a model that
explicitly calculates the probability to obtain certain clusters of sites given that
they are binding sites from the same regulon (as we have done).

A more technical problem is posed by the choice of null hypothesis. Often
null hypotheses are obtained by randomizing the data in some way, and then
re-running the algorithm with the randomized data. In such “resampling” tests,
it is important that the randomization only removes correlations or biases from
the data that are relevant for the inference at hand. That is, we only want to
remove biases in the data that are due to the occurrence of real binding sites in
the data. There may be other, irrelevant biases in the data (such as the relative
frequencies of the different bases) that should not be removed by randomizing
the data. Otherwise, the rejection of the null hypothesis may only imply that
the null hypothesis does not reflect certain inherent biases in the data that have
nothing to do with the occurrence of binding sites. In general, this is a hard
problem; there are probably all kinds of biases in real DNA sequences that have
nothing to do with the occurrence of binding sites in these sequences.

In spite of these problems, we did perform some resampling significance test
for our clusters. Note also that in section 7 we evaluate the results on a test
set of known binding sites, which allows us to explicitly calculate the rate of
false positives and false negatives for that test set. For the resampling test, we
constructed a randomized data set by permuting the columns of each of the
mini-WMs in our data set independently. This retains the distribution of bases
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in all the individual columns of the mini-WMs but removes any correlations in
the order of these columns between different mini-WMs, which is a conservative
randomization procedure.
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Fig. 9. Resampling test for the clusters of data set from ref. (1). Each filled
black star is a cluster obtained by annealing the real data set, while each gray
open star is a cluster obtained by annealing the randomized data set. Cluster
sizes are shown horizontally, while their WM information scores I are shown
vertically.

Fig. 9 shows the results of the resampling test on the results of data from
ref. (1). The filled black stars show the clusters that were obtained at the end
of annealing for the real data set. The number of sequences in each cluster is
shown on the horizontal axis, while each cluster’s WM score I is shown on the
vertical axis. Similarly, the gray open stars show the clusters obtained by the
annealing of the randomized data set. We will call a cluster significant if there is
no cluster of the same size and with higher information score in the randomized
data set. Of course, it would be better to perform many resampling runs and
estimate more precisely the probability of annealing random data producing a
cluster with information score larger than I at each possible cluster size. This
is computationally rather intensive. Since we are assessing significance of clus-
ters within a Bayesian framework, we provide the data in Fig. 9 as a guideline
for comparison with significance tests that are more commonly used. Under
our definition of significance for the resampling test we find 88 significant clus-
ters, which are mostly the same clusters as deemed significant by our Bayesian
procedure.
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6. Operations on the Data Sets

In this section we briefly describe the data sets that were used in our studies
and describe in more detail the operations that we performed on these data sets
before clustering them using PROCSE.

The data set from ref. (1) contains multiple alignments of putative binding
sites from a number of related proteobacteria and was collected in the following
way. For each E. coli gene, orthologous genes were collected from the species
Actinobacillus actinomycetemcomitans, Haemophilus influenzae, Pseudomonas
aeruginosa, Shewanella putrefaciens, Salmonella typhi, Thiobacillus ferrooxi-
dans, Vibrio cholerae, and Yersinia pestis. A modified version1 of the Gibbs
sampler algorithm (6) is then used to find common motifs in the upstream re-
gions of these orthologues. The resulting alignments of putative binding sites
contain between 1 and 16 sequence segments with lengths of 15-25 bases. We
will interpret these alignments as collections of binding sites for the same TF.

The data set from ref. (2) contains similar alignments of putative binding
sites for a single TF but was obtained in a somewhat different manner. Again,
sets of orthologous genes were collected for each E. coli gene from the species
Klebsiella pneumoniae, S. typhi, V. cholerae, and Y. pestis. Instead of looking
for similar sequence motifs in the upstream regions, ref. (2) aligned the upstream
regions and found sequence segments that are more conserved than sequences
downstream of orthologous genes. The resulting alignments differ from those
of ref. (1) in two respects. First, there are more stringent constraints on the
selection of conserved sequence segments. Second, since the number of species
used is smaller, the number of sequences in the alignment per upstream region
is generally smaller.

6.1. Operations on the Data Set from (1)

Ref. (1) have annotated alignments in their data set for which the E. coli site
overlaps either a known site, or a known repetitive element. We have removed
all such alignments from our data set, since for this data set, we are interested
in clustering new putative binding sites. We then ordered all the remaining
alignments by their MAP value. The MAP value is a quality measure given to
the alignments by ref. (1). We then went through the ordered list of alignments
and removed alignments whose centers are less than 6 bases away from centers of
previous alignments in the list. This is to avoid the possibility of the algorithm
aligning the same mini-WM twice in a cluster. Overlaps are only checked for the
E. coli members of the alignment. We then took the top 2,000 of the remaining
alignments as our data set.

After that we symmetrically extended all alignments from their original
length (between 15 and 25 bases) to length 32. To do so we had to “pad”
bases to the alignments from the genomes. Some of the genomes used by ref.
(1) are not yet completed and some cases occurred in which the bases could not

1One of the pertinent modifications is the favoring of sites that show palindromicity.
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be padded because the sequence is not available. In those rare cases, we added
random bases to replace the missing bases. As pointed out in the paper, we
would like to consider the sequences in the resulting alignment as independent
samples from a WM describing the TF. However, some of the species are proba-
bly too closely related evolutionary to warrant this assumption of independence.
That is, some of the bases in the alignment are conserved not because of selec-
tional constraints but because they simply haven’t mutated yet since the species
diverged. Ideally we would deal with these evolutionary relationships directly,
reconstructing the phylogenetic tree of the species involved, and inferring which
bases in the alignment have been retained by selection. However, this is an al-
together separate inference problem and we opted for a simple circumvention of
this problem. We replaced the sequences from the most closely related species
by their consensus. That is, we replaced triplets of sequences from E. coli, S.
typhi, and Y. pestis with their consensus, and replaced sequences from the pair
H. influenzae and A. actinomycetemcomitans with their consensus as well. We
deem all other species to be sufficiently separated evolutionary such that we
can assume their sequences to be independent samples of a WM. There are two
more technical details to mention regarding this procedure. First, there may
not be a majority base among the sequences. In those cases we select one of the
bases among the triplet (or pair) of sequences at random. The second problem
arises because the alignments of ref. (1) may contain more than one sequence
segment from the same upstream region, i.e. from the same genome. Thus, if
we have two segments from S. typhi and two from E. coli occurring in the same
alignment, we have to decide how to pair these before taking their consensus.
We do this by picking the pairing that maximizes the number of conserved bases
between the paired segments. These operations now give us the mini-WMs on
which the PROCSE algorithm operates.

6.2. Operation on the data set from (2)

The operations on the data set from ref. (2) are largely the same as those
described in the previous section. We used the set of predicted E. coli binding
sites from (2) and the corresponding local alignments to construct a mini-WM of
length 32 for each putative binding site x. In case the length l(x) was < 32, we
padded additional bases to the left and to the right using the most significantly
conserved E. coli base b as an anchor. Similarly, if l(x) > 32, sites were clipped
off. The sequences for E. coli, K. pneumoniae, and S. typhi were replaced by
their consensus. Each mini-WM was scored by the significance score for b (2)
and ordered accordingly. Alignments that overlapped an alignment with higher
score with 27 or more bases were removed. In contrast to the algorithm employed
in (1), the selection of sites in this data set was not optimized to maximize the
inclusion of known binding sites or to favor reverse complement symmetry of the
sites. For this reason, we did not remove sites that overlap known binding sites
(or known repetitive elements) from this set. By comparing the results obtained
with this data set and those obtained with the data set from (1), we may (to
some extent) assess the effect on the discovery of new vs. known regulons of the
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removal/inclusion of known sites.

6.3. Processing of the data set from (3)

The data set of known TF binding sites from Church’s lab (3) contains a total
of 997 sites. In order to create a test set for our algorithm we filtered this
set in several ways. First we removed all σ-factor binding sites. There are
several reasons for removing these sites. First of all, σ-70 sites are ubiquitous
in the genome, whereas we are interested in finding regulons (sites and their
TFs) that specifically regulate (relatively) small sets of genes. Second, there
are regulatory sites that overlap σ-sites, and since in our algorithm any piece of
genome can only occur in one cluster at a time, these sites would alternatively
cluster with the regulon of interest and with the rest of the σ-sites at other
times. The presence of the σ-sites would thus negatively effect the inference of
other (smaller) regulons. Finally, the primary data set (1) looked for reverse
complement symmetry in the binding sites, thus disfavoring the inclusion of
σ-sites in their data set. Thus, removing the σ-sites from the tes -set makes it
also more comparable with the data set from ref. (1).

After removing σ-sites and sites that overlap each other by more than 27
bases there are 397 unique TF binding sites in this data set.

6.4. Preparation of TF mini-WMs from Data Set (3)

When we cluster the new putative binding sites we want to separate clusters of
sites that correspond to TFs for which some binding sites are already known
from clusters of sites that form entirely new putative regulons. To this end we
took all the known binding sites from the collection from (3) and divided them
into groups according to their annotation. That is, all sites that are annotated
as binding sites for the same TF form a group. We then aligned these groups of
sites into alignments of all known sites for each TF. The multiple alignment is
performed by running a hierarchical clustering with our scoring function. That
is, we first put all known sites for a TF into separate clusters and then find
the pair that, when fused, leads to the largest increase in the score P (D|C) of
the partition. We repeat this procedure (i.e. at the second step either a third
sequence is added to the pair or another pair is fused) until a single cluster is
left. At each step the alignment is maximized over all possible ways of shifting
the sites with respect to each other and both strands. Thus, we sometimes have
to pad bases from the genome to “complete” the alignment. At the end, the
length 32 window with the highest information score is taken from the alignment.
The mini-WM so obtained represents all known sites for a particular TF. We
constructed 56 different mini-WMs in this way from data set (3). There are
only 53 TFs represented in this data set, but three of them (metJ, argR, and
phoB) have two different types of sites, which we aligned separately.

We added these 56 mini-WMs to both data sets. The idea is that if additional
binding sites for any one of these TFs occur in our data set, then these sites
will tend to cluster with one of the 56 mini-WMs that we have just described.
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When we collect the significant clusters at the end of the run, we separate them
into two sets: those that contain at least one of the 56 mini-WMs constructed
from (3) and those that do not. The former clusters contain new putative sites
for known regulons, while the latter contain new predicted regulons.

7. Results of Clustering Known Binding Sites

Table 2 shows results from clustering the set of 397 sites from ref. (3). We
performed several different tests of our algorithm with this data. First of all, one

fac. size int. size num. site int. size num. site int.
arcA 12 2-5 20/15 3/3 1-11/1-11 24 4 1-14
argR2 7 5-7 21/24 7/7 8-20/11-21 26 5 1-11
argR 17 8-14 22/22 10/12 12-21/11-21 - - -
crp 41 13-27 22/29 19/20 2-16/7-21 39 19 7-28

dnaA 8 3-6 7/8 6/6 3-7/3-7 - - -
fadR 7 4-7 12/9 7/7 3-10/3-8 11 4 1-8
fis 11 2-3 20/15 4/4 1-11/1-11 - - -
fnr 12 7-9 11/11 9/9 7-10/7-10 25 6 17-23

fruR 11 8-11 17/13 11/10 8-13/7-12 15 7 1-6
fur 8 5-6 21/24 5/6 8-20/11-21 28 6 19-24

galR 6 3-6 6/14 5/6 3-6/3-8 9 2 1-4
hipB 4 3-4 8/14 3/4 2-5/4-13 - - -
ihf 18 3-5 22/22 5/4 12-21/11-21 27 5 5-15

lexA 19 18-19 24/24 19/19 19-23/19-23 28 18 19-24
lrp 14 2-4 -/- -/- -/- - - -

malT 10 2-6 9/8 7/6 1-6/1-6 - - -
metJ(3) 15 13-15 17/15 14/13 14-17/13-15 17 14 13-16

narL 9 2-6 10/14 5/6 1-5/4-13 - - -
ntrC 5 5-5 9/10 5/5 5-7/5-8 18 14 9-14
phoB 9 2-4 9/13 3/4 1-7/1-8 11 4 1-8
purR 16 13-15 15/17 14/16 13-15/13-16 23 13 16-20
trpR 3 2-3 8/- 3/- 1-5/- - - -
tus 5 4-5 11/8 5/5 5-8/5-7 12 5 3-6
tyrR 16 5-11 15/21 9/8 2-10/1-13 - - -

Table 2. Clustering of the 397 sites from ref. (3). Column 1 shows the TF name,
column 2 shows the number of sites in the data set annotated as binding sites
for that TF (according to ref. (3)), column 3 shows the the 90% probability
interval for the number of coclustering sites for this TF. Only those TFs are
shown for which the lower bound of the 90% probability interval is 2 or higher.
We performed two annealing runs of this data set to find the ML partition. For
each TF, we found the cluster in this partition with the largest number of sites
for that TF. The clusters shown in columns 4-6 resulted from two simulated
annealing runs, with the “size” and “int” defined as before. Column 5 shows
how many of the sites in column 4 were annotated for the TF. For example,
columns 4-6 for the TF dnaA show that at the end of the two annealing runs
there were clusters of sizes 7 and 8, respectively that both contained 6 of the 8
known dnaA binding sites, and with 90% probability between 3 and 7 members
of these clusters co-cluster. Finally, columns 7-9 show the same statistics when
the annealing is done on a larger data set that contains both the 397 sites of
ref. (3) as well as the top 2, 000 E. coli sites from ref. (1).
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may test how well the known binding sites cluster according to their annotation.
That is, do sites annotated to be binding sites for the same TF X significantly
cluster with each other? To answer this question, we performed Monte Carlo
sampling of the probability distribution P (C|D) for this data set. At each time
step of the Monte Carlo random walk, we measure how many sites of each TF
“cocluster”. This is defined as follows: At any particular time step of the Monte
Carlo walk, the sites that are annotated for TF X will be distributed in some
way among the clusters that are present at that time during the random walk.
For instance, if TF X has 10 binding sites in the data, 6 of those may sit in one
cluster, 2 others may sit in another cluster together with some sites of different
annotation, and the last 2 may each sit in some cluster that is dominated by sites
of other annotation. For such a partition, we would say that 6 of the 10 sites
for TF X cocluster. By calculating how many sites cocluster at each time step,
we measure, for each TF, the distribution p(k) that k of its sites will cocluster
at any point in time. These distributions may be summarized in various ways,
but we chose to find the shortest length interval [kmin, kmax] such that at least
90% of the time between kmin and kmax sites cocluster, i.e.

∑kmax
k=kmin

p(k) > 0.9.
We will consider the sites of a TF X to cluster “significantly” if kmin > 1 for its
distribution p(k). Of the 53 TFs represented in the data set, there are 24 that
cluster significantly. These are shown in the rows of Table 2. The first column
shows the name of the TF, the second column shows the total number of sites
for that TF contained in the 397-site data set, and the third column shows the
interval [kmin, kmax]. The fifth row, for instance, shows that the TF dnaA has a
total of 8 sites in the data set, and that at least 90% of the time between 3 and
6 of these sites cocluster.

As mentioned before, 24 of the 53 TFs cluster significantly. One might call
this an overall “false negative” rate of 55%. All the TFs that cluster significantly
(with the exception of trpR) have more than three binding sites in the data set.
There are 22 TFs that have 3 or less sites in the data. Therefore, it is clear that
it is mostly TFs with a small number of samples in the data that do not cluster
significantly. In other words, there is a false negative rate of less than 23% for
TFs with more than three sites in the data set. Table 3 shows the TFs whose
sites did not cluster significantly. Note that some of these sites (such as cpxR,
flhCD, glpR, metR, modE, nagC, ompR) do cluster significantly better than
sets of random sequences would, but did not pass our significance threshold2.
That is, we could have changed the significance thresholds such that for this
particular data set the number of false negatives would be further decreased.
Still, it is quite clear that the sites for a TF like soxS do not cluster at all. The
variability among the 8 soxS sites is so large that one might wonder if a WM
model is appropriate at all for TFs like this.

2One would assume that for random data all partitions are equally likely. One can then
ask: what is the expected co-clustering distribution p(k) for some particular set of n sites, and
what is the sampling distribution of, for instance, the mean size 〈k〉 =

∑
k kp(k). Although

cumbersome, these quantities can be calculated analytically, and one would find that for
n = 6, 〈k〉 = 1.39 and that 〈k〉 = 2 constitutes a significant clustering of the 6 sites. By such
measures, some of the clusters in table 3 would come out significant.
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In this first test, we used the annotation of the sites to measure to what
extent sites with equal annotation cluster together. Summarizing, we found
significant clustering for slightly less than half of the TFs, and for over 75% of
the TFs that have more than 3 sites in the data set. After this, we wanted to
test to what extent our annealing approach will be able to identify the “correct”
clusters. That is, we wanted to compare the ML clusters that result from an-
nealing with the annotation of the sites. We performed two annealing runs to
identify a ML partition. We tested the significance of the ML clusters obtained
by annealing by performing two sampling runs. Again we measure the coclus-
tering distribution p(k) for each cluster and consider a cluster significant if the
90% probability interval [kmin, kmax] has kmin > 1. In order to compare these

fac. size int.
ada 2 1-1
araC 4 1-2
carP 2 1-1
cpxR 6 1-3
cspA 4 1-2
cynR 2 1-1
cysB 3 1-1
cytR 5 1-2
deoR 1 1-1
farR 3 1-2
fhlA 3 1-1

flhCD 3 1-3
gcvA 4 1-2
glpR 7 1-3
hns 3 1-1
hu 1 1-1
iclR 1 1-1
ilvY 2 1-1
lacI 1 1-1

marR 2 1-2
metR 7 1-4
modE 3 1-3
nagC 6 1-3
ompR 8 1-3
oxyR 3 1-2
pdhR 2 1-1
rhaS 2 1-1
soxS 8 1-2
torR 1 1-3

Table 3. TFs from data set (3) whose sites did not cluster significantly. First
column is TF name, second is the total number of binding sites for that TF in
the data, and the third column is the 90% probability interval [kmin, kmax] of its
coclustering distribution p(k).

clusters with the annotation, we had to identify, for each TF, which of the ML
clusters “corresponds” best to the cluster of binding sites of the TF. We do this
by simply finding the ML cluster that contains the largest number of sites for
the TF. That is, the 10 sites of TF X may be spread over 4 clusters in the ML
partition, with 5 sites in one cluster, 3 in another, and 2 more in a third and
fourth cluster. We would then identify the ML cluster containing the 5 sites as
the cluster “corresponding” to TF X.
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These clusters are shown in columns 4 through 6 of table 2. The column
entries are best explained by example. Focus, for instance, on the line for TF
narL. In the first annealing run, there was a ML cluster that contained 5 of the
9 narL sites. This cluster had a total size of 10 sequences (that is, apart from
the 5 narL members, 5 members had different annotations). Under sampling,
between 1 and 5 sites of this cluster cocluster 90% of the time. (Note that this
means: between 1 and 5 of the full set of 10 sites.) In the second annealing run,
there was a ML cluster of size 14 that contains 6 of the 9 narL sites. Between 4
and 13 members of this cluster cocluster 90% of the time. To give an example
of a TF for which essentially the same cluster was found in both annealing runs,
focus on the lexA line. In both runs there was a cluster of size 24 that contained
all 19 of the known lexA sites (and 5 sites with a different annotation). During
sampling, between 19 and 23 members of this cluster cocluster (being one of the
most stable clusters in the set).

In general, one can see that there is good agreement between the annotation
and the clusters inferred by annealing. Looking in more detail at some of the
annealed clusters, we note that narL and narP sites cluster together, as do fur
and argR2 sites. The ihf sequences sit mostly in the tail of the argR cluster
and the fis sequences occupy the tail of the arcA cluster. The many crp sites sit
distributed over two clusters (with only the largest represented in the table).

This test also allows us to assess the amount of false positives that our
algorithm produces. At the end of the annealing there were 30 and 29 clusters
in the two respective runs. After sampling, it turns out that 20 of the 30 we
deemed significant using our cut-offs, and 16 of the 29 in the other run. None
of these clusters are false positives. That is, our false positive rate is 0 for this
particular test set.

Finally, one may think that the annealing had not really found the ML clus-
tering (or something close to that), but had gotten stuck in some local optimum,
and that if we had had more time, and cooled slower, we may have found clus-
terings with better score that correspond even better to the known annotation.
This is unlikely. One can easily calculate what the probability P (C|D) is of the
partition in which all sites are clustered according to their annotation. We find
that this probability is substantially lower than the probability of the partitions
that annealing finds. We believe that this has two main reasons. First, we
believe that some of the sites are mis-annotated. Some sites of annotation X
consistently cluster with sites of some other annotation Y . Second, for some
TFs (such as lrp, fis, ihf and soxS mentioned above) it seems that the WM rep-
resentation of the sites is unsatisfactory. Their WM scores are extremely low:
when we, for instance, run the clustering algorithm on only the fis sites, the
algorithm prefers partitions in which these sites are not partitioned into a single
cluster at all! Possibly, these TFs recognize something else than a sequence
motif that can be represented by a WM.
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