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ABSTRACT
Motivation: The discovery of cis-regulatory modules in
metazoan genomes is crucial for understanding the con-
nection between genes and organism diversity.
Results: We develop a computational method that uses
Hidden Markov Models and an Expectation Maximization
algorithm to detect such modules, given the weight
matrices of a set of transcription factors known to work
together. Two novel features of our probabilistic model
are: (i) correlations between binding sites, known to be
required for module activity, are exploited, and (ii) phy-
logenetic comparisons among sequences from multiple
species are made to highlight a regulatory module. The
novel features are shown to improve detection of modules,
in experiments on synthetic as well as biological data.
Availability: The source code for the programs is available
upon request from the authors.
Contact: {saurabh,erik,siggia}@lonnrot.rockefeller.edu
Keywords: hidden Markov model, cis-regulatory modules,
motif correlations, phylogenetic comparison

INTRODUCTION
Many genes in multicellular organisms exhibit complex
patterns of expression in space and time. These patterns
are mediated by a combinatorial code of transcription
factors that bind to cis-regulatory regions of the genome.
These regulatory regions (100–1000 bp in length), often
termed modules, can be moved from their native context
and still recapitulate a portion of the native expression
pattern, thus acting as autonomous units (Davidson, 2001;
Carroll et al., 2001). Their importance for understanding
evolution has grown with the realization that evolutionary
novelty (particularly over short times) issues more from
changes in regulation than from creation of new protein
coding regions, a paradigm that is perhaps best evident
in the context of development. This paper addresses the
important problem of discovering such regulatory mod-
ules computationally, since it is vastly quicker to check a
computationally predicted module for functionality than
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dissect all the non-coding sequence around a gene for
regulatory potential. The approach taken here is guided by
the principles deduced from studies of the fruit fly, which
appear broadly applicable.

Modules in fly typically have multiple binding sites for
each transcription factor, with 3–6 different factors con-
tributing (Davidson, 2001; Carroll et al., 2001). Several
groups (Berman et al., 2002; Halfon et al., 2002; Rajew-
sky et al., 2002) have shown, for early development in the
fly, that modules can be identified by searching for clus-
ters of binding sites (‘motifs’) for groups of transcription
factors known to work together, without regard to order
or spacing. Each of these methods scans the genomic se-
quence with the input set of motifs, and a scheme to de-
tect if the local sequence shows a clustering of these mo-
tifs. While Berman et al. (2002) and Halfon et al. (2002)
use specific rules on counts of motifs, Rajewsky et al.
(2002) have proposed the use of Hidden Markov Models
(HMMs) and Expectation Maximization (EM) on the pa-
rameters controlling the number of each motif. The HMM
(also used in this context in Frith et al. (2001)) supplies a
statistically sound measure of the likelihood that the data
is derived from a model (e.g. giving some weight to mul-
tiple weak occurrences that individually fall below a cut-
off). The EM step greatly enhances the discrimination by
concentrating weight on the relevant factors, leaving no
parameters to be adjusted by hand. This work extends the
HMM model to utilize two important sources of informa-
tion in detecting regulatory modules—(i) correlation be-
tween binding sites in a module, and (ii) comparison of
multiple species using a statistical model for motif evolu-
tion.

The first extension is motivated by cases were modules
predicted by the above methods appear suitable, yet
where something in the arrangement of the sites (or
a wider context) renders the module non-functional.
Also, many cases are known where factors must interact
with a cofactor to be functional, and spatial correlations
between their binding sites are observed. For example,
the repression of zen in ventral regions of the Drosophila
blastoderm has been attributed to closely spaced binding
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sites for the transcription factors dl and dri in the
zen promoter (Mannervik et al., 1999). Unlike previous
methods, the ‘history-conscious’ HMM developed in this
paper has explicit parameters to capture such correlations,
and gives greater weight to a module where one motif
consistently follows another, than another module where
the same motifs are arranged at random. Our work takes a
first step toward deducing the ‘grammar’ rules that define
a functional module, with the goal of using them for
genome-wide module detection. Similar ideas have been
used in earlier work on motif detection (e.g. Grundy et al.,
1997; GuhaThakurta and Stormo, 2001; Sinha, 2002).

Interspecies comparisons are recognized as an impor-
tant resource for discovery of regulatory modules. The
genomes of human, mouse, and rat are close enough to
highlight these modules, and we will soon have multiple
species of yeast and two fly genomes to examine. But
how to consistently score binding site matches in both
conserved and unconserved regions from multiple species
at variable evolutionary distances (e.g. mouse and rat are
much closer than either to human) is still an open question
(Loots et al., 2002). The method proposed here looks
at homologous sequence windows spanning multiple
species, and in scoring a window treats its conserved
and unconserved portions in different ways. Binding site
matches in conserved blocks are evaluated using a suitable
phylogenetic model, and matches in all unconserved but
homologous regions also contribute to the score.

The program developed here is called Stubb. The
target application is to run it genome-wide, possibly
using multiple species data, and extract the top few
predicted modules to be tested for function. We perform
preliminary tests to demonstrate the advantage of the new
methods over previous approaches, using both synthetic
and biological data.

ALGORITHM
The fundamental operation in the Stubb system is to score
one (or several, related by descent) DNA sequence(s) S
with a set W of motifs. The particular score used is a
log likelihood ratio, and reflects how likely it is that S
was generated by a probabilistic process that uses the
motifs of W , as compared to being generated by a random
background process. The score will be high for sequences
that have a cluster of motifs from W . The motifs in W are
described by their ‘Position Weight Matrices’ (PWM’s)
and can be of varying lengths.

To scan a genomic sequence for cis-regulatory modules
formed by a motif set W , the algorithm proceeds from
one end to the other (e.g. 5′ to 3′), looking at successive
sequence ‘windows’ of a fixed (parameterized) length L ,
which define S. Each window is scored with W , and the
series of scores is output. The next two sections describe

the probabilistic model used in computing the window
score, with and without motif correlations. The following
section extends the probabilistic framework to include
sequence and phylogenetic information from multiple
species.

Hidden Markov models
The probabilistic process that is assumed to generate the
sequence S is described by a Hidden Markov Model
(HMM). At each step, the process chooses either a motif
wi at random from the set W , or the background motif wb.
This choice is dictated by the transition probabilities pi of
the motifs, which are model parameters. Once the process
has chosen a motif w, it samples a sequence from the
PWM of w, appends it at the end of the sequence S created
so far, and proceeds to the next step. The process stops
when the length of S reaches L . The sequence of motifs
chosen in the successive steps of the process is called a
‘parse’ of the sequence. The model parameters θ , which
include the transition probabilities {pi } and the motif set
W , associate a well-defined probability Pr(S, T |θ) with
each parse T of the sequence S. The probability that S was
generated by an HMM with parameters θ is then given by

Pr(S|θ) =
∑

T

Pr(S, T |θ)

Let Pr(S|θb) be the probability of generating S by using
only wb. For a given θ , we define

F(S, θ) = log
Pr(S|θ)

Pr(S|θb)

This is the function used by Stubb to score a sequence S.
However, θ is not a parameter to the algorithm, it is chosen
so as to maximize F(S, θ).

In this simple version of the HMM, there is a single
transition probability pi associated with each motif wi ,
including the background motif wb, with the constraint
that

∑
i pi = 1. The background motif wb is a special kind

of PWM—it is of length 1, but the sampling probability of
a base depends upon the previous k bases in the sequence.
(k is a fixed non-negative integer and is called the Markov
order of the background motif.) The HMM described so
far is exactly the probabilistic model used by Rajewsky et
al. (2002), and we shall henceforth refer to it as HMM0.

An essential component of the score computation men-
tioned above is the subsequence probability Pr(s|w). This
is the probability of generating the subsequence s of length
l (length of w), when sampling from w. A simple way to
compute this probability is as follows: let s = s1s2 . . . sl ,
and let wi j be the probability of sampling base i at the
j th position of the PWM w. Then, Pr(s|w) = ∏l

i=1 wsi i .
This assumes that when a motif w is sampled and planted,
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its orientation must match the direction in which the se-
quence is generated, called the ‘forward’ direction. If we
also wish to allow occurrences of w in the reverse di-
rection (for binding sites on the complementary strand of
DNA), the subsequence probability will be of the form
bw Pr(s|w) + (1 − bw)Pr(s R|w), where s R is the reverse
complement of s, and bw captures the strand bias of the
motif w. For instance, the case bw = 1 represents the prior
belief that w can occur only in the forward direction, while
bw = 0.5 means that the motif has no strand preference.
Henceforth, the term Pr(s|w) will represent the overall
subsequence probability of s given w, computed using ap-
propriate strand biases.

As mentioned earlier, for each sequence window S, the
algorithm finds the θ that maximizes F(S, θ). This train-
ing of parameters is done by the Baum-Welch algorithm
(Baum, 1970), which uses Expectation-Maximization
(EM) to iteratively converge to a locally optimum θ .
(See the Appendix for details.) The update procedure
is guaranteed to improve the value of F(S, θ) in each
iteration, until convergence. The value of log Pr(S|θ),
for a given θ , is computed using dynamic programming
(the Forward-Backward algorithm, Durbin et al., 1999).
In most biological examples examined to date, the global
maximum is found, as evidenced by the smooth change in
score with incremental change in window position.

It should be noted that an HMM, as described here, does
not use thresholds to determine motif occurrences in the
input sequence. Weak motif occurrences also contribute to
the score, albeit less significantly than strong occurrences.
We also note that the motif set W is typically of size 1–
20, and that overfitting may become a problem with larger
motif sets, given the typical sequence window size of less
than 1000 bp.

Motif correlations
The HMM0 assumes a statistical model for the data
in which the motifs and background bases are placed
independently. In reality motifs may be correlated both in
order (e.g. w j follows wi ) and in spacing. For instance,
a module with few occurrences of w j may be functional
only if these occurrences are in the vicinity of wi . We
therefore add to θ a correlated transition probability pi j ,
with the interpretation that when the model chooses a
motif to place, if the previous non-background motif
placed is wi then motif w j is chosen with probability
pi j . In this ‘history-conscious HMM’ (hcHMM), only the
previous non-background motif is ‘remembered’ (and in
this way our model differs from the canonical first order
HMM).

Detecting correlations. Firstly, the algorithm has to
decide if the parameter pi j for a specific pair {wi , w j }
should be included in θ . Including pi j for all pairs

of motifs makes the number of parameters large, and
may cause overfitting of the model for typical input
dimensions. Hence pi j is added to θ only if there is
evidence for a correlation in occurrences of wi and w j ,
detected as follows.

Consider a random sequence X of length L generated by
an HMM0 with parameters θ . Let Ai j (X) be the average
number of times w j follows wi (with nothing except
background in between) in a parse of X , the average being
taken over all parses of X weighted with their respective
probabilities. Let Ei j and σi j be the expectation and
standard deviation of the random variable Ai j (X), over all
L-length sequences X . Then we can define a test statistic

Zi j = Ai j (S) − Ei j

σi j
(1)

to measure how different the observed number of (or-
dered) paired occurrences Ai j is from what is expected
by chance in a random sequence. Computation of Ei j and
σi j is described in the Appendix. The computations have
O(L) time complexity. The parameter pi j is added to the
model only if Zi j is above a threshold and Ei j is also
above a threshold.

Training a history-conscious HMM. The second techni-
cal challenge is to train the parameters of the hcHMM. We
begin by describing all the transition probabilities Pr(i →
j), which is the probability of choosing a w j following a
wi with nothing except background in between. The pa-
rameter set θ includes all possible pi and some or all pi j .
Let Corr(i, j) = true if and only if correlation was de-
tected for {wi , w j }. If Corr(i, j) = true, then Pr(i →
j) = pi j . For all i, j such that Corr(i, j) = false,

Pr(i → j) = p j

(
1 − ∑

k|Corr(i,k)=true pik∑
k|Corr(i,k)=false pk

)

Here, the parameter p j is normalized appropriately to
ensure that

∑
j Pr(i → j) = 1. Given that wi (�= wb)

is the previous non-background motif planted, a motif
w j ∈ W ∪ {wb} is planted with probability Pr(i → j).
The spacing between motifs is thus controlled by the
exponential decay of powers of Pr(i → b). If no non-
background motif has been planted so far, w j ∈ W ∪ {wb}
is planted with probability Pr(b → j). Note that if
Corr(i, j) = false for all j , then Pr(i → j) = p j ,
i.e. the p j ’s have the same semantics as in HMM0.

To our knowledge, the Baum-Welch algorithm for train-
ing HMM parameters does not have a simple extension
to the history-conscious HMM described here. We derive
an update criterion for θ that, following the EM theory,
is guaranteed to improve the objective function F(S, θ)

in each iteration, until convergence. The calculations are
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outlined in the Appendix. In the extreme cases when
Corr(i, j) is true for all i, j or for none, the update
formulae reduce to the standard Baum-Welch updates.

The overall algorithm to score S using pairwise motif
correlations is summarized below.
Algorithm ComputeScore
Input: Sequence S, motif set W ∪ {wb}, real numbers

τz,τe; Output: Score of S.
1. Set Corr(i,j) = false for all pairs i, j. Set θ

to include all pi, but no pi j.

2. Train θ so as to maximize F(S, θ).

3. For each pair (i, j) such that wi ∈ W and w j ∈ W
do

4. Use the trained θ to compute Zi j using

Formula 1.

5. If Zi j > τz and Ei j > τe, set Corr(i,j) = true.

6. End For

7. Set θ to include all pi and all pi j for which

Corr(i,j) = true.

8. If Corr(i,j) = false for all i, j, output the

maximum F(S, θ) computed in Step 2, else

9. Train θ so as to maximize F(S, θ), output this

maximum as the score of S.

Note that correlations with wb are not detected, hence
pib or pbi is never trained, for any i . Each iteration
in the training of the hcHMM (Step 9) has O(L|W |2)
time complexity, instead of the O(L|W |) complexity in
HMM0. However, Step 9 is executed only if a correlation
was detected, hence the genome-wide running time only
changes marginally. Algorithm ComputeScore deploys
the motif correlation detection (Steps 3–6) on the input
sequence S. However, our implementation allows this
detection procedure to be run separately, on a potentially
different sequence that serves as training data.

The input genomic sequence is parsed into a series of
overlapping windows of length L each, whose starting
positions differ by a parameterized shift-size δ, and each
window S is score by the above algorithm.

Multiple species and phylogenetic information
In this section, we extend Stubb to utilize phylogenetic
comparisons between sequences from multiple species.
Many of the species used for such comparisons are
sufficiently closely related (e.g. mouse and rat, or various
budding yeasts—Cliften et al., 2001) that the neutral
point mutations would not have had time to randomize
non-functional sequence. Thus some degree of sequence
correlation is expected by chance, and must be taken
into account. Secondly, regulatory sequence does not just
change one base at a time (e.g. for fly, see Bergman
and Kreitman, 2001). For instance, when homologous
regulatory regions are compared between fly species, there
are obvious conserved blocks in the 30–100 bp range,

much larger than a protein binding site, yet much smaller
than a typical module. Between them sits unaligned
sequence in a comparable size range. Experimentally
known binding sites for early development occur in both
these regions (E. Emberly, personal communication). A
binding site found in an aligned block clearly carries some
additional significance. On the other hand, if clusters of
binding sites occur outside of the blocks, in any species,
their functionality should also be explored. Hence Stubb
considers both aligned blocks and the unaligned sequences
between them in scoring a window.

Sequences from multiple species are scored in two
steps. The first step finds prominent (ungapped) conserved
blocks of sequence and constructs the best syntenic parse
of the entire sequence into such blocks. For this purpose,
we use DiAlign (Morgenstern et al., 1998) when dealing
with more than two species, and Lagan (Brudno et al.,
2003) for two species. In the second step, the blocks
are used to define homologous windows between the
species. A homologous window may contain one or
more consecutive aligned blocks, and unaligned sequences
sitting between two adjacent blocks in the window are
also included. Each block in a homologous window is
then scored as a unit, taking into account the neutral point
mutation rate. The score from these blocks, along with
independent contributions from the unaligned sequences
in the window (computed as for single species), comprises
the total score of this window. Small blocks that are
missed, or non-syntenous blocks (rare in the flies we
compare) are not a serious problem. Matrices resident
there will still be scored but as independent events.

Parsing windows. We first detail how Stubb creates
homologous windows when there are only two species A
and B with regulatory sequences SA and SB for a common
gene. It takes SA as a reference, and marks off successive
L-length windows spaced by δ � L . Suppose a window X
from SA contains a set of non-overlapping subsequences
{x1, x2, . . . , xk} aligned with similar subsequences {y1,
y2, . . ., yk} of SB . The corresponding homologous window
then has the following components: (i) aligned blocks
(xi , yi ), for i = 1 . . . k, (ii) all subsequences of X outside
the aligned regions, and (iii) the unaligned sequences of
SB between yi and yi+1 (for i = 1 . . . k −1). Thus, if there
is only one aligned region x1 within X , the contribution
from SB consists only of y1, and if there is no block in X
then SB does not contribute to the score.

Scoring an aligned block. Aligned blocks in a homolo-
gous window are scored as a unit, as described next. All
the sequences in an aligned block derive from a common
ancestor, and our weight matrices are assumed to apply
to the common ancestor and all descendants, a reason-
able assumption given the propensity for modules to re-
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tain function when moved between species. For simplic-
ity, we assume the species are related by a star topology.
To apply the HMM we need to generalize the expression
for Pr(s|w) to a set σ of subsequences, each of which oc-
cupies the homologous position in the aligned block. Our
evolutionary model assumes that all bases evolve indepen-
dently, at equal rates, and that the probability of fixation
of a mutation α → β at position i is proportional to the
weight matrix entry of β at that position.

Under these assumptions, we have

Pr(σ |w) =
l∏

i=1

[∑
β∈�

wβi

∏
s∈σ

(
wsi iµs + (1 − µs)δsi β

)]

(2)
where l is the length of w, � = {A, C, G, T }, wβi

is the probability of emitting β at the i th position of
w, δxy = 1 if x = y and 0 otherwise, and µs =
1 − e−λts is a function of the neutral mutation rate λ

and the evolution time ts between the ancestor and the
species s. For each position i , one ‘creates’ a base β in the
ancestor with frequency wβi , and each such base is either
passed on to species s unchanged (probability 1 − µs)
or mutated with probability µs and a new base selected
with a frequency defined by w. If µs is small (as for
very closely related species), then finding different bases
in homologous positions strongly suppresses Pr(σ |w),
even if their frequency in w is the same. For µs ∼ 1,
the sum over the ancestor base (

∑
β∈� wβi ) is replaced

by 1, and the sequences in σ are scored as independent,
with the important caveat that the relative alignment of the
sequences is fixed. Our model is translationally invariant
in time since if there are only two species the sum over
the ancestor base can be done explicitly and (2) reduces to
Pr(σ |w) = ∏l

i=1

(
wsi1i (wsi2iµ + (1 − µ)δsi1si2)

)
, where

si1, si2 are the bases in the two species at position i , and
µ is composed from the total time of evolution between
them.

Implementation
The Stubb system is implemented in C++, and can scan
the entire fly genome with a set of ∼15 weight matrices
in a day on a work station. Its scores are used to rank
windows as putative modules, with the expectation that
there will be one to several hundred per genome. Typically,
the windows in the neighborhood of a high-scoring
window are also high-scoring. Hence, when reporting a
high-ranking window, Stubb suppresses all overlapping
windows that score less than it.

To compute the strand bias bw of a motif w, Stubb
counts the ‘occurrences’ of w (using a weak threshold)
in S in both directions, in a pre-processing step, and uses
strand bias in proportion to these counts. To derive the
background motif wb to be used in scoring a window

(of length L), Stubb first constructs a ‘context’ window
C of length r L (r is a configurable parameter) from the
current window and its flanking regions. For an order k
background model, the frequencies of all (k + 1)-mers in
C are used to derive wb.

The first step in scoring sequences from two species in-
volves computation of the best syntenic parse of conserved
blocks. For this purpose, we run the Lagan alignment tool
of Brudno et al. (2003). Given two long sequences, this
tool computes ‘anchors’ of local similarity between the
sequences, puts together the best syntenic series of such
anchors, and uses dynamic programming to align the re-
gions between anchors. Stubb takes two sequences aligned
in this manner, and extracts all ungapped, aligned blocks
of a certain minimum size and percent-identity to serve as
the blocks of common descent.

EXPERIMENTS
We first tested the effect of using hcHMM on synthetic
sequences in which two motifs were planted with varying
degrees of correlation. An hcHMM was used to create
the random sequences, using parameters p1 = p2 =
0.01, p12 = (1 + c)p2, where c ≥ 0 parameterizes
the correlation. (All other parameters are defined by
normalization.) For long (e.g. 10 kb) data sets, Stubb
(hcHMM, with parameter p12) recovered the input value
of c to within the fluctuations expected for ∼ 100
samples of motif 1 in the data. For shorter sequences,
indicative of the window sizes we use for scanning the
fly genome, fluctuations were larger. For purposes of
detecting modules, even small differences between the
HMM0 and hcHMM scores are meaningful since the same
data is being compared. For instance, with L = 500 the
score difference normalized by the HMM0 score was 0.038
for c = 3 and 0.096 for c = 20. In the absence of
correlation (c = 0), this was only 0.014, indicating that
the extra parameter in the hcHMM had little effect on the
score in this case.

We next constructed a toy example from yeast regula-
tory sequences, again to test hcHMM. The transcription
factors MCM1 and MATα2 are known to act cooperatively
in the mating pathway (Mead et al., 2002). Six regulatory
regions where MATα2 is known to occur were collected
(Zhu and Zhang, 1999) and fit simultaneously with the
matrices for these two factors. HMM0 gave a score of
31.3, while hcHMM boosted this significantly to 54.5.
After training of parameters, the transition probability
matrix showed Pr(1→1) = 0, Pr(1→2) = 0.38,
Pr(2→1) = 0.005, Pr(2→2) = 0.0003, Pr(1→b) =
0.62, Pr(2→b) = 0.995, where 1 represents MCM1,
2 represents MATα2, and b represents the background
motif. The probabilities strongly suggest a motif struc-
ture MATα2→ MCM1→ MATα2 (with the first interval
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Table 1. Performance of Stubb (hcHMM) on gap gene upstream regions.
The last column measures the fractional overlap between the known and
predicted modules

Gene Predicted Modules Score Known Module Overlap

eve 2780–3279 27.9 2763–3273 0.98
5100–5600 17.0 4974–5644 1.00

gt 7360–7859 16.0 7242–8184 1.00
hairy 1340–1839 15.7 829–1760 0.84

2600–3099 32.7 2601–3147 1.00
5640–6139 12.3 5831–6132 1.00
7100–7599 18.6 6396–7551 1.00

kni 4140–4639 15.4 not known —
6900–7399 23.2 6926–6992 1.00
7380–7879 28.7 7422–8998 0.91

Kr 5640–6139 18.2 5668–6389 0.94
run 60–559 15.2 37–862 1.00

6540–7039 17.3 not known —
tll 7140–7639 23.9 6997–7476 0.67

8420–8919 19.6 8564–8946 1.00
9400–9899 13.7 9418–9592 1.00

hb 2420–2919 16.6 2335–3357 1.00
9000–9499 14.0 8834–9554 1.00

(2 → 1) much longer than the second), in accord with
experiment (Mead et al., 2002).

The next experiments focus on the gap gene system
from the fly Drosophila melanogaster. As the input motif
set W , we use the set of PWMs for the transcription
factors bcd, hb, kni, Kr, tll, cd, dl and torRE (Rajewsky
et al., 2002). The 10 kb upstream regions of the genes
eve, gt, kni, Kr, run, tll, and hb, as well as the 12 kb
upstream region of hairy are used as input sequences,
in separate runs of the program, with hcHMM, L =
500, δ = 20 and background Markov order 2. All top
ranking windows with scores above 12.0, as well as all
the modules known for these genes from the literature
(as collected in Rajewsky et al. (2002)), are presented in
Table 1. The last column measures the fractional overlap
between the known and predicted modules. All 16 known
modules are recovered by the program. Two additional
modules are predicted—one with score 15.4 at coordinates
4140-4639 in kni and one with score 17.3 at 6540-7039
in run. We are currently investigating if these are known
cis-regulatory modules. This experiment represents the
typical input to Stubb, and the performance is extremely
encouraging.

Table 2 shows situations where substantial correlation
was observed, and used to boost the window score. Each
row corresponds to a known module, followed by the
highest scoring window (by hcHMM) near the module,
its scores fhc and f0 by hcHMM and HMM0 respectively,
and the difference. The most significant correlation was
discovered for zen, a gene involved in dorsal-ventral
patterning for which we used the PWM’s dl, twi, sna,

Table 2. Advantage of hcHMM over HMM0 in detecting modules. fhc:
hcHMM score, f0: HMM0 score, 	 f = fhc − f0

Module Predicted fhc f0 	 f 	 f / f0

giant: 7242–8184 7360–7859 16.0 14.5 1.5 0.10
hairy: 829–1760 1340–1839 15.7 14.4 1.3 0.09
kruppel: 5668–6389 5640–6139 18.2 16.1 2.1 0.13
zen: 2615–3016 2540–3039 13.0 10.8 2.2 0.20

brk, dri, and ntf. The zen promoter is known to have
a functional correlation between dl and a DNA binding
cofactor dri, which is precisely what Stubb reported. We
expect that a large number of dl regulated modules will
be reported from microarray experiments, and Stubb can
be used to fit the entire set. Notice in Table 2 that the
observed score differences are higher than the average
value of 1.4% found in the absence of correlations. (See
experiment above, case c = 0.) We also observed that the
scores for non-modules do not change significantly from
HMM0 to hcHMM, and that the module for Kr predicted by
hcHMM has a much better overlap with the known module
than the HMM0 prediction. (Data not shown.)

The next experiments are designed to test if using
multiple species data improves the discrimination of
modules from non-modules. Two versions of Stubb are
run, one (called SSPECIES) using single species data and
the other (called MSPECIES) using multiple species data.
It is not meaningful to compare the absolute scores for
a window from the two versions, since a homologous
window typically contains more sequence data than the
corresponding single species window. Hence, we design
a score to measure the discrimination of a window from
baseline scores. We first compute (for each version) the
average baseline score b of a window of length L from
sequences that do not have modules. The discrimination
score of a window is r = ( f − b)/b, where f is
the absolute score of this window. This measures the
fractional increase in score from the baseline level, and
can be used to compare the discrimination afforded by the
two versions of Stubb.

In one experiment, synthetic sequences of length L =
500 were created for two species, and two motifs were
planted with pi = 0.01. A motif planted in one species
was conserved in the other species with probability
0.5, and a base in a conserved position was mutated
with probability 0.1. The baseline scores for SSPECIES

and MSPECIES were separately computed from random
sequences that lacked these motifs. For each synthetic
sequence, the discrimination scores rs and rm were
computed for SSPECIES and MSPECIES respectively, and
their difference was noted. rm was about 2.6 units more
than rs , averaged over 100 experiments, indicating that
MSPECIES gives better discrimination of modules than
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Table 3. Comparison of the discrimination of modules by SSPECIES and
MSPECIES

Known module MSPECIES SSPECIES

Prediction rm rs

eve MHE: 592–882 580–1079 13.7 12.7
run 2680–3179 12.0 11.6
tll: 918–1397 840–1339 21.0 16.5
tll: 2485–2867 2140–2639 11.1 10.8
hairy: 1286–2217 1800–2299 8.6 10.9
hairy: 3058–3604 3060–3559 24.9 25.9
hairy: 6288–6589 6140–6639 11.4 9.0
hairy: 6396–7551 7460–7959 14.3 12.6

SSPECIES. The same experiment, when conducted with
the planted motifs being different from those used by
Stubb (meaning that the synthetic sequences were non-
modules), showed that the average rm − rs was ∼ 0.2.

We did a similar comparison on upstream sequences
of the gap genes hairy, run, tll and the MHE promoter
(Halfon et al., 2002) of eve, taken from two species—
D.melanogaster and D.virilis. The motif set used is the
same as the gap gene PWMs used above, except for the
eve MHE promoter, where we used the set of motifs from
Halfon et al. (2002). µ was set to 0.5. The baseline
scores were computed from the upstream sequence of
dmef2, which does not have gap gene input. Table 3
compares the discrimination scores for each gene between
SSPECIES and MSPECIES. All high ranking windows
where either version had a discrimination score above 10.0
are tabulated. MSPECIES is found to discriminate better on
most of the windows. For example, in the hairy module
predicted at position 7460, the unaligned sequence from
virilis has two strong occurrences of the Kr motif, which
boosts the score. The tll (918–1397) module and the
hairy (6288–6589) module are also discriminated better
by MSPECIES.

We are currently experimenting with sequences from
D.melanogaster and their putative orthologs from
D.pseudoobscura. Upon alignment by Lagan, and ex-
traction of ungapped blocks of length 10 or more and
percent-identity 70 or more, about 40 − 50% of the
sequences is found to be covered by such blocks. The
synteny is good, as evidenced by the fact that two adjacent
blocks are rarely separated by more than 1000 bp in either
species. The neutral point mutation rate (µ), as estimated
from non-synonymous substitution rates in the coding
regions, is ∼ 0.8. However, finding regulatory modules
based on the density of aligned blocks alone is not very
effective, implying that running Stubb (MSPECIES) on
these sequences should be an interesting exercise.

CONCLUSIONS AND FUTURE WORK
An HMM based method for module detection is developed
here, capable of exploiting motif correlations and multiple
species data. It is not yet possible to properly test Stubb
on two Drosophila species since most of the comparison
sequence available (with the relevant PWMs known)
is limited to regions dense in modules. The complete
sequence of D.pseudoobscura is due by the first half of
2003, and then we can properly test how two genomes
fit in a parallel fashion improves the discrimination of
modules from background sequence. Also, a genome-wide
run of hcHMM should reveal interesting correlations and
modules.
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APPENDIX
Training parameters in a simple HMM (HMM0)
Given a sequence S and a set of Position Weight Matrices
(PWMs) W , the objective function to be maximized is
F(S, θ) = log(Pr(S|θ)/Pr(S|θb)), where Pr(S|θ) is
the probability of HMM0 generating the sequence S using
the parameters θ , and θb represents the parameter values
that only allow the background motif to be used by the
HMM0. θ includes the transition probabilities pi for each
w ∈ W ∪ {wb}. We henceforth denote W ∪ {wb} as W ′.
Since Pr(S|θb) depends only on W ′, which is constant,
we shall outline how to maximize log Pr(S|θ), following
the description in Durbin et al. (1999). A parse of the
sequence S in terms of W ′ is denoted by T , as described
in Section ALGORITHM. We thus have

log Pr(S|θ) = log
∑

T

Pr(S, T |θ)

The maximization is iterative, with the t th iteration
computing a model θ t+1 that improves the objective
function from the current model θ t . Let us define a
function Q(θ |θ t ) as

Q(θ |θ t ) =
∑

T

Pr(T |S, θ t ) log Pr(S, T |θ)

It is easily shown that log Pr(S|θ) − log Pr(S|θ t ) ≥
Q(θ |θ t ) − Q(θ t |θ t ). Thus, if we maximize Q(θ |θ t ) over
all θ , we shall always improve upon log Pr(S|θ t ), or
remain there if the local maximum has been reached.

Let Ai (T, S) be the number of times motif wi ∈
W ′ occurs in the parse T of S. Also let E denote the
probability of generating the sequence S given the parse T .
(This is simply the product of the appropriate subsequence
probabilities Pr(s|w), and is independent of θ .) Then we
have

Pr(S, T |θ) = E ×
∏

i

pAi (T,S)
i (3)

which gives us

Q(θ |θ t ) =
∑

T

Pr(T |S, θ t )

×
(

log E +
∑

i

Ai (T, S) log pi

)

= (log E)
∑

T

Pr(T |S, θ t )

+
∑

i

log pi

∑
T

Ai (T, S)Pr(T |S, θ t )

(4)

Dropping the first term in Equation (4) since it does not
depend on θ , we now need to maximize∑

i

log pi

∑
T

Ai (T, S)Pr(T |S, θ t )

Note that Ai (S) = ∑
T Ai (T, S)Pr(T |S, θ t ) is simply the

average number of occurrences of wi in S over all parses
T . Thus the term to maximize is

∑
i Ai (S) log pi , and this

is maximized when

pi = Ai (S)∑
j A j (S)

∀i. (5)

These update criteria are used iteratively to improve
F(S|θ) till the local maximum is reached, as indicated by
a very small change in its value. Ai (S) can be computed in
O(L) time by using the Backward-Forward algorithm for
HMMs, where L is the length of S.

Training parameters in a history conscious HMM
(hcHMM)
The model parameters θ now include all pi ’s and some
(or none, or all) pi j ’s. Let Ci = { j |pi j is a parameter in
θ}. The motifs defined by this index set are those that are
correlated with motif wi . Let C ′

i denote the complement of
set Ci . Let Ai j (T, S) be the number of times w j follows
wi (with nothing except wb in between) in parse T of S.
Then, following the transition probability definitions given
in Section ALGORITHM, Equation (3) now becomes
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Pr(S, T |θ) =

∏
i |Ci �=φ

∏
j∈Ci

p
Ai j (T,S)

i j

∏
j∈C ′

i




p j (1 −
∑
k∈Ci

pik)

∑
k∈C ′

i

pk




Ai j (T,S)

×
∏

i |Ci =φ

∏
j

p
Ai j (T,S)

j × E .

Then, using the notation Ai j to represent∑
T

Ai j (T, S)Pr(T |S, θ)

we can rewrite Equation (4) as

Q(θ |θ t ) =
∑

i |Ci �=φ


∑

j∈Ci

Ai j log pi j +
∑
j∈C ′

i

Ai j log

(
1 −

∑
k∈Ci

pik

)


+
∑

i |Ci �=φ


∑

j∈C ′
i

Ai j log p j −
∑
j∈C ′

i

Ai j


log

∑
k∈C ′

i

pk







+
∑

i |Ci =φ

∑
j

Ai j log p j + constant

= A + B + constant

where

A =∑
i |Ci �=φ


∑

j∈Ci

Ai j log pi j +
∑
j∈C ′

i

Ai j log

(
1 −

∑
k∈Ci

pik

)


and (after simplification, and using
∑

p j = 1)

B =
∑

i

∑
j∈C ′

i

Ai j log
p j∑

k∈C ′
i

pk
.

Note that term A only has the parameters pi j , while B only
has the parameters pi . To maximize Q(θ |θ t ), we need to
solve for:

∂ A

∂ pi j
= 0 ∀i, j | j ∈ Ci (6)

∂ B

∂ pi
= 0 ∀i (7)

If C ′
i = φ (pi j is a parameter, for all j), or

∑
k∈C ′

i
Aik = 0,

(6) gives the update criteria

pi j = Ai j∑
k Aik

which is the straight-forward generalization of Equation
5. If C ′

i �= φ, (6) translates to the following system of
equations in pi j

Ai j

pi j
=

∑
k∈C ′

i
Aik

1 − ∑
k∈Ci

pik
. (8)

If Ai j = 0, we set pi j = 0, and drop the corresponding
equation from the above system. Solving this system of
equations in pi j gives us the update criteria for pi j .

To solve (7), we first transform to the log variables
ui = log pi , ∀i , and denote the vector of variables ui by
u. We thus need to solve for �B(u) = 0, where �B(u) is
the gradient vector of B(u). We use the Newton iterative
method to solve this system of equations. Each step of
Newton’s method uses the update relation:

	u = −(�2 B(u))−1�B(u) (9)

where 	u is the change in u in the current iteration and
�2 B(u) is the Hessian matrix of B(u), denoted by H . The
expressions for �B(u) and for H are straight-forward, and
are omitted here. H is a (real) symmetric matrix. However,
it is singular, and hence not invertible. This is because
B(u) is scale invariant (B(u) = B(u + ε1) ∀ε), which
implies (�B(u))T 1 = 0, which in turn makes H singular.
To solve Equation (9), we compute H−1 as follows. Let
H = V DV T , where the i th column of V , denoted by
vi, is an eigenvector of H , and D is a diagonal matrix
containing the eigenvalues of H , denoted by λi . We can
thus write H = ∑

i λi vivi
T = ∑

i |λi �=0 λi vivi
T , and using

the fact that V −1 = V T , we get

H−1 =
∑

i |λi �=0

vivi
T

λi
(10)

which is the expression used for (�2 B(u))−1 in Equa-
tion (9). It can be shown that all the eigenvalues are neg-
ative and the function B(u) is convex, hence Newton’s
method must converge. Once Newton’s method converges,
the log variables ui are transformed back to pi = eui , and
scaled appropriately to ensure

∑
i pi = 1. This is the so-

lution of (7) used in every update of θ .

Expectation and variance of Ai j (X)

Recall that X is a random sequence of length L generated
by an HMM0 with parameters θ . By definition, Ai j (X) =∑

T Ai j (T, X)Pr(T |X, θ). Its expectation is then given
by

Ei j =
∑

X

Ai j (X)Pr(X |θ)

=
∑

X

∑
T

Ai j (T, X)Pr(T |X, θ)Pr(X |θ)

=
∑

X

∑
T

Ai j (T, X)Pr(T, X |θ).
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This can be shown to be (for the case when wi �= wb and
w j �= wb)

Ei j = pi p j

(1 − pb)

L−li∑
k=1

α(k − 1)(1 − pL−li −k+1
b )

where li is the length of wi and α(k) is the probability
that all motifs placed before position k end before this
position, in a random sequence generated by the HMM0.
α(x) = 0, ∀x < 0, α(0) = 1, and for all k > 0, we have
α(k) = ∑

i |wi ∈W ′ α(k − li )pi . The entire calculation takes
O(L) time for each i, j .

We compute the variance σ 2(Ai j (X)) by approxi-
mating it as the variance of Ai j (T, X) over T, X . We
performed experiments to confirm that this approximation
is sufficiently accurate for our purposes. The expectation
of Ai j (T, X) is Ei j computed above. Hence we only
need to compute the second moment of this random
variable, henceforth abbreviated as Ai j . By definition,
Ai j = ∑

k Ai jk , where Ai jk is an indicator variable equal

to 1 if w j occurs at position k following a wi (possibly
with background in between), and 0 otherwise. Then,

E(A2
i j ) = E




(∑
k

Ai jk

)2



= E

(∑
k

A2
i jk

)
+ 2

∑
k1,k2>k1

E(Ai jk1 Ai jk2)

= E

(∑
k

Ai jk

)

+2
∑

k1,k2>k1

Pr(Ai jk1 = 1 ∧ Ai jk2 = 1). (11)

The first term in (11) is Ei j and the second term can be
approximately calculated in O(L) time, giving an overall
O(L) complexity for the variance computation. The details
of this computation are not described here.
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