
Computational methods for transcriptional regulation 
Eric D Siggia 
How is the information from a thousand gene-expression arrays, 
the location of more than two hundred regulatory factors, and 
nine sequenced genomes to be integrated into a global view of 
the regulatory network in budding yeast? Computational 
methods that fit incomplete noisy data provide the outlines of 
regulatory pathways, but the errors are not quantified. In the fly, 
embryonic patterning has proved amenable to computational 
prediction, but only when the DNA-binding preferences of the 
relevant factors are taken into account. In both these model 
organisms, simply restricting attention to regulatory sequences 
that align with related species (i.e. ‘conserved’) discards much 
information regarding what is functional. 
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Introduction 
This review focuses on recent advances in the computation 
of regulatory interactions in yeast and fly, from multiple data 
sources. The standards of success shift when the theoretical 
sciences encroach on biology, from merely getting 
something right to not getting anything wrong. Success 
should be measured not by whether the bias on a coin can be 
detected after enough tosses but, rather, by the accuracy in 
predicting each event. Thus, my focus is on methods — and 
where they fail — and on model systems in which 
constructing transgenics is easier and we are closer to 
knowing all inputs to a gene. Regulatory information 
ultimately has to be integrated into models of cellular 
response. So far, quantitative predictive network models 
(e.g. for the cell cycle in yeast [1] or pair-rule patterning in 
fly [2]) have emerged only from a close reading of the 
literature, from inspiration, or from a focused study on a 
particular phase of development [3]. The methods reviewed 
are somewhat sequence-centric, in response to the current 
emphasis on comparative genomics [4] and the technologies 
engendered by the human hap-mapping project, which 
make it possible to rapidly compare the genomes of similar 
organisms. 

Computational strategies 
The trend in recent years, most noticeably in yeast, has been 
the integration of multiple types of data; with no two studies 
using identical algorithms from start to finish. Genes were 
first clustered based on ad hoc measurement of similarity in 
their expression profiles over multiple experiments, and 
then the clusters were analyzed for common sequence 
motifs or gene functional classes. Then, better error models 

were used that parameterized specific steps and/or processes 
in gene expression analysis [5]; the error in an experiment–
gene–probe triplet is a combination of three fitting 
parameters, each dependent on a single variable. The 
clustering step was superseded by direct correlation between 
gene ontologies or sequence and the expression data 
establishing regulatory interactions (reviewed in [6]). 

The available data types can be schematized using 
coordinate axes that represent the regulatory sequence, 
RNA expression and genomic location of regulatory proteins. 
A common strategy for their integration is to use one data 
type at a time, refine the predictions using an orthogonal 
type of data, and then iterate. For instance, in their study [7], 
Bar-Joseph et al. first determine putative sets of co-expressed 
genes on the basis of stringent protein localization data. 
Subsequently, they reduce this set further on the basis of 
actual expression data and, finally, include genes that bind 
the same factors with less stringency — provided that they 
fit the common expression profile for the cluster. Algorithms 
using sequence and expression are explored elsewhere [8,9]. 

The alternative is a model encompassing several properties 
at once (e.g. sequence and expression [10•,11•,12]). Segal 
et al. [12] write the multivariate probability as the product of 
conditional probabilities that express (i) the probability that 
a regulatory protein binds to the sequence of interest, (ii) the 
probability that a gene belongs to a ‘coexpression class’ if 
specific regulatory proteins are bound, (iii) the probability 
distribution for RNA expression contingent on a 
‘coexpression class’ and experiment. There are clearly 
multiple ways of formulating and parameterizing the 
conditional probabilities, and then some iterative 
improvement has to be done on all the parameters to 
maximize the total probability, which is only guaranteed to 
find a local optimum. 

To illustrate some of the choices, consider just the 
subsidiary problem of identifying DNA sequence motifs. 
One can chose a rich description of the site (e.g. as a matrix 
of base frequencies at each site) and then optimize by a 
heuristic search, or one can use a simple pattern (e.g. all 7 
base strings with a few degenerate symbols) but then do an 
exhaustive search that is guaranteed to find the optimum. 
The probability model can be constructive and intrinsic to 
the sequence being searched (e.g. by computing the 
probability that the motif occurs by chance when sampling 
random bases with a frequency computed from the sequence 
itself) or, alternatively, it can be a discriminatory model (e.g. 
the motif is present in most of the regulatory regions of 
genes involved in a given process and is uncommon 
elsewhere). 

The pervasiveness of pairwise sequence comparisons might 
lead one to believe that this is a solved problem. But only for 
a certain class of scoring functions, those amenable to 
recursive evaluation, can the optimal solution be found; and 
its computed statistical significance ignores most biological 
knowledge. Even this restricted regime of confidence does 

 



not exist for multiple sequence alignment, which is a 
prerequisite for exploiting multiple genome sequences. 
Most comparative projects are organized around a reference 
species (e.g. human for primates or mammals) for which 
repeated sequencing and gap closure yields long continuous 
stretches of genome, whereas only shorter unordered 
continuous segments (‘contigs’) are available for the 
secondary genomes. If pairwise alignment between these 
contigs and the reference species suffices, then the problem 
is in principal solved by BLAST; but, in practice, BLAST 
will introduce spurious breaks into long stretches of similar 
sequence, along with the real ones caused by recombination 
and gene duplications. 

Certain codes (see [13,14]) reassemble these fragmented 
alignments. They enumerate compact strong pairwise 
regions of similarity and then chain them together in an 
order- and strand-preserving manner in each of the species. 
This so called syntenous assembly is a very good filter for 
the correct placement of repetitive regions, which a program 
such as BLAST would align in many ways. The highest-
scoring string of anchors is then selected, with perhaps some 
weight given to the quality of the global alignments 
preformed between corresponding anchors. In this way, a 
reasonable compromise is made between speed and 
sensitivity. Extensions of the basic method will handle 
duplications, inversions and translocations [15]. When 
multiple sequences are presented (the cystic fibrosis 
transmembrane conductance regulator (CFTR) region of 13 
vertebrates has emerged as a test set [16]), the alignment is 
progressive, with the closest species aligned first. Various 
tradeoffs have to be made between how the phylogenetic 
relationships are modeled, how alignment scores between 
subtrees propagate to the next higher level and how gaps are 
handled [17]. Once the multiple alignment is performed, a 
more refined phylogeny score can be computed in a moving 
window for the aligned bases. In the case of vertebrates, this 
enabled selection of the ~5% of the sequence thought to be 
functional [16]. The cited methods are all well 
implemented, and the choice among them is a matter of 
personal familiarity and the nuances of the application. 

When some alignment is possible between homologous 
regulatory regions, how is it best to extract protein binding 
sites? The simplest expedient of simply ignoring 
nonconserved sites will miss many functional sites (see 
below), and also will give undue weight to the sequences of 
evolutionarily close species. Using parsimony (which 
minimizes the number of changes) might seem reasonable, 
but it ignores phylogenetic branch length; sequence 
similarity between more distant organisms is stronger 
evidence for functionality than is similarity between close 
ones. A model for molecular evolution subject to the 
constraint that a fixed protein bind was formulated [18•] 
along the same lines as algorithms that measure the 
evolution of coding sequences constrained by the genetic 
code or codon biases etc. Standard search procedures were 
then generalized for this new similarity measurement [19]. 
Another evolutionary model for proteins [20], which 
explicitly fits the protein selection coefficient (fitness), was 

applied to DNA binding sites [21], but it then carries the 
implication that the expression of all genes regulated by the 
factor are subject to similar selection coefficients, which is 
not generally true. 

Applications 
Data Resources 
DNA microarrays, which revolutionized genome biology, 
were quickly applied to genotyping [22], and to mapping the 
location of regulatory factors, (reviewed in [23]), histone 
acetylation patterns in yeast [24] and methylation patterns in 
fly [25]. The wealth of new applications has mitigated 
against repeating nominally the same experiment in two 
laboratories. In yeast experiments, in which the most 
extensive chromatin immunoprecipitation (ChIP) analysis is 
possible, the targets of the regulatory protein Gal4 compared 
well with those reported in the literature [reviewed in [23]), 
but comparison of two regulators of the G1/S transition 
[26,27] yielded only a 20–30% overlap of the genes in each 
experiment judged significant. 

An informative perspective on what constitutes meaningful 
variability in gene expression comes from experiments that 
compare sporulation between two different strains of 
budding yeast [28]. In each strain, expression of about 1600 
genes varied during sporulation but only 900 were in 
common (and only 269 of these were detected using spotted 
arrays [29]). The sources of this variability were partially 
elucidated [30,31•] using arrays both to genotype and 
phenotype a wild and laboratory strain and to perform 
association studies by following all four haploid offspring 
produced from crossing these strains. In the first study [30], 
approximately 1500 genes were differentially expressed in 
vegetative growth, and the mutations responsible for these 
expression differences could be genetically mapped for 570 
of these. Most of the responsible mutations mapped far from 
the gene whose expression changed, and a few of these were 
obviously linked to transcription factors. 

A survey of variation in gene expression in Drosophila 
[32•,33] found enhanced conservation in regulatory genes 
and enhanced variation for duplicated ones. More variability 
in gene expression was attributable to changes in regulatory 
sequences (cis) than to changes in factors (trans). A novel 
approach that directly compares expression from two 
genomes in a common host (gotten by crossing the species) 
with the parental expression also demonstrates a 
preponderance of cis over trans effects [34•]. 

Yeast 
We now have the means to examine how access to the 
genomes of multiple species improves regulatory 
predictions, [35•,36–38]. To date, the analysis first imposes 
interspecies sequence conservation, then enumerates simple 
patterns and applies other filters [39]. One should not infer, 
however, that known protein binding sites are strongly 
biased towards blocks of sequence that align with other 
species; they are not (Table 1). Simply imposing strict 
sequence conservation ignores the fluidity of regulatory 
sequences [40]. A list of motifs obtained in this way is in fact 
no more complete than an earlier calculation [41] that used 
just a single genome but fit all upstream regions 

 



simultaneously (Table 2). It is not generally possible to 
multi-align the sensu-latu species with Saccharomyces 
cerivisiae [37], yet one would suppose that genes such as the 
cyclins are regulated in the same way. How to best exploit 
multi-species data and, thus, which species to sequence 
remain topics for research. 

In their study [7], Bar-Joseph et al. used ChIP data to 
computationally extract core sets of factors and the genes 
they regulate. The gene list was then enlarged by adding 
those genes with similar expression profiles. Multiple cell 
growth conditions and transcription factor subcellular 
localization for a more extensive set of factors were 
subsequently combined with data on multiple species 
conservation [42•]. The functional significance of 
transcription factor localization is still unclear. For instance, 
the expression of four out of nine factors composing a 
transcriptional regulatory loop for the cell cycle inferred from 
factor binding [27] do not themselves vary during the cell 
cycle [43]. Regulatory networks were inferred from 
sequence and expression data [11•] and several predictions 
were verified experimentally. Sequence and expression data 
were integrated [10•] and, where possible, Boolean 
interactions were inferred and used to predict expression 
patterns of test sets of genes for validation. These methods 
led to the discovery of new regulatory interactions, but we 
still lack a sense of how the methods compare and what 
information they miss (but see [44]). From this point of 
view, studies that concentrate on a single pathway (e.g. the 
transition from respiration to fermentation [45] or MAPK 
signaling [46]) are perhaps more satisfying, because they 
provide a sense of closure and link transcription to a 
particular pathway. 

Fly 
The number of sequenced Drosophila species will soon 
exceed those in the Saccharomyces clade. 
(http://flybase.bio.indiana.edu/docs/news/announcements/dr
osboard/). 

A sense of the genomic scale of the genus is provided by 
Drosophila pseudoobscura, which diverged from Drosophila 
melanogaster 30 million years ago, the genome of which is 
fully sequenced and annotated 
(http://www.hgsc.bcm.tmc.edu/projects/drosophila/). Even 
though evolution has almost completely randomized the 
synonymous codons, homologous genes are easy to locate. 
Approximately 40% of the nonrepetitive noncoding 
sequence can be aligned in a dense array of syntenous 
blocks. Half of the remaining ten Drosophila species being 
sequenced are less than 30 million years diverged from 
D. melanogaster, and were selected for their relevance to 
molecular evolution and ecology. [47] This dataset will 
provide a huge impetus for developing robust methods for 
comparative analysis. 

The units of regulatory signal are modules between 100 bp 
and 1 kb. They can be 10 kb or more from the gene in either 
direction or be situated in introns and, thus, the first 
challenge is to locate these sequences. Given a multi-species 
alignment with homologous blocks every 100 bp or less in 
the noncoding regions, one can simply count the fraction of 

conserved bases in a sliding 0.5-1 kb window (perhaps 
scoring also the granularity [48]). Using as a test set either 
known intercellular signaling modules (E Emberly, 
unpublished) or blastoderm patterning modules from the 
literature [49] or from recent experiments [50•,51], simple 
sequence comparisons failed to distinguish most of these 
annotated modules from the surrounding sequence. 

This accords with indirect evidence, from molecular 
evolution studies, that most of the noncoding euchromatic 
sequence in the fly genome is functional. The evidence is 
threefold: nonfunctional sequence (e.g. mobile elements and 
pseudogenes) is rapidly lost [52]; alignments between 
D. melanogaster and D. pseudoobscura reveal that the size of 
~1 kb units of noncoding sequence is preserved; and three-
way alignments including Drosophila yakuba demonstrate an 
excess of insertions over deletions [53]. In other model 
systems [53], simple sequence conservation is a useful 
screen for functional modules. In vertebrates, functional 
modules have been discovered this way [54], as they have in 
fly [51], but that does not imply that most modules can be 
found this way. 

Greater success in finding regulatory regions has been 
achieved by searching for clusters of binding sites for the 
proteins that together define a pathway (reviewed in [55]). 
Most studies use empirical thresholds for whatever degree of 
similarity that counts as a binding site match, and then count 
their number. Our work [56,18•] computes a binding free 
energy, so strong and weak sites contribute appropriately to 
the score with no additional parameters, and site overlaps are 
correctly handled. 

Large-scale tests for some of these programs have recently 
become available. Anterior–posterior patterning in the 
embryo is a natural test because many of the relevant factors 
are known. The thousands of nuclei in the embryo provide a 
rich data source that enables phenomenological models for 
gene expression to be fit [57•]. Berman et al. [58•] tested 28 
uncharacterized modules predicted from an earlier genome-
wide scan and found that six at least partially recapitulated 
the expression of a neighboring gene when placed upstream 
of a reporter. This is more than expected by chance, and 
scoring for binding site synteny in D. melongaster versus that 
in D. pseudoobscura. In their study [50•], Schroeder et al. focus 
on the regulation of ~50 core genes in the segmentation 
hierarchy (themselves all encoding regulatory or signaling 
proteins). Thirteen out of sixteen predictions of new 
modules properly recapitulate the expression of a 
neighboring gene, and for many of the gap genes the entire 
expression pattern is accounted for by the enlarged set of 
modules. 

Markstein et al. [59•] validated five out of fifteen genome-
wide predictions of dorsal-regulated modules from an earlier 
study [60]. Then, three modules for dorsal-regulated genes 
exhibiting an expression pattern specific to the 
neuroectoderm were computationally analyzed for other 
binding motifs, which together with the dorsal-regulated 
genes were scanned across the genome [59•]. Two out of 
four newly identified modules were functional, the target 
genes being those known to express in the correct region. 

 



All studies agree that a very good predictor for whether the 
genome-wide modules are functional is simply whether they 
are adjacent to a gene with the appropriate expression 
pattern. The incremental utility of interspecies comparisons 
depends on how the single species predictions are made (e.g. 
using our technique [18] and just D. melanogaster correctly 
classifies 75% of the 37 module predictions discussed in a 
later study [58•]). Presenting the second species to this code 
results in a ~30% improvement as judged against the fly 
in situ hybridization collection [61]. The moderate 
correlation between known binding sites and interspecies 
conserved sequence seen in Table 1 for yeast carries over to 
fly [49]. The number of genes necessary to pattern the 
blastoderm as defined by screens is much smaller than the 
number with a blastoderm pattern (~700 if one scales up the 
in situ collection to the entire genome) and it will be very 
interesting to see if these patterns are similar in 
D. pseudoobscura and are generated by a homologous module. 
Protein homology modeling suggests that the residues 
contacting DNA are the same in these two species for the 
segmentation gene transcription factors (A Morozov, 
unpublished). 

It is rare to have a complete collection of transcription factor 
binding sites for a pathway, but Grad and coworkers [62•] 
have devised a strategy to discover coregulated modules 
within the regulatory sequence of coexpressed genes. Motif 
searches can also be usefully constrained if only the 
structural class of the regulatory protein is known [63]. 

Microarray data are available for both eye [64] and wing 
development [65] but, to date, have not been integrated 
with a computational analysis of the regulation. A survey of 
RNA expression during multiple stages in development has 
been performed [66•]. 

Conclusion 
Bioinformatics, without much introspection, has transformed 
the question of biological function to one of probabilities 
with respect to some model of ‘chance’ (equated to the 
functionless). It is by no means obvious that evolution 
optimizes the information entropy of protein binding sites, 
as motif discovery algorithms assume. On the larger scale of 
a module or pathway, there might not be a static fitness 
function (the proverbial alpine ‘landscape’) on which 
evolution climbs forever upward. Rather, evolution might 
operate on kinetics, selecting networks that are quick to 
learn from example; the examples being generated by 
mutation and selection. There is in fact an extensive 
computer science literature on learning from examples, and 
this has revealed, not surprisingly, that it is easier to learn a 
series of conjunctions (A and (not B) and C) than a 
complicated collection of ‘AND’ and ‘OR’ relations. We see 
many conjunctions in biological circuits but, of course, these 
are also easier to learn experimentally. 

Gene regulation operates when transcription factors 
‘recognize’ their binding sites; our algorithms work by 
grouping similar sequences together. It is always possible to 
assign points in sequence-space to a predefined set of motifs 
by proximity (classification by protein recognition), yet there 
might not be a sufficient density of points to define the 

motifs (the task of clustering). The appeal of interspecies 
comparisons is to do what the organism cannot do; create a 
larger sample of points from the same distribution to make 
clustering based on the density of points feasible [67]. The 
relevant regulatory proteins need to have the same binding 
specificity for this approach to succeed. 

The protein structure prediction community organizes 
regular blind prediction tests, and sequence databases are 
screened for proteins that are apt to yield new folds [68]. 
Although there are common microarray datasets, modeling 
studies do not provide a common metric of success. But in 
any fitting procedure, the variance of the residual error as a 
function of the number of parameters is a good start. There 
is also no formal discussion of the holes in genome-wide 
assays and how best to plug them with some complementary 
technology. 

Currently, the prospect of finding a ‘regulatory code’ seems 
as remote as finding a folding code for proteins, and it is not 
yet clear whether the space of the possible is so large that 
the ‘code’ will just be a genome-wide list. The easiest codes 
to break are those with most redundancy which make least 
efficient use of the available ‘bandwidth’. So while bacteria 
make do with a more limited regulatory ‘vocabulary’ than a 
vertebrate, genome bandwidth is at a premium and they are 
apt to use it more efficiently. Interspecies comparisons are 
an informative filter in vertebrates as to where functional 
sequence lies, but the diversity of single-celled life might 
provide more clues as to the architecture of regulatory 
sequence. Lacking any organizing principles, we can merely 
quote instances were single base changes in regulatory 
sequence cause human disease [69], and others where the 
regulatory sequence seems plastic [40]. 
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Figure 1  
Computational analysis of the regulatory sequence around the gap gene knirps from [18*]. The blue (resp green) profiles denote the log likelihood 
score for regulation by the segmentation genes in D. melanogaster, and D. pseudoobscura. The red profile is the score based on both species after 
aligning the genomic sequences. The computation predicted a regulatory module within the first intron which was subsequently verified in [50*]. Prior 
promoter bashing concentrated on the first few kb of upstream sequence and several of the regions that gave expression are shown as colored bars. 
They are not commensurate with the module delineation suggested by the computation. The dense array of bars at the bottom, are the blocks of 
sequence that align between the two species in an order preserving manner, offset for clarity. 

 



 
Table 1 
Scoring method Known sites Random sites 
Continuous 28.0 21.7 +/–0.7 
Binary (stringent, 407* max) 184 113 +/–8 
Binary (permissive, 407 max) 267 194 +/–9 
Interspecies conservation for a set of 407 experimentally footprinted binding sites upstream of 194 genes in S. cerivisiae. Noncoding sequence 
upstream of the gene was obtained for all the sensu-stricto species [37,35•] and aligned according to the method presented by Morgenstern 
[70]. Each site was then scored by three different methods† for its overlap with sequence that aligned with the other species (i.e. was 
conserved). The sites were then randomized in position, and the overlap rescored in a consistent way. The similarity between the second and 
third columns shows that much of the conservation that is interpreted as evidence for functionality is to be expected by chance. The last two 
rows show that only about half of the sites would be recovered if one demanded conservation. *407 refers to the maximum possible score. †For 
the continuous scoring method, the score is the sum over all bases in the site, of the number of species aligned with S. cerivisiae. For the 
stringent scoring method, a site was counted as conserved if at least 75% of its bases were aligned in at least 3 other species. For the 
permissive method, at least 2 other species had to show 75% sequence conservation[Au Q2: Sorry, I’m still unsure what was meant. Is this 
right?]. If fewer than the minimum number of species were available, then they all had to be aligned for conservation. Imposing 50% base 
conservation increases the recovery of known sites and the number of random sites by 10%. The randomization was done so as to preserve the 
distribution in position relative to transcription start. The binding sites were taken from the study by Zhu and Zhang [71] and filtered for 
overlaps. 
 

 
 
 

Table 2 
Factor Motif Predicted [35•]  Predicted [41] 
ABF1 RTCRYnnnnnACG RTCRYknnnnACGR WRTCAnnnnADACGDM 
UME6 TCGGCGGCTA TSGGCGGCTAWW TCGGCGGCTA, TGGGCGGCTA 
CBF1 RTCACRTG RTCACGTGV RTCACGTG, ATCACGTGA 
REB1 TTACCCGG RTTACCCGRM TACCCGG, GTTACCCG, TATTACCCG, TACCCGGC 
MCM1a TTWCCCnWWWRGGAAA TTCCnaAttnGGAAA TTTCCnnnnnnGGAAA 
SWI6(MCB) ACGCG WCGCGTCGCGt ACGCGTTT, ACGCGTCGCG, ACGCGTCA 
PHO4 CACGTG RTCACGTGV CACGTGMT, GTCACGTG, AGCACGTG, TCACGTGC 
SWI4(SCB) TTTTCGCG WTTTCGCGTT TTTCGCGT, TTCGCGTT 
DAL81 GATAAG – AGATAAGA, GATAAGGA 
RPN4 TTTTGCCACC TTTTGCCACCG TTTGCCACC 
MSN2 CCCCT hRCCCYTWDt CCGCCCCT,ATCCCCCT, CCCCTCAT, GCCCCTTC, 

CCCCTTCC 
PDR1 CCGCGG YCCGSGGS CCCGCGGC, CCGCGGA 
    
MSE(NDT80) TTTTGTG TTTTGTGTCRC – 
STE12 RTGAAACA – – 
DIG1 RTGAAACA – – 
MET4 TGGCAAATG CGGTGGCAAAA CGGTGGCAAA 
HAP4 TnRTTGGT – TTGTTGCT, TGATTAGT  
SMP1 ACTACTAWWWWTAG – – 
ACE2(SWI5) GCTGGT(KGCTGR) – TTGCTGAC, GGCTGGGC, TTGCTGTT 
YAP1 TTACTAA – – 
CIN5 TTACTAA – – 
RME1 GAACCTCAA – CAACCTCA, CCTCAATG, ACCTCATC 
HAC1 CAGCGTG – GTCAGCGT, ACAGCGAG, AGAGCGTG, TCAGCGTC 
GCR1 GGAAG – GGGAAGGG, GGGGAAGG, GGGAAGAG, AATGGAAG, 

GGAAGCCC 
Recovery of known yeast binding motifs from genome-wide interspecies comparisons. Predictions in column 3 are calculated using the 
methodology set out by Kellis et al. (Table 2 [35•]), compared with predictions from a single genome in column 4 [41]. Only the top and bottom 
12 entries from [35•] are shown. The results are comparable. 

 

 


