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ABSTRACT A continuum description for diffusion in a simple model for an inhomogeneous but isotropic media is derived
and implemented numerically. The locally averaged density of diffusible marker is input from experiment to define the sample.
Then a single additional parameter, the effective diffusion constant, permits the quantitative simulation of diffusive relaxation
from any initial condition. Using this simulation, it is possible to model the recovery of a fluorescently tagged protein in the
endoplasmic reticulum (ER) after photobleaching a substantial region of a live cell, and fit an effective diffusion constant which
is a property both of the geometry of the ER and the marker. Such quantitative measurements permit inferences about the
topology and internal organization of this organelle.

INTRODUCTION

Photobleach measurements have been the method of choice
for determining the diffusional mobility and the mobile
fraction for fluorophores in solution or resident in a bilayer.
Such studies have put on a quantitative basis the fluid
mosaic model of the bilayer, and more recently pointed
towards refinements of this model (Edidin, 1997). However,
comparatively little is known about the physical properties
of intracellular membrane compartments such as the endo-
plasmic reticulum (ER). The development of green fluores-
cent protein (GFP) has made it feasible to address such
questions in living cells, (reviewed in Tsien, 1998; Ellen-
berg et al., 1999). Chimeric membrane proteins can be
routinely constructed in which GFP is fused with a native
cellular protein, which then localizes the chimera to the
organelle of interest (reviewed in Lippincott-Schwartz et al.,
1999; De Giorgi, 1999). The labeled cells appear normal,
and many experiments have shown via colocalization with
more conventional antibody markers in fixed cells that the
localization is not altered by the GFP tag. The kinetics of
protein trafficking from the ER to the Golgi complex (Pres-
ley et al., 1997; Scales et al., 1997), and then to the plasma
membrane (Hirschberg et al., 1998; Polishchuk et al., 1999;
Nakota et al., 1998; Toomre et al., 1999) have been fol-
lowed in vivo this way, as well as the breakdown and
reformation of such structures as the Golgi body (Zaal et al.,
1999; Shima et al., 1998) and nuclear envelope (Ellenberg
et al., 1997) during mitosis.

The ER is a geometrically complex compartment consist-
ing of both tubular and cisternal components with complex
and dynamic interconnections among them (Terasaki et al.,
1986). Photobleaching technology has been used to charac-
terize some of the fundamental physical properties of this

organelle and its key molecular constituents. When is the
ER a single connected membrane system (Terasaki et al.,
1996; Ellenberg et al., 1997; Zaal et al., 1999; Subramanian
and Meyer, 1997)? Are membrane and luminal proteins
mobile (Szczesna-Skorupa et al., 1998; Marguet et al.,
1999; Dayel et al., 1999; Nehls et al., 2000)? Do these
properties change with drug treatments or during the cell
cycle etc? However, the quantitative interpretation of such
experiments is problematic, since in contrast to the plasma
membrane, one cannot model the ER as an infinite flat sheet
uniformly populated by fluorescent markers. One way to
partially circumvent the geometric complexity of cellular
organelles is to bleach as small a spot as possible in a region
of the cell that looks homogeneous and interpret the recov-
ery via previous formulas (Edidin, 1994; Peters et al., 1999).
An alternative approach, which we analyze in this paper, is
to bleach on the scale of the entire cell and in this way
average over the small scale randomness that frequently is
not optically resolved anyway (Sciaky et al., 1997; Ellen-
berg et al., 1997). An interesting and unexpected conclusion
from a series of such studies on live cells is that diffusion
viewed on the scale of microns matches to idealized phys-
ical theory better than for a diffraction-limited spot.

In this paper, we describe the circumstances under which
diffusion in random media can be modeled by a continuum
theory whose only free parameter is an effective diffusion
constant,Deff. Experiments can then be quantitatively fit to
theory andDeff becomes a useful characterization of the
marker and the medium (e.g., organelle). With further as-
sumptions, we relateDeff to the microscopic diffusion con-
stant measured for a homogeneous uniform media, e.g., an
ideal flat bilayer in the case of a membrane protein. That
diffusive recovery on a sufficiently large scale in the ER for
instance, can be reduced to a general phenomenological
equation should appear no more surprising than the ordinary
diffusion equation, which makes no mention of the molec-
ular processes that allow diffusion or atomic scale inhomo-
geneity in the substrate.
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Once one bleaches a fraction of the cell, the kinetics of
the recovery will depend on the shape of the cell and where
the remaining marker resides. The purpose of this paper is
to develop the theory necessary to describe this process,
implement it numerically, and illustrate how it can be used
to fit an effective diffusion constant on a cell-by-cell basis.
The physical recovery times required for this approach are
longer than for spot photobleach because of the larger
scales. Highly mobile markers can be accurately followed,
and it is not even necessary to know the bleach region in
advance or to bleach completely, because the recovery is
followed beginning with the first postbleach image and is
sensitive to the entire cell in one experiment. Using this
approach, a single experiment can, in principle, determine
whether a single diffusion constant applies throughout the
cell.

THEORY

Two dimensions

We will phrase our derivation in the context of ER membranes in a cell
viewed in projection with the photobleach, assumed to be uniform in the
normal directionz. The limits of this idealization will be dealt with later.

Assume there is a passive membrane marker that does not interact with
itself, is in equilibrium, and has the same microscopic diffusion constant in
all parts of the ER; there is no immobile fraction. The marker density will
appear nonuniform in a projected image; there will be a central void
indicating the nucleus, a high concentration around it from the nuclear
envelope and the greater thickness of cytoplasm in its vicinity; and then a
gradual taper down to background levels at the boundary of the cell. The
ER is a mixture of cisternae (sheets) and tubes with more total membrane
around the nucleus than in the periphery. In theory, (though difficult to
discern experimentally) the variable density,r#(r), seen in projection could
be due to a potential that concentrates the marker on certain sections of
membrane, rather than there being simply more membrane in certain
regions all marked with a uniform areal density. None of this significantly
matters for what follows, provided the marker is not being actively pumped
or concentrated; it must be in thermodynamic equilibrium. The process
by which proteins are exported from the ER to the Golgi is clearly
nonequilibrium.

Let jW(r, t) denote the space- and time-dependent current of marker
(units: mass/length-time in two dimensions) andr(r, t) the analogous
density. By definition of equilibrium, there will be no flux ifr is a fixed
(position-independent) multiple ofr# . The current then must be:

j i~r, t! 5 2li, j~r!¹j~r~r, t!/r#~r!! (1)

If we average the densities over a region large enough for the connections
within the network to appear isotropic, then it is plausible (as we justify
further below) that the flux is proportional tor# , since all the material on the
micro scale is equally mobile (i.e.,r# is equally well the density of conduits
and we assumeDeff is position-independent)

li, j~r! 5 Deffr#~r!di, j (2)

The central difficulty in treating diffusion in inhomogeneous media quan-
titatively is that number of channels for carrying material varies in space.
To see how Eqs. 1 and 2 naturally incorporate this effect, consider a
one-dimensional densityr#(x), as in Fig. 1, with an overall scaleL and a
constriction aroundx 5 0 wherer# 5 r0(1 1 (x/,)2), , ,, L, r0 ,,
r#(6L/2). Assume a situation where forx ,, 0, r(x)/r#(x) 5 r2 andr 5 0
for x .. 0. Then there is an approximate stationary solutionr to the
equationj(r) 5 j0 with a constant flux,j0, of material through the constric-
tion given by

r/r# 5 r2 2 j0/~Deffr0! E
2`

x

~dx/~1 1 ~x/,!2!! (3)

and imposing the boundary condition atx .. 0 yields

j0 5 Deffr2r0/~p,! (4)

Thus, the equilibration time between the right and left pools will be very
long because of the constriction (and the relative density within the pools
will have a small gradient in comparison with the restriction). YetDeff is
the same everywhere.

The equation for the time dependence ofr follows from (1–2) by
conservation of material,

r~r, t!/t 5 Deff¹ z ~r#~r!¹~r~r, t!/r#~r!!!. (5)

In the following, it will be useful to note the transformation that takes a
solutionr to Eq. 5 and generates another solutionr9,

r9~r, t! 5 cst1 z r~r, t! 1 cst2 z r#~r! (6)

FIGURE 1 One dimensional density
distributionr#(x) representing two pools
of proteins separated by a constriction
of length l which was used to derive
Eq. 4.
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wherecst1,2 are numerical constants. Whenr# is uniform, Eq. 5 reduces to
the usual diffusion equation, and Eq. 6 reduces to the statement that a
solution to the diffusion equation is invariant under rescaling or addition of
an arbitrary constant. Near the boundary of the cell, wherer# tends to zero,
the current vanishes and Eq. 5 conserves the integral ofr over the cell. It
can also be shown that for an image of areaA

I 5
1

AE drr#S¹ r

r#D
2

(7)

is monotone decreasing to 0 under Eq. 5, and its value is a useful averaged
measure of the shortest scales present in the image.

It is instructive to rewrite Eq. 5 as

r/t 1 Deff¹ z ~p¹ ln~r#! 2 ¹r! 5 0 (8)

This invites the interpretation of ln(r#) as the negative of a potentialU(r)
(temperature is one), in which case Eq. 8 becomes just the usual Fokker
Planck equation for diffusive relaxation to the Boltzmann distribution in
the presence of a one-body potential (Wang and Uhlenbeck, 1945).
(Phrased in terms ofU(r), Fig. 1 should be inverted, and our calculation of
the redistribution of material between the left and right pools is identical to
the flux due to thermal activation over a potential barrier.) One can equally
well attribute the spacial dependence ofr# to more membrane per projected
area,A(r), and thus writer#(r) 5 A(r)e2U(r). Hence our earlier remark that
it is only r# that matters in computing the relaxation, notA(r) or U(r); it is
analogous to a free energy, with potentially both an entropic,A, and an
enthalpic,U, contribution.

Real cells

The above formulas work in any number of dimensions, but with current
instrumentation it is not feasible to follow in time photobleach recovery in
three dimensions. Thus, it is necessary to consider the limitations inherent
in two-dimensional images of a cell. The biggest problem is that two
disjointed domains can appear connected in projection, and thus our model
will impute a number of connections between them proportional to the
projected density. For our model to be valid, we have to assume that the
degree of interconnections is uniform across the cell; otherwise,Deff would
be a function of position. The same caveat applies to a network of tubules
with restrictions (e.g., the model of Olveczky and Verkman, 1998). If there
is a systematic variation in the number or severity of the restriction across
the cell, then it can only be modeled asDeff(r).

For a three-dimensional slab of material described by Eq. 5, the density
will become uniform inz, when it has diffused a horizontal distance of
order the thickness. Thus errors of projection are minimized by photo-
bleaching a portion of the cell much larger than its thickness. Nonunifor-
mity of the bleach inz is also immaterial under the same circumstances.

An immobile fraction, provided it is a fixed numerical fractiongi of
r#(r), can be readily handled by the above formulas, since they can be
applied to the mobile fraction only, by exploiting Eq. 6 to transform away
the immobile part ofr# (n.b.: Eq. 5 is invariant underr# 3 (1 2 gi)r#).
However, the initial conditions for the mobile fraction have to be computed
from the experiment by determining the fraction of materialgp , 1
bleached. So in the unbleached (respectively bleached) region, the pre-
bleach mobile density is (12 gi)r# (respectively 12 gi)gpr#), which serves
to initialize the numerical integration. The numerical solution as a function
of time is then added to the immobile fraction (which is reduced bygp in
the bleached region) to compare with experiment. We have not found a
robust way to implement the most general situation, when the immobile
fraction is a function of position, unrelated tor# , and mention potential
problems in the discussion.

Two species with differentDeff, whose densities are both a fixed
fraction of r# , can be handled by doing a single simulation, then adjusting

an overall intensity and the time scale to match the concentration and
diffusion rate for each component and adding the results.

Intuitively the microscopic diffusion constant (measured normal to a flat
membrane) will be larger thanDeff to which it gives rise in a random
geometry, since the marker is traveling farther than is measured in projec-
tion. To quantify this, imagine a network of tubes whose diameter is less
than the scale on which they interconnect. After a short time to equalize the
marker around the tubes, the diffusion will occur along a series of effec-
tively one-dimensional segments. Letu be the angle between a tube and the
plane that is imaged. Then the current along the tube is larger by a factor
cos(u) than its projection, whereas the marker gradient is smaller by the
same factor in the two cases. Because the diffusion constant is the ratio of
flux to gradient,

Deff 5 ^cos2~u!&D0 5 D0/d (9)

where to average the angle it was assumed that the tubes are isotropically
distributed in eitherd 5 2 or d 5 3 dimensions. The same relation holds
for a luminal marker.

A similar relation can be derived when the marker is confined to a sheet
in three dimensions with unit normal vectorn̂. Let t̂1 and t̂2 be two
independent tangent vectors in the sheet and imagine the mean concentra-
tion gradient in the plane of the sample to be inx̂ then,

Deff 5 ~^~x̂ z t̂1!
2& 1 ^~x̂ z t̂2!

2&!D0 5 ~1 2 ^~x̂ z n̂!2&!D0

5 ~1~d 5 2!, 2/3~d 5 3!!D0 (10)

The first equality is just the analogue of Eq. 9 applied to the two indepen-
dent directions in the sheet. Thus, ifx̂ is contained in the sheet where the
fluorophore resides, there is no reduction inD0, whereas if the normal to
the sheet is isotropically distributed, there is a reduction by 2/3.

Eqs. 9 and 10 also illustrate a limitation of our model. If the cell were
completely flat, and the ER of uniform composition but composed of
cisternae in the center and a random grid of tubes in the limb, thenDeff

would vary by 2. Only if we averaged over regions large enough to contain
a fixed ratio of sheets to tubes would our current formulation hold.

NUMERICAL IMPLEMENTATION

Algorithms

The basic data set consists of a prebleach image and a series
of postbleach images, which ideally continue long enough
so that the last image is nearly proportional to the prebleach
one (assuming no immobile fraction). The code definesr# to
be the prebleach image and initializes the density,r(r, 0),
with the first postbleach image. The subsequent images are
then compared with the simulation results as a function of
time to fit Deff.

The data are defined with 1- to 2-byte accuracy on a
rectangular mesh of points. Centered differences are then
used to approximate Eq. 5 in such a way that the conserva-
tion of r over the entire image is exact. For simplicity in one
dimension, define the mesh points asi 5 1, 2,PN. Then the
current Eq. 1 is defined on half-integer mesh points as

j i11/2 5 0.5~r# i11 1 r# i!~~r/r#!i11 2 ~r/r#!i! (11)

and at the boundariesj1/2 5 jN11/2 5 0.
Approximate Eq. 5 for a time stepd as (with an analogous

term for the divergence ofjW in the other dimension),

Diffusion in Inhomogeneous Media 1763

Biophysical Journal 79(4) 1761–1770



ri~t 1 d! 5 ri~t! 1 d~j i11/2 2 j i21/2! (12)

For anyd, (iri is the same for all times. Numerical stability
limits d to 1/4 in two dimensions, and we have found it more
than accurate enough when following photobleach recovery
to used 5 1/8 and stay with this very primitive first order
explicit in time algorithm, rather than attempt something
higher order or implicit (Press et al., 1992). The simulation
code is available from the first author.

Data and efficiency issues

The real experimental images have a nonzero background
intensity from regions where there are no cells, and pixel to
pixel fluctuations due to noise in the electronics. Occasion-
ally there will be saturation, which if extensive, makes the
image unusable for quantitative purposes.

Before subtracting the background, we smooth the data to
eliminate the pixel-pixel fluctuations. This is most easily
done by iterating the transformation,

r9i, j 5 ri, j 1 d~ri11,j 1 ri21,j 1 ri, j11 1 ri, j21 2 4ri, j!, (13)

which is simply the diffusion equation on the data grid. This
is repeated until the pixel-to-pixel variation falls to a preset
level. In practice we always work with cells that span at
least 100 pixels, bleach regions of at least 20 to 30 pixels,
and only fit to experiment intensities averaged over at least
10 3 10 pixel blocks, so this initial smoothing does not
materially alter the data. A histogram of the density is then
made for all points in the image, and the most common
intensity value is defined as the background. The optimal
smoothing and background are determined from the pre-
bleach data and used on all subsequent images in the series.

The background is then subtracted from all points, and
negative values are reset to 0 in all the postbleach images.
Negative values in the prebleach image are reset to a small
positive value of 0.5 (on a scale of 0–255 for 1 byte data),
since r# occurs in the denominator of Eq. 5. (The actual
value is immaterial, provided it is small.) The total intensity
added tor# is 0.17% of the total for the data used in this
paper.

The simulation is run until the final density is within a
few units (on a 255 scale) of its asymptotic value, as
measured by the norm (^ & denotes spatial average),

N 5 Kr#Ur~r, t! 2 r#~r!
^r&

^r#&
ULY^r#& (14)

To fit the effective diffusion constant, the user selects one or
more boxes on the prebleach image, the time series of
experimental images are smoothed and background sub-
tracted and the intensity averaged over the selected box(es).
The intensities are now on the same scale as the numerical
simulation, and it remains only to translate from the space-

time units of the numerical simulation to physical ones, in
order to determineDeff.

The time to converge the diffusion equation by an explicit
time stepping scheme scales as the fourth power of the mesh
size (versus mesh squared for a good implicit scheme; Press
et al., 1992). However most of the time is spent removing
the variation on the large scales. Thus for the modest
accuracy requirements necessary for biological imaging,
one can just coarsen the mesh after the highest wavenum-
bers have relaxed. In practice we integrate for a time large
enough for a line 1 pixel wide to spread to 4 pixels and I in
Eq. 7 to decrease by 4. Pairs of pixels are then averaged in
both x andy to cut the mesh size by 2. If this operation is
repeated twice, then on a modern work station a 5122 image
requires a few minutes to run to completion.

Two variants of the standard photobleach recovery ex-
periment can easily be handled with our code. In a fluores-
cence loss in photobleaching (FLIP; Cole et al., 1996)
experiment, a fixed region of the cell is repeatedly bleached,
and the fluorescence elsewhere in the cell is monitored. If
all material is mobile and in a connected compartment, then
ultimately all fluorescence will disappear. To simulate this,
we initialize r# with the prebleach image setr 5 r# , and at
every time step zeror within the bleach box. The data
processing and fit ofDeff are done as before.

It is sometimes convenient to bleach a strip across the cell
and then image only that strip during the recovery. Instru-
mental considerations often dictate this protocol for rapidly
diffusing species, in which case significant diffusion has
already occurred at the time of the first postbleach image. If
the bleach reduces the strip intensity to zero, then the
simulation is easy: merely initialize to the prebleach image,
numerically zero the strip, and follow the simulation for-
ward. If the bleach reduces the initial intensity in the strip to
a fraction gp of its initial value, then schematically one
should subtractgpr# from the entire image as in Eq. 6, then
zero the strip region, simulate and add backgpr# at each time
point to get the value to be compared with experiment. In
practicegp is not known, so it has to be fit along with the
time scale to the experiment, i.e.,

E
strip

drrexp~r, t! 5 ~1 2 gi!~1 2 gp!E
strip

drr~r, lt!

1 gpE
strip

drr#~r! (15)

where we have also allowed for an immobile fractiongi, and
the experimental densities are background subtracted. The
solution of Eq. 5, which appears on the right hand side of
Eq. 15, satisfiesr(r, 0) 5 0 andr(r, `) 5 r#(r) andl is the
temporal scale factor which determinesDeff. It has been
assumed that the bleach removes a negligible fraction of the
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total cell fluorescence. Since these strips are$2 mm wide,
diffraction effects can be adequately accounted for by de-
fining w to be the width measured at half the maximum
intensity.

RESULTS

We now fit an experiment in which the ER of a mammalian
culture cell was labeled with a galactosyltransferase tagged
with GFP; a fraction of the cell was bleached, and the
recovery monitored over time (Sciaky et al., 1997). Both the
bleaching and imaging were done on a Zeiss 410 confocal
microscope which generated rather noisy 1 byte per pixel
image files (intensity range, 0–255). To ensure that the
fusion protein was retained in the ER throughout the exper-
iment, cells were incubated with the drug brefeldin A,
which blocks protein egress from the ER. This type of data
is a good test of the robustness of our algorithms, and the
errors made in the various steps of data reduction and
simulation are presented below.

Fig. 2 shows the experimental prebleach, first postbleach,
and final images. The code reports on the percentage of
saturated pixel values in all the images that were analyzed,
which for the first two images mentioned, amounts to 0.1%
and 0.06%, respectively. The code then smooths the pre-
bleach image, which in this case required 26 iterations of
Eq. 13 on the whole 5122 image to reduce the average root
mean square variation between each pixel and its 4 neigh-
bors to the target of 2.5. This transformation will spread the
intensity on a single pixel to a Gaussian spot of radius 3.5.
Fig. 3 shows a histogram of pixel intensity values before
and after smoothing. The peak at 1 in Fig. 3a comes from
the large dark areas away from the cell, and the single pixel
speckle throughout the images gives the spike around 60.
After smoothing, the maximum in the distribution moves to
4, which becomes the background value to subtract, the
peak at 60 disappears, and there are no pixels with intensity
over 230. The integrated intensity from 0 to 7 of the two
histograms is unchanged.

How these various manipulations will impact the diffu-
sion constant fit can be quantified by monitoring the inten-
sity changes averaged over the 103 10 supergrid we use in
comparing theory and experiment, Table 1. The average
errors of smoothing are of the order of 1%, and the largest
percentage error occurs in the lowest intensity box, and thus
represents an error of only 1% with respect to the mean box
intensity. Our automated technique of determining the back-
ground intensity could fail if the cell occupied most of the
image, so the user can override the internal value. The final
processing step resets all negative pixels to 0.5 and 0.0 in
the prebleach and all postbleach images, respectively. The
averaged intensities change by less than 0.5% and the actual
numbers for the first post bleach image are given in Table 1.

The final step in processing the experimental images is to
select a rectangular region of interest (ROI) that contains the

cell being studied (or enough of it to account for the diffu-
sive recovery). We did not zero out the second cell above
the one that was bleached in Fig. 2b, since it is far enough
from the bleached region, and there is enough of a gap

FIGURE 2 Three confocal 5122 images showing photobleaching and
recovery of GFP-galactosyltransferase in the ER. (a) Prebleach image. (b)
First postbleach image. (c) Final image (i.e., after recovery).
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between the two cells to minimize the spurious flow of
material inputed by the code. The result of all these pre-
processing steps is shown in Fig. 4, which are the prebleach,
first postbleach (with 103 10 grid), and simulated final
postbleach images, respectively. These are the inputs and
output of the simulation where panel (a) isr# , panel (b) is the
initial r and (c) is the finalr. After the remaining experi-
mental postbleach images are similarly processed, we begin
the simulation. The two norms that characterize small
scales,I Eq. 7, and large scales,N Eq. 14, are 0.15 and 25.8,
respectively, for the first postbleach image. The program
coarsens the image after 32 and 160 time steps whenI 5

0.011,N 5 25.5 andI 5 0.003,N 5 24.8 respectively. The
program took 94752 times steps to reach the target ofN 5
1, at which timeI had decreased to the altogether negligible
value of;1026. If the coarsening steps are omitted, and the
initial grid used throughout the simulation the typical errors

FIGURE 3 Histogram of number of pixels versus intensity for the full
5122 prebleach image (a) before smoothing and (b) after smoothing.

TABLE 1 The errors due to various data transformations
involved in simulating the photobleach experiment in Fig. 2

Process
Average

Deviation
Maximum
Deviation

Smoothing 1.2% 6.8%
Zeroing pixels ;0.4% NA
Coarsening 0.25% 3.2%

The first two operations are applied to the experimental data as explained
in the text, and the third refers to the computational mesh used in the
simulation.

FIGURE 4 The smoothed and background subtracted region of interest
used to model the photobleach in Fig. 2. Part (a) is the prebleach image
r#(x), (i.e., Fig. 2a); (b) the first postbleach imager(r, 0), (i.e., Fig. 2b)
with the numbered grid boxes for averaging the intensity; and (c) the final
simulated intensityr(r, `).
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in box averaged intensities are less than 1%, Table 1, except
in regions of low absolute intensity: 95,143 steps were
required to terminate the integration atN 5 1, very close to
the value with coarsening.

Once the user has input the physical pixel size (0.125mm
in our example) and the physical times at which the recov-
ery was monitored, a value ofDeff could be determined for
each box in Fig. 4b. In Fig. 5, we show a sampling of boxes
in the bleached region, which recover at ostensibly different
initial rates, yet are all fit by nearly the sameDeff. Note that
the experiments were terminated well before complete re-
covery but are consistent with there being no immobile
fraction within the scatter for the experimental time course.
We illustrate this by rescaling the simulation in boxes (4,6)
and (6,6) with aDeff 5 0.5 and 15% immobile fraction (thin
solid line in Fig. 5). Although the fits appear to be slightly
better than those withgi 5 0, they can be rather ambiguous
when the experiments have not run to long enough times for
a clear asymptotic plateau to be visible. Random errors in
the data translate into about a 20% uncertainty inDeff as
shown by the two bracketing curves for the second data set.
The same diffusion constant should apply to the regions
whose fluorescence decreases during recovery, a sampling
of which is shown in Fig. 6. The scatter is somewhat larger
than before, perhaps because the percentage change in in-
tensity is much less. Some of the variation may be due to the
change in effective dimensionality of the ER between the
center and periphery of the cell, which can changeDeff by
a factor of 1.5 (cf. Eqs. 9 and 10). Note also that the fourth
curve in Fig. 6 does not approach its asymptote monotoni-
cally. The fluorescence hits a minimum because of the many
channels connecting box (4,3) with the bleached region. The
slow increase from the minimum results from weak con-

nections with more remote regions of the cell. The compu-
tational grid coarsening did not affect the fits ofDeff to the
precision shown.

It is sometimes possible to get a reasonable estimate of
Deff by bleaching a strip of widthw across a cell and fitting
the recovery to the approximate formula

I~t! 5 I~`!~1 2 ~w2~w2 1 4pDefft!
21!1/2! (16)

presented in Ellenberg et al. (1997). It is assumed that the
bleach is complete, there is no immobile fraction, the cell is
a uniform rectangle, the strip is normal to the long direction,
and w is much less than the distance to either end. Fig. 7
shows the pre-processed image of a mitotic cell in which a
w 5 4 mm strip was removed numerically. The recovery
was then simulated with our code and an assumed diffusion
constant of 1mm2/s. The fit to Eq. 16 was very good but
gaveDeff 5 1.35, Fig. 8, rather than 1. Similar experiments
with the strip centered and near the lower edge gaveDeff 5
1.31 and 1.11, respectively. The disparities between Fig. 7
and the idealization necessary for Eq. 16 to apply can push
Deff either up or down in comparison with 1. The finite
extent of the cell decreases the time necessary to reach the
asymptote and increases theDeff implied by Eq. 16; placing
the strip at the edge of a strictly rectangular cell, is equiv-
alent to a strip twice as wide in the middle of a cell twice as
long, decreasingDeff by 4. The quality of the fit is worse with
the strip on the edge, as expected, and the curvature of the cell
there largely counteracts the theoretical reduction inDeff.

DISCUSSION

The ability to simulate diffusion in a generally inhomoge-
neous but isotropic material is the first essential step in
modeling diffusion in live cells, but there are many com-
plicating issues for which a general treatment is impossible,

FIGURE 5 Plots of the experimental recovery (heavy solid lines) and the
simulation for several of the grid boxes shown in Fig. 4b. With no
immobile fraction the fit ofDeff gives 0.29, 0.29, 0.30, and 0.34mm2/s for
boxes (4,5), (4,6), (5,5), and (6,6), respectively. The two dashed curves
bracketing the preferred fit for (5,5) show the effect of varyingDeff by
20%. The thin solid curves for boxes (4,6) and (6,6) assume an immobile
fraction of 15% and giveDeff 5 0.5. The3 marks the prebleach intensities
to which the experiment would recover if there were no immobile fraction.

FIGURE 6 Plots of the experimental recovery (solid lines) and simula-
tion for several grid boxes labeled as in Fig. 4b where the intensity
decreases. The fit with no immobile fraction givesDeff 5 0.34, 0.37, 0.40,
0.25, and 0.25mm2/s for boxes (2,4), (4,2), (5,2), (4,3), and (5,3), respec-
tively. The crosses denote the simulation intensities at full recovery
(;1200 s in this example).
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and one must deploy biophysical methods in a way that
optimizes the prospects for quantitative analysis. For this
purpose we provide some intuitive guides grouped loosely

around complexities of geometry, other dynamical pro-
cesses, and immobile fractions.

Both our experiments and analysis have dealt with cells
viewed in projection. Our model as embodied in Eq. 5
readily generalizes to three dimensions. If it applies to the
ER in real cells, then it is a mathematical consequence that
neglect of the third dimension is inconsequential, provided
the scale of variation in the lateral dimensions is large
compared with the thickness. However, it is anticipated that
a variation of 50% can occur inDeff (cf. Eqs. 9 and 10) as
one proceeds from a region where the orientation of the
tubes and cisternae are random in a volume to one where
they are random only in the plane. The variation inDeff can
be as large as a factor of 3 if the ER is entirely tubular,
randomly oriented in one region, entirely aligned in an
adjacent one, and the bleach box is normal to the aligned
tubes (i.e., diffusion followsD0 in the latter region). The
fundamental assumption embodied in Eq. 5 is that the
density of fluorescence represents equally well the density
of connections, i.e., the flux is proportional tor# , Eq. 1. The
measured intensity has to be averaged over a spacial region
larger than the interconnection scale e.g., a few microns
(Terasaki et al., 1986). Our model completely fails when
two compartments which overlap in projection are actually
disconnected in 3D.

The pathways by which the cell targets newly synthesized
proteins and internalizes material from the outside involve a
series of disconnected membrane-bound organelles. The
physical separation between organelles is essential since
they have different lipid and protein components, but it
requires elaborate mechanisms to separate substrate from
the organelle resident enzymes and target it to the next
compartment. The Golgi complex receives secretory cargo
exported from the ER and appears at the optical level as

FIGURE 7 Smoothed and background subtracted images of a cell (A)
before and (B) after a 4-mm strip was zeroed across the length of the cell
to generate synthetic data to test the 1D diffusive recovery formula shown
in Eq. 16.

FIGURE 8 Comparison of a fit of Eq. 16 to the results of the simulation
(solid curve) for the data in Fig. 7a. Simulation 1 is recovery into the 4-mm
bleach strip in Fig. 7b; simulation 2, the same strip moved 5.2mm higher;
and simulation 3, the same strip moved 3.2mm lower than Fig. 7b. The fit
of Eq. 16 givesDeff 5 1.35, 1.31, and 1.11 for these three cases, versus a
value of 1.0 used in the simulation of the full cell image, which defines the
data.
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multiple compact structures, some of which are discon-
nected, as shown by photobleach (Cole et al., 1996). To
determine the diffusive mobility within the Golgi complex
requires care since structures which appear continuous in
projection are actually disconnected. The strategy adapted
by Cole et al. (1996) was to bleach a narrow strip across a
single structure and ideally remove only a small fraction of
the structure’s total fluorescence. An alternative strategy is
to bleach one of two structures ostensibly connected by a
narrow neck in a projected image. If recovery is very slow,
they are not connected. Otherwise, the situation resembles
that in Fig. 1, and if the density in the neck can be measured
Deff can be inferred.

We have found that many images of GFP chimeras in the
ER can show bright spots on a diffuse background. If the
entire region is bleached and the material in the spot is both
connected to the rest of the fluorescence pool and not
subject to any special localization, then the recovery of the
entire image would be described by our simulation. If the
spot does not recover, then it was probably disconnected
from the ER, whereas if the recovery is faster than diffusive,
some process is actively concentrating material.

The most general point to be made is that the ability to
simulate the entire cell liberates the experimenter from
bleaching the smallest region possible in order to fit to the
usual formulas for a homogeneous media. Thus, one should
exercise the freedom to bleach a variety of shape and size
patterns, in different locations in the cell and verify that one
Deff fits all. One should also compare a FLIP experiment in
which the entire cell is drained of fluorescence by repeat-
edly bleaching one region, with the more conventional
fluorescence recovery after photobleaching (FRAP). If the
sameDeff fits both, it is a stringent test that all material is in
a single connected compartment with evidently very homo-
geneous properties throughout. Finally, because recovery
usually is very gradual into the limb of the cell (cf. box 6,6
in Fig. 5), the experiment should be run long enough to
reliably estimate if there is an immobile fraction. As shown
in Fig. 5, we can achieve slightly better fits by addinggi as
a fitting parameter. However this additional degree of free-
dom allows one to fit partially recovered or even cropped
data as though it is fully recovered, and thereby arrive at
meaningless values forDeff andgi.

The ability to bleach a defined region is particularly
important when some fraction of the image is immobile or
subject to different dynamics. In the simplest case, the
immobile component is a fixed fraction of the total, and
after some rescalings that we have outlined, the quality of
the fits between simulation and experiment should be no
worse than in the ideal case when everything is mobile. But
imagine one is viewing the plasma membrane (PM) for a
marker also present in the Golgi complex and thus discon-
nected from the time scale of the experiment. One strategy
at the computer processing level would be to excise the
Golgi complex from the prebleach image (and perhaps fill

in with the PM intensity in the neighborhood) and only then
run the simulation. Alternatively, in the experiment, one
could photobleach the Golgi, allow the fluorescence to
recover in the PM that was also bleached and then do a
second bleach on the PM and compare with the standard
simulation. (The first recovery must be run to completion
only to determiner# . If an alternate means can be found to
determine the steady-state density in the PM, such as con-
focal microscopy, then a single bleach will suffice.) In
either case, the bleach that determinesDeff should be as far
from the irrelevant pool as possible and sufficiently small
that the material necessary for recovery comes from nearby.

We have found no general robust and practical method
for determining an immobile fraction cell-wide that is not a
fixed multiple of r#(r). One way of understanding the prac-
tical problems is to decompose the prebleach image,r0(r),
and the final image,r`(r), into a mobile densityrm(r) and
an immobile densityri(r),

r0~r! 5 ri~r! 1 rm~r!, r`~r! 5 x~r!ri~r! 1 arm~r! (17)

where x(r) 5 gp , 1 in the bleached region (assumed
known) and 1 elsewhere, anda 5 *x(r)rm(r)/*rm(r) is the
fraction of the mobile pool that was bleached. It is only
rm(r) that is time-dependent, and to integrate Eq. 5 requires
settingr# 5 rm(r); i.e., rm(r) must be known. Eq. 17 can be
inverted point by point; however, bothgp anda cannot be
simultaneously determined from Eq. 17, since the right-
hand sides are not independent at all points, i.e.,*xr0 5
*r`. The parametergp can be found by fitting Eq. 17 to the
boundary of the bleached region and assuming bothrm,i are
uniform over the step created by the bleach, but even when
gp is known, the self-consistent equation fora is not easy to
solve.

The real problems in inverting Eq. 17 have to do with
time scales and experimental errors. The immobile fraction
has to be absolutely immobile for a time long enough for
rm(r) to relax over the whole cell. Naturally, one is less
sensitive to regions farthest from the bleach box, and vul-
nerable to large errors if part of the cell moves. As a
consequence, if one inverts Eq. 17 formally (for example,
by doing the experiment wheregp ; 0), there will be
isolated points whereri(r) , 0 for values ofa near 0 or 1.
In practice there frequently remains only a rather small
interval of allowed a values. Under typical conditions,
where the immobile fraction is merely slow and parts of the
cell do move around, it is very hard to automatically deter-
minerm,i cell-wide. The best strategy seems to be bleaching
an alternating on/off pattern across the entire cell so that the
recovery occurs locally and rapidly.

Until now the plasma membrane was the prototypical
membrane for biophysical studies of lateral protein mobility
(Edidin, 1994). In this system, intrinsic membrane proteins
can have diffusion constants in the range of 0.01 to 0.1
mm2/s, and some degree of short term localization as man-
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ifested by less than complete recovery. There is also a
dependence of the ostensibleDeff on bleach spot size for
scales below 1–2mm, which has been interpreted in terms
of a fast and slow diffusing pool (Edidin, 1994).

By contrast, our measurements probe only scales larger
than a few microns. We have foundDeff for many GFP-
tagged transmembrane proteins in intracellular compart-
ments to be in the range of 0.3mm2/s with 80–100%
recovery (Sciaky et al., 1997; Ellenberg et al., 1997). This
implies a microscopicD0 applicable to a flat membrane of
up to;1 mm2/s, comparable to diffusion times in synthetic
bilayers. Our measurements ofDeff are quantitatively repro-
ducible over many cells and in many subregions within each
cell. Other transport mechanisms that might appear like
diffusional transport, including movement of detached ves-
icles, can be ruled out by the conceptually simple but
technically difficult biophysical technique of measuring
both a protein and lipid diffusion constant (Zaal et al.,
1999). If transport were by vesicles, both protein and lipid
would recover at the same rate. The consistency of different
Deff for Golgi and ER protein and lipids during mitosis
(Zaal et al., 1999), and after treatment with brefeldin A
provides evidence that vesicle processes for moving Golgi
and ER markers are not occurring under these conditions.
Viewed on the scale of microns, the ER membrane system
is as amenable to study as the plasma membrane, and
biophysical methods, if sufficiently quantitative, allow in-
direct inferences about transport processes in live cells
whose study previously required biochemical or genetic
manipulations.
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