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The comparison of homologous noncoding DNA for organisms a suitable evolutionary distance apart is a
powerful tool for the identification of cis regulatory elements for transcription and translation and for the
study of how they assemble into functional modules. We have fit the three parameters of an affine global
probabilistic alignment algorithm to establish the background mutation rate of noncoding seqeunce between E.
coli and a series of gamma proteobacteria ranging from Salmonella to Vibrio. The lower bound we find to the
neutral mutation rate is sufficiently high, even for Salmonella, that most of the conservation of noncoding
sequence is indicative of selective pressures rather than of insufficient time to evolve. We then use a local
version of the alignment algorithm combined with our inferred background mutation rate to assign a
significance to the degree of local sequence conservation between orthologous genes, and thereby deduce a
probability profile for the upstream regulatory region of all E. coli protein-coding genes. We recover 75%–85%
(depending on significance level) of all regulatory sites from a standard compilation for E. coli, and 66%–85% of
sigma sites.

We also trace the evolution of known regulatory sites and the groups associated with a given transcription
factor. Furthermore, we find that approximately one-third of paralogous gene pairs in E. coli have a significant
degree of correlation in their regulatory sequence. Finally, we demonstrate an inverse correlation between the
rate of evolution of transcription factors and the number of genes they regulate. Our predictions are available
at http://www.physics.rockefeller.edu/~siggia.
[Online supplemental material available at http://www.genome.org.]

Functional genomics has made great progress in the predic-
tion of protein coding regions using Markov models whose
hidden states encode the components of a gene (promoter,
exon, intron, splice sites) and whose parameters are fit to
known instances of these states. Annotating the regions of the
genome that control transcription and translation has proved
more refractory. The binding site for a single protein is much
smaller than a typical exon and regulatory proteins work in
modules, but we know nothing about the syntax governing
the assembly of functional modules, there is no counterpart
to cDNA libraries to tell us which bits of sequence belong to a
common module, and there is no analogue to the extensive
libraries of known proteins to compare against.

Regulatory sequences occur in multiple copies in a single
genome, which is the basis for their detection computation-
ally. Strategies range from the prediction of a single weight
matrix motif for a cluster of genes (Stormo and Hartzell 1989;
Lawrence et al. 1993; Bailey and Elkan 1994) to string counts
with probabilities assigned with reference to genes not in the
cluster (van Helden et al. 1998; Brazma et al. 1998), and fi-
nally fits to more elaborate models for all regulatory regions
in the genome and the simultaneous determination of many
putative motifs at once (Bussemaker et al. 2000). DNA micro-
array experiments have been a boon to studies of gene regu-
lation because they provide complete sets of covarying genes.
However, they also quantify how much more remains to be
understood. In yeast, most copies (e.g., 75%) of the canonical

control elements for cell cycle and sporulation occur in the
upstream regions of nonresponding genes (Bussemaker et al.
2001). Hence there are other sequence signals to be found, but
probabilistic methods on a single genome encounter the fun-
damental problem that there is never a single sharp secondary
motif that delimits the active from inactive class, but many
marginally significant ones.

The availability of genomic sequence for related species
compensates for the greater plasticity of regulatory sequence
modules (compared to proteins) and makes interspecies com-
parison a powerful technique for their identification. There
have been studies of the globin locus across many species
(Stojonovic et al. 1998), comparisons of several Drosophila
species (Blanchette et al. 2000), and many mouse compari-
sons (Hardison et al. 1997; Loots et al. 2000; Wasserman et al.
2000). For prokaryotes, a broad collection of fully sequenced
genomes was examined by McGuire et al. (2000), and more
limited comparisons were made by Gelfand et al. (2000). A
recent study by McCue et al. (2001) uses many of the same
organisms we do, but a complementary algorithm. Compari-
sons with prior work are reserved for the Discussion herein.

In this paper we address the intertwined questions of
how rapidly do gene control regions evolve and what are the
most informative species pairs to study for the elucidation of
cis regulatory regions. We work primarily at the module or
locus level and only as a second step discern individual pro-
tein binding sites. We thus impose no preconceptions about
what aspects of the module are most important (as measured
by conservation) to the regulatory net of the cell. Escherichia
coli is the most useful species to examine at the moment since
it is the best studied prokaryote and has the densest set of
related genomes in various stages of sequencing. Although in
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the future, sequencing projects may be undertaken largely to
ascertain regulatory sites, the regulatory system of E. coli is not
simple; there are seven sigma factors and several other regu-
latory proteins (e.g., crp and lrp) that control many operons,
plus several factors with widespread activity that facilitate
contacts between other factors (e.g., fis, ihf, hns) (Lin and
Lynch 1995). There are also cis elements regulating transla-
tion which are much more extensive that the core Shine Dal-
garno sequence (Lin and Lynch 1995). All are fused together
in the several hundred bases upstream from translation start
(Gralla and Collado-Vides 1996). In public databases are ap-
proximately 800 protein binding sites (including sigma sites)
regulating ∼ 400 genes or about 10% of all operons (Robison et
al. 1998; Salgado et al. 2000b).

Our alignment algorithm, which is essential to compre-
hension of our results, is described in the Methods section.

METHODS

Alignment Algorithm
Sequence alignments (e.g., BLAST) are generally done with
predetermined penalties for mutations and gaps, and assign a
probability to the best score thus obtained based on a null
model of completely uncorrelated sequence pairs. This natu-
rally responds to the question of whether the query sequence,
run against the database, has a better score than chance alone
would suggest. Frequently a scoring scheme adapted to the
evolutionary distance of the match one is exploring will en-
hance the significance of the relevant matches compared to
others, but in all cases significance is assessed relative to the
probability that two random sequences (with the residue fre-
quencies of the database) would score as well as the putative
functional match.

Our task is more difficult. Since we are comparing organ-
isms which are manifestly related, we first have to fit an evo-
lutionary model to determine as best possible the neutral or
basal evolution rate (Thorne et al. 1991). With respect to this
correlated model, we must then ascertain whether certain re-
gions of sequence are more similar than expected, and
thereby score them as functional. In practice, it is impossible
to know what if any regions of the genome are not subject to
fitness constraints, and for bacteria, lateral gene transfer is so
common that one may question whether the most recent
common ancestor is a well defined concept. (Since we exam-
ine relatively close organisms and look at the entire genome,
lateral gene transfer should not contaminate most of our re-
sults.) Thus, operationally we compute the basal evolution
rate as the most rapid evolution we can find for a substantial
block of manifestly homologous sequence, pooled from mul-
tiple regions of the genome. Further details are given in the
Results section.

We rather conventionally describe sequence evolution in
terms of three processes, a single base mutation, a gap open-
ing, and a gap extension. More precisely,

prob�b → b���prob�b → b� = ���1 − 3��, (1)

prob�gap length i� = �2�i−1, (2)

where � sets the rate of base substitutions (b → b�), and µ, � are
the gap opening and extension parameters. We use these pa-
rameters within a probabilistic alignment algorithm based on
that of Yu and Hwa (2001) (with our modifications detailed in
the Appendix). Probabilistic alignment computes the sum of
all ways of turning sequence 1 into sequence 2, with each
weighted by the number of mutations and insertion-deletions
required. (In its global form, it requires boundary conditions
which reflect whether there are conserved landmarks, that is,
unique homologous genes, on one or both ends of the inter-

genic regions being fit.) The resulting score can be interpreted
as a probability distribution over all pairs of sequences, since
it is positive and sums to one (see Appendix). Probabilistic
alignment is particularly natural in our context, since the
same (global) algorithm can be used both to fit parameters
and score pairs of sequences and admits an interpretation in
terms of an explicit generation process. That is, if we fit our
three parameters to a pair of sequences by maximum likeli-
hood (i.e., maximizing the score given the data), then there
exists a Markov model (Yu and Hwa 2001) which uses these
parameters and generates from one sequence via insertions,
deletions, and mutations a second sequence such that when
parameters are fit to this new synthetic sequence pair, the
generating values are recovered. The local alignment of Yu
and Hwa (2001) assigns probabilities to all possible ways of
drawing subregions from the two sequences. When looking at
many sequence pairs together, it is important not to report
just the best local alignment for a given pair, because ulti-
mately we must make a decision about E. coli based on all the
comparison species.

Our local version of probabilistic alignment is compli-
cated by the fact that we want to assign significance relative to
a neutral model described by the three parameters above.
Since we are looking for protein binding sites, we assume zero
gap parameters and a new substitution parameter � subject to
� < � which we adjust to optimize significance. (Our scoring
formula is given by Eq. A.6.) With � = 0, we would score
positively only regions with no mutations but then assign
them higher significance than for any � > 0. If � approaches
the background level, then all regions would be assigned mar-
ginal significance. Thus for each homologous upstream re-
gion in each pair of organisms, we scanned over � to maxi-
mize the significance of the highest scoring region. On aver-
age, � was smaller when comparing E. coli with Salmonella
than E. coli with Vibrio, but there was considerable variability
among genes.

The local alignment then yields diagonal segments of
high significance in the rectangle defined by running the two
sequences along the x and y axes. To obtain a conventional
graph, we take the maximum significance calculated for each
E. coli base ( and any base of the comparison species) and plot
it as a function of upstream position in E. coli. Note that the
blocks of high significance in this graph need not occur in the
same order in the other species as in E. coli, and it should be
checked that the blocks indeed correspond to contiguous
bases in the other sequence.

Statistical Tests
Based on the size of the typical upstream region (300–500 bp)
that we scan over with our local algorithm, a marginally sig-
nificant log odds score in our units is ∼ 6, i.e., ln(500). A single
score can be deduced from a collection of pairwise alignments
by either of two methods which make opposite assumptions
about the sequences being compared with E. coli; the truth is
somewhere in between. Either take an envelope of all log odds
profiles (if the comparison sequences are maximally corre-
lated) or take a sum if they are completely uncorrelated. In the
latter case, to filter noise we only consider those bases in each
pairwise comparison where the log odds score is over 9, oth-
erwise it is omitted from the sum.

In order to extract a series of disjoint high significance
intervals from the log odds graph to compare with foot-
printed factor binding sites, we used an edge detection heu-
ristic defined by computing the derivative with respect to po-
sition and thresholding. What fell between successive bands
of positive and negative derivatives subject to some plausible
length limitations was the prediction.

For measuring the similarity between a set of predicted
sequence intervals and the experimental data base, we define
a hit (following McCue et al. 2001) as any overlap. A single
prediction can hit multiple sites if they are nearby or nested,
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and the score hs for a given E. coli control region is just the
total number of hits. The score expected by chance is com-
puted by fixing the predictions and randomizing the posi-
tions of the experimental sites individually, subject only to
the constraint that the distribution of positions for each site
matches that for all sites in the database. The average 〈h〉 and
variance 〈(h � 〈h〉)2〉 in the number of hits are computed sepa-
rately for each site, and summed over all sites in the regula-
tory region to give 〈hs〉 and �s = 〈(hs � 〈hs〉)2〉, respectively. The
significance is then parameterized by

z =
hs − �hs�

��s
(3)

This quantity is not Gaussianly distributed and does not
readily translate into a probability, but serves as a quality
measure for the predictions for each upstream segment.

Given a set of N aligned sequences with nib copies of base
b in position i, we define a (frequency) weight matrix w and a
score s for a sequence (b1, b2, . . ) as did Robison et al. (1998),

wb
i = �nb

i + 1���N + 4�, s = �
i
ln�wbi

i �pbi�, (4)

where pb is the background probability for upstream regions
(0.3 for A, T). The average of s for all N aligned sequences
relative to the average for background sequence is a measure
of the specificity of the weight matrix.

Extracting Homologous Regions From Genomic Data
The key to our method is the selection of pairs of organisms
which give the most informative comparisons. Figure 1 gives
the rRNA phylogeny of the species we have examined. We do
not require a fully assembled sequence, merely large enough
contigs to give a good protein match plus ∼ 500 bp upstream
of AUG, which is where almost all control elements are found
(Gralla and Collado-Vides 1996).

We used the program tfastx (Pearson 1999) and a spec-
trum of scoring matrices to match each of the ∼ 4200 orfs in E.
coli (represented as a protein sequence) against all other ge-
nomic sequences including E. coli itself (to detect paralogous
genes). Since we are examining very similar species we can
insist on a stringent match criterion of a probability score
<10�25 (10�5 would be marginal in these units), and at least
40% identity as defined by the program. We assembled all
valid hits into disjoint closed intervals on the target genome,
which frequently began with the first amino acid of the query
protein. When a given protein had several distinct hits, we
ordered them by probability score, and then by percent iden-
tity (probability scores often underflowed to 0). We restricted
attention to upstream control regions that did not overlap
any annotated coding region on either strand, were at least 50
bp in length and were cutoff at 500 bp. The minimum length
restricts us to approximately one promoter per operon (Sal-
gado et al. 2000a). Table 1 gives the statistics of our matches,
and Table 2 a breakdown of the number of conserved gene
pairs between organisms. The subclass of noncoding regions
between two conserved pairs will be useful in what follows.

As a database of known E. coli protein binding sites, we
used the compilation of Robison et al. (1998) and a related set
from McCue et al. (2001).

RESULTS

Prediction of Functional Regulatory Sites
For the compact genomes of prokaryotes, it is by no means
obvious what regions of the genome are not subject to selec-
tive pressure and thus suitable for estimating a mutation rate
against which to measure the degree of conservation of the
promoters. The most propitious regions to examine are those

between conserved gene pairs, because the intervening se-
quence should all be homologous under our assumptions and
we can use fixed boundary conditions on both ends to do the
global alignment. In Table 2 we show that the ratio of diver-

Table 1. Statistics for the Matches of the 4241 E. coli
Genes used as Queries Against the Target Genomes Given
in the Column Heading

Number of: eco stm kpn ype vch

All matches 5987 4429 4497 3103 2285
orfs with �1 match 4241 3250 3047 2425 1695
Unique matches 3414 2567 2301 2013 1385
Orth. upstream regions 2574 1928 1752 1424 936

The first row counts all distinct matches in the target; the second
row gives the number of queries with a valid match; the third row
counts how many of the 4241 queries had a unique match within
our threshold (score <10�25 and percent identity over 40%); and
the last row are all those unique matches that have at least 50
bases upstream that do not overlap coding sequence on either
strand. There are 2127 E. coli genes that have orthologous up-
stream region in at least one organism, and 768 genes with an
orthologue in all four species.

Figure 1 Phylogeny of relevant bacterial species. The three-letter
abbreviations are as follows: eco, Escherichia coli K12 (genbank entry
NC_000913); stm, Salmonella typhimurium LT2 (genome.wustl.edu/
gsc/bacterial/salmonella.shtml); kpn, Klebsiella pneumoniae
MGH78578 (genome.wust l .edu/gsc/Pro ject s /bacter ia l /
klebsiella.shtml); ype, Yersinia pestis CO-92 (www.sanger.ac.uk/
Projects/Y_pestis/); vcb, Vibrio cholerae N16961 (genbank
NC_002505 and NC_002506); hin, Haemophilus influenzae Rd (gen-
bank NC_000907). The phylogenetic tree is based on 16S ribosomal
RNA sequences. H. influenzae is shown only for comparative purposes
and was not analyzed in our study.

Rajewsky et al.

300 Genome Research
www.genome.org



gent gene pairs (common upstream region, e.g., 5� 5� pairs) to
convergent ones (sharing a noncoding terminal region, e.g.,
3�3� pairs), increases significantly as one moves from Salmo-
nella to Vibrio. This finding confirms, without any potential
biases as to where experiments looked, the general observa-
tion that most cis regulatory elements in bacteria are up-
stream of the gene, not downstream. We examined the set of
convergently transcribed (i.e., 3� 3�) gene pairs; a small number
of these were dropped which had significant amounts of con-
servation either because of recent lateral gene transfer, or
some functional secondary structure that still retains some
primary sequence homology. This is legitimate because we are
looking for nonfunctional, neutrally evolving sequence. The
homology of the regions being compared is guaranteed by the
good match between the bracketing gene pairs. From the re-
maining set, upwards of a kilobase of sequence from several
such pairs was fit with a single set of parameters. These fits
were stable for other selections of sequence.

As seen in Table 3 part b, only Salmonella retains some
degree of correlation in minimally functional regions; the
other pairs of species are random (i.e., the optimal fit corre-
sponds to a point mutation rate of chance). These fits are
conservative, since they are a lower bound to the neutral mu-
tation rate and thus the statistical significance of any feature

we find in the E. coli control region will be higher than we
report, given our model. For comparison, the same fits were
done for gene pairs with a common 5� control region and
show much higher conservation.

Our evolution model fits were then used to assign a sig-
nificance to matches between ungapped regions for all or-
thologous upstream regions. Examples are given in Figures 2
and 3. As noted in the Methods section, the � parameter can
be adjusted to optimize significance. A small � gives sharp
delineation but poor overall structure since it only selects per-
fectly conserved blocks. The significance generally rises as �

increase from ∼ 0 and then declines unless the entire upstream
region merges into one block and our probability calculation
ceases to be valid. For the more distant species, ype and vch,
a suitable automatic way of adjusting � is to maximize the
root mean square fluctuation in the log probability profile.
For stm and kpn however, we imposed in addition an upper
bound of 0.004 and 0.006 respectively on �, which aids in the
delineation of sites.

In Figure 2, we contrast � = 0 with what we consider the
optimal � for each organism. Notice that the sum delineates
the overlapping annotated sites better than does the enve-
lope. The maximum for all four organisms falls on top of the
annotated sites in Figure 2b, whereas with � = 0 the maximum
for ype is around i = 25. The second most prominent structure
in Figure 2 does not get any contribution from stm, and
broadens when � is fit. The third structure around i = 300 only
rises above the cutoff of 9 in Figure 2b. The genome-wide
statistics of the intervals we flag as significant, such as those
shown in Figure 2b, are discussed below.

Figure 3 shows the intergenic region between a pair of
divergently transcribed genes which were conserved for all
four species. There is only one documented site and it appears
as a ‘hat’ on top of the largest block which reflects its presence
in vch, which is contributing nothing elsewhere to the
summed profile. In the next most significant block around
125, ype doe not follow kpn and stm as is true elsewhere.
Perhaps the offset lobe of signal for ype is moderating the left
gene rather than the right one.

Our complete set of predictions are available on theWeb.
It remains true genome-wide that when properly discounted
by evolutionary distance, Salmonella (an organism so close to
E. coli that recombination between the genomes is possible;
Rayssiguier et al. 1989) is both informative yet does not domi-
nate the comparisons.

Though it is not our primary purpose to predict indi-
vidual transcription factor binding sites, it is obviously im-
portant to show that the known sites fall within our con-
served regions and to put a significance value on our predic-
tions (e.g., if we claim that most of the upstream region is
conserved, as sometimes occurs when it is short, our signifi-
cance is low). To compare with McCue et al. (2001), who used
a multiple alignment tool which assumes a null model of
mutually uncorrelated data segments, we took the sum of all
our pairwise alignments over a significance threshold of 9 (cf.
Figs. 2, 3) position by position along the E. coli reference se-
quence. We then made two categories of predictions, both
genome-wide: a single best prediction for each gene, and all
significant segments. Two data sets of known regulatory sites
were used, those upstream of the 184 ‘test set’ genes of McCue
et al. (2001), Table 4 (with and without the sigma sites from
Robison et al. 1998), and simply all sites from Robison et al.
(1998), Table 5. Any comparisons with the results of McCue et
al. (2001) are approximate because we focused on different

Table 2. Statistics for the Preservation of Three Categories
of Contiguous Pairs of E. coli Genes Separated by between 1
and 500 Non-Coding Bases

Number of gene pairs: eco stm kpn ype vch

tandem (same strand) 2388 1045 729 547 252
divergently transcribed 552 305 204 123 34
convergently transcribed 517 222 53 36 7

The genes matched are further restricted to those in the third row
of Table 1, with a unique match which begins within the first (last)
six residues of the query gene (with first/last chosen so that the
inter gene region is well delineated).

Table 3. Fits of the Evolutionary Parameters to a Subset of
the Conserved Gene Pairs from Table 2 for the
Categories Indicated

Table 3A. Tandem conserved gene pairs

stm kpn ype vch

µ 0.02 0.03 0.05 0.19
� 0.96 0.92 0.93 0.68
� 0.05 0.06 0.08 0.14

Table 3B. Convergently transcribed, conserved pairs

stm kpn ype vch

µ 0.09 0.02 0 0
� 0.9 0.9 0 0
� 0.16 0.24 0.25 0.25

Error bars for µ, �, and � are within 10%, respectively. The pairs
were subject to the additional constraints that the intergenic re-
gion was between 70 and 500 bp in length; and for the conver-
gent pairs, without obvious conserved blocks (i.e., max score
<12). At least a kb of sequence was fit in all cases.
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aspects of the signal; for example, they excluded sigma sites
by fitting to a palindromic model, whereas we do not distin-
guish them. Further comparison is deferred until the Discus-
sion. Gene by gene the statistical significance is low, because
as is evident from Figures 2 and 3, a good portion of the
upstream region seems functional; we predict 3141 sites (with
an average length of 32 bases) for 2127 upstream regions. In
addition, our estimate for the number of sites hit by chance
was high, because we randomized each experimental site in-
dependently even if several of them overlapped.

Analysis of the Upstream Regions of Paralogous Pairs
Our interspecies comparisons can be trivially extended to
paralogous pairs of genes within E. coli. There are 169 unique
gene pairs which satisfy the stringent cutoffs defined for the
last line of Table 1. We ran our local alignment procedure on
each pair and assumed a completely random background evo-
lution model. The parameter � was optimized with an upper
cutoff of 0.1. The maximum log odds score exceeded 9 for 52
of these pairs which are listed on our website along with their
GENBANK annotation, and alignments. Of the 52, ten are

Figure 2 The probability profiles for the orthologous region upstream of the gene lpdA (lipoamide dehydrognease (NADH). The abscissa is in
bp units, and the start codon for lpdA begins at position 325. In (a), � = 0 for all species, whereas in (b) it is optimized separately in each case (as
explained in the text), which yields � = 0.006, 0.003, 0.01, and 0.06 for kpn, stm, vch, and ype, respectively. The two known factor binding sites
for sigma 70 (rpoD17) and an anaerobic factor arcA are marked. In (b), the predictions of McCue et al. (2001) are marked with “W” and the
remaining bars are our predictions from the summed profiles.
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transposon-related ORFs (using Riley’s functional classifica-
tion 5.1.4; see http://genprotec.mbl.edu:80/start) and are
grouped separately since their upstream conserved regions
are presumably not conventional transcription factor bind-
ing sites. There was no correlation between the maximum
score for the upstream region and the percent identity be-
tween the paralogous proteins.

Correlation between Gene Function and
Conservation of Upstream Region
We have investigated how a quantitative measure of the con-
servation of orthologous upstream regions, the maximum
log odds score, correlates with the functional class of the
respective genes. We restricted the maximum to a region of
300 nucleotides upstream of the translation start of the gene
in order to avoid spurious signal from divergently transcribed
genes. It is already interesting to simply rank all 2127 genes
for which we have orthologs by this score (details on our web

site). Perhaps not very surprisingly,
all the ribosomal genes get very high
scores; all 20 are ranked above 365,
and five (rpmB, rplJ, rpsT, rpsF, rplM)
are among the top 30 genes. Interest-
ingly, there are seven genes (ORFS)
with no known function (Riley cat-
egory 0.0.0 and “hypothetical pro-
tein”) among the top 30 (yhbC, yafB,
ybeB, yeaA, yaeO, yeaQ, yhdG).

Restricting attention to the 768
genes with orthologues in all four
species, we made a histogram of the
maximum log odds score (summed
over the four species) for the 239
genes with no known function and
compared with the corresponding
histogram for the functionally anno-
tated genes (Fig. 4). The latter group
gave better scores, and the probabil-
ity that the histograms came from a
common distribution was less than
0.07 as defined by a �2 test. We ex-
amined other functional groupings
from Riley’s classification (e.g., me-
tabolism or DNA replication/repair)
but could find no other correlations as
strong as that for the ribosomal genes.

Evolution of Known Regulatory Sites
For each site annotated to control a particular gene in E. coli,
we mapped it into the upstream region of homologous genes
by two methods with different biases. The first scheme simply
looked for the minimal number of mutations and in the one
orientation of site relative to gene defined by E. coli. We ac-
cepted a match in the target species only when the probability
of a chance match was small, and the match was unique (e.g.,
when there are two copies of the same site upstream, each
must have a unique match). Under this mapping, the number
of sites identified in the target species decreased with increas-
ing evolutionary distance, and the weight matrix computed
from all the mapped sites for a given factor was less specific
than that in E. coli. (Comparing with ype, the average score of
the defining sites against the weight matrix, decreased by 2�

for crp and rpoD (sigma 70), was unchanged for lexA, and
other factors fell in between.)

An alternative mapping of sites assumes that the regula-
tory network is preserved, that is, homologous genes must be
regulated by the same factors though copy number can

Table 4. The Percentage of Times our Single Best
Prediction per Gene Hits a Known Site in the McCue et al.
(2001) Study Set with and without Sigma Sites

Without � sites With � sites

This study 72.8% 75.5%
McCue et al. 2001 79.8% 82.0%

Our prediction consists of the 24 highest scoring sites around the
maximum, as explained in the text. In a significant number of
cases the corresponding best prediction from McCue et al.
(2001) consists of several sites with a degenerate score. We made
no prediction for 37 of the 183 genes in the study set, either
because we had no homologue or no score above threshold. Our
percentages are calculated with respect to the 146 genes where
a prediction was made.

Table 5. Match of All Significant Predictions to the Data of
Robison et al. (1998)

Hit score z-score >1 z-score >2

This study 85.7% 27.5% 6.7%
McCue et al. 2001 86.1% 26.5% 5.2%

The percentages are calculated with respect to the number of
genes with a positive prediction: 349 for the first row and 388 for
the second. The columns denote the fraction of sites hit and the
percentage of genes for which the number of experimental sites
hit has a statistical significance (defined by the z-score in equation
3) greater than 1, 2.

Figure 3 The probability profiles for the intergenic region between the conserved divergently
transcribed pair of E. coli genes, yfhD to the left and purL to the right, whose 5� end begins at position
= 396. An optimal � = 0.006, 0.001, 0, 0.003 was determined for kpn, stm, vch, and ype, respec-
tively. There is only one documented binding site for purine repressor (purR). The predictions of
McCue et al. (2001) for both genes are combined without distinction and labeled with “W”.
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change. Therefore, the factor’s weight matrix in E. coli was
used to find the best match in the homologous upstream re-
gion. Thus virtually all sites are matched, and we find the
specificity of the weight matrix defined by themapped sites to
be generally the same as in E. coli. This mapping of course
contains a bias towards good sites in the target species, and to
control for this we randomized the upstream regions and re-
mapped. Now the specificity of the weight matrix defined by
the mapped sites decreases by 1/2–1/3, except for less specific
factors such as cytR, fis, flhCD, gcvA, hipB, his, lrp, rhoD, and
rpoS. On this basis, we can say that the regulatory network is
approximately preserved between the organisms we examine.
Mapping by weight matrix is similar to what the transcription
factor ‘sees’ (assuming the DNA binding domain has not
changed) if we can take the weight matrix score as a surrogate
for the binding energy.

Under either mapping, the ratio of transversions to tran-
sitions was around 1:1 when comparing E. coli and Salmonella
and 2:1 for most factors in more distant pairs of species. The
2:1 ratio is expected when all base changes are equally likely.
For factors with many known sites, we have adequate statis-
tics to show that the number of mutations per site negatively
correlates with the information score or specificity of the site.
By this measure, the pattern of change between species is
similar to that intraspecies.

In the aggregate, we expect that homologous genes are
regulated in comparable ways within the species we are ex-
amining. Thus most mutations between homologous up-
stream regions should be neutral. To project this information
onto a plausible subspace to analyze quantitatively, we asked
whether mutations in a factor binding site tend to compen-
sate so as to preserve the weight matrix score (again taken as
a surrogate for the binding energy). We scored each site
against the weight matrix for the respective species, ignored
the least significant bases, and considered only pairs of ho-
mologous sites for which there were two or more mutations
(so that compensation is a possibility). Let P be the set of bases
within the site (numbered from left to right) which change,
and mi

species the score from the base at position i in the weight
matrix, Eq. (4). Then for each pair of homologous sites define
x = (∑Pm

i
eco � mi

org)
2/∑P(m

i
eco � mi

org)
2. We defined x so that if

the individual differences for each i in the numerator were
random, then the average of x (ap-
proximated by summing over all valid
pairs of sites for a given factor) would
be one. Thus an average less than one
indicates correlated changes. Within
the scatter, which was substantial, we
found no evidence for correlated
changes in weight matrix score. The
exceptional cases (e.g., for rpoD17,
only 8 out of 95 pairs of sites had x >
1) could be attributed to biases in the
selection of sites with a weight matrix
that was itself not very specific. When
we mapped the sites for this factor by
minimizing the total number of mu-
tations, x-average was >1. Of course
this mapping attributes as much
weight to the nonconserved positions
as the functional ones, so biases in the
other direction.

For the sigma factors, it is known
that sites downstream of the binding

site can significantly affect the rate of transcription (McClure
et al. 1983). We found however that the mutation rate in the
16 sites downstream of the rpoD17 binding site was nearly as
high as in the middle (i.e., the nonconserved region) of the
binding site itself. Similarly, no meaningful reduction in the
transition or transversion rates upstream of the binding site
was observed (Estrem et al. 1998).

Evolution of Transcription Factors
Clearly the evolution of binding sites is correlated with the
proteins that bind there, so in cases where an E. coli factor-
DNA cocrystal was available (Table 6), we analyzed the con-
servation of the set of residues R defined in the structure paper
to be in contact with the DNA. For each species, the protein
sequence for the E. coli factor was aligned to the orthologous
protein using tfastx (see the Methods section). Since our
proteins are very well conserved and there were virtually no
gaps in the regions of interest, more elaborate protein family
alignments were not necessary. Even for vch, in half of the
factors all residues in R are conserved. In fact for Crp, 96% of
all residues are conserved between E. coli and Vibrio (vs. an
average of 0.66 � 0.15 for these species). However contrary to
our expectation, the number of mutations found among the
residues from R was consistent with the percent identity (PID)
computed for the entire protein alignment. This observation
allows us to use all the known factors and ask whether the
evolution rate of the factor as defined by its PID relative to
one, 1-PID, correlates with the number of sites that it regu-
lates. The number of regulated sites we approximate (Robison
et al. 1998) by the weight matrix score of the experimental
sites relative to background normalized by the combined vari-
ance, �, viz,

x =
mexperimental − mrandom

��random
2 + �experimental

2
. (5)

The expectation that large regulons evolve more slowly than
small ones is indeed born out in Figure 5 for vch. (The same
correlation is observed for other species but the slope is less.)

Of course Figure 5 is subject to whatever biases are im-
plicit in the set of factors and binding sites available from
experiment. The situation is not hopeless in that we are only

Figure 4 Normalized score histograms of genes with known function and genes with unknown
function.
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looking for correlation with the specificity of the binding site,
and the data provide a decent range of examples. We do not
care if experiment has captured all of
the specific sites and few of the
sloppy ones, but only that there is no
bias in the degree of factor preserva-
tion as a function of site specificity.
We have insulated ourselves from
how many sites have been collected
for each factor, by using an informa-
tion-based measure of specificity, x,
and not just the number of sites in
the database (however, sites with few
copies will have larger error bars).

DISCUSSION
The multiple alignment of correlated
data has been an active area of re-
search for many years (Durbin et al.
1998), and our algorithm, which uses
only information from pairs, would
seem a step backwards. Its utility in
our context is firstly the ability to fit
all three mutation parameters for
each species pair; these numbers are
intrinsically interesting and make it
feasible to put all sequence pairs on a
common scale. The closest species to
E. coli, Salmonella, now does not give
the highest score; on average Klebsi-
ella does. For the closely related bac-
teria we study, the neutral evolution
rate is high, and the extensive up-

stream conservation we see is a consequence of functional
constraints. Our profile plots do not impose assumptions
about the width of the conserved blocks, which frequently are
much broader than a single factor binding site. The evolution
of regions from organism to organism is also apparent on the
same plot.

On our website, http://www.physics.rockefeller.edu/
~siggia, we have all our pairwise profiles plotted against the E.
coli upstream region for each gene having one or more ho-
mologs. Superimposed are the predictions of McCue et al.
(2001), the experimental data collected in McGuire et al.
(2000) (plus all matches to the known weight matrices), and
our own predictions. The data are sorted in various ways to
facilitate reference. The primary data supporting our other
conclusions are also included. (Information also available on-
line as Supplementary Table 1 at www.genome.org.

Clearly multiple sequence alignment can in principle de-
tect more subtle signals than pairwise methods. However,
when the multiple alignment is restricted to a length smaller
than the pairwise conserved blocks and there is a dense
enough set of comparison genomes, the situation is more am-
biguous. When we use the envelope of the local alignment
score to compare multiple species to the same E. coli gene
some information may be lost, but our significance underes-
timates the true one. Using the sum of the scores seems to
pick out the strongest sites, since it emphasizes sites with a
copy in all species.

We have also experimented with the CLUSTALWprogram
(Higgins et al. 1996; Durbin et al. 1998), which tries to build
a phylogeny and align using only pairwise data. It has diffi-
culty in selecting the limits of the region to match. We have
found many instances within our sets of pairwise alignments

Table 6. Conservation of Residues that Affect DNA
Binding Specificity across Orthologues

stm kpn ype vch

AraC + + � �
Crp + + + +
MetJ + + + +
OmpR + + + �
RpoD + + + +
SoxS ? � � �
TrpR + ? ? �

Each row lists data for an E. coli transcription factor where the
crystal structure and information about residues that are impor-
tant for DNA binding specificity are available. We list the literature
reference and our evaluation of the conservedness of these resi-
dues for each species. A plus (minus) sign denotes conserved (not
conserved), a question mark stands for unclear cases (for example,
a frame shift inside the binding domain). The selected residue sets
are AraC (Rhee et al. 1998): A198, S199, V200, A201, Q202,
H203, P208-Q218, I246-V253, Q258-T268; Crp (Parkinson et al.
1996): K27, V140, K167, R170, Q171, S180, R181, E182, T183,
R186, K189, H200; MetJ (Somers and Phillips 1992): G16, K18,
K23, K24, T26, R41, N54, S55; OmpR (Martinez-Hackert and
Stock 1996): R150, T162, K170, R182, S200, V203, M211, V212,
R220, T224, G229 RpoD (Malhotra et al. 1996) Y425, Y430,
W433, W434, Q437, T440, R441; SoxS (Rhee et al. 1998): D25-
K30, K35-T46, I73-L80, Q85-Q96; TrpR (Otwinowski et al. 1988):
Q68, R69, L71, K72, L75, A77, G78, I79, A80, T81, I82, T83, R84,
G85, S86, N87, L89, K90. Additional details, including the com-
plete alignments, can be found on our website.

Figure 5 Protein conservation and DNA binding specificity. The plot shows (1-PID) versus DNA
binding specificity x Eq. (5). Each data point corresponds to one of the 51 E. coli transcription factors
which has an ortholog in Vibrio cholera. The straight line shown is a linear fit with slope 0.086 �
0.005. Note that there is an upper cutoff of 0.7 in. (1-PID) since by definition, all orthologs have a PID
of at least 0.3. The two obvious outliers at x = 3.4 and (1-PID) ∼ 0.7 are FarR and SoxS. Note that for
some of the factors (e.g., FarR), only very few binding sites are known; that is, our estimate of the
binding specificity has a large error.
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where the strongest single motif is only present for a subset of
the species. The program is then forced to choose or compro-
mise between a strong motif and a weaker one present in
more species.

For our algorithm, Klebsiella furnished the most infor-
mative comparison, and the more distant species Yersinia and
Vibrio typically did not add much; in contrast, McGuire et al.
(2000) used nothing closer to E. coli than Haemophilus,
which is more removed (Fig. 1) than any of our examples. Not
many E. coli sites were recovered by comparing just single
gene orthologous regions from the fully sequenced species
selected by McGuire et al.

McCue et al. (2001) used a somewhat broader range of
organisms than we did including Salmonella and Yersinia
(but not Klebsiella). They used a Gibbs algorithm which as-
sumed reverse complement symmetry, with at most 17 func-
tional sites that could span up to 24 bases, and they allowed
0–2 copies of the motif per upstream region. Statistical signifi-
cance was assayed relative to a null model where all the up-
stream regions are random and uncorrelated. Their scoring
function was trained on a ‘study set’ of known motifs, and
perhaps for this reason the typical maximum a posteriori
score against the study set was higher than that for the re-
maining genes. We took a single 24 bp interval around our
highest scoring base to compare against their predictions for
their study set, and used their definition of a hit, any overlap.
Reverse complement symmetry clearly excludes sigma sites,
whereas our set of all significant sites hit a respectable per-
centage of the sigma 70 sites. It is encouraging that such dif-
ferent algorithms which use complementary parts of the se-
quence statistics do this well in hitting known sites. However,
it should be borne in mind that the statistical significance of
these predictions for any single gene is not high; a random
24-base interval placed in the noncoding region upstream of
a gene in the Church set has a 30% probability of hitting a
site.

The clearest and least biased way to measure what is of
selective advantage to an organism is by evolutionary conser-
vation. Our statistically significant (gapless) regions fre-
quently are larger than any single protein binding site and
thus are suggestive of several factors interacting. For most
factors we found no evidence of compensatory mutations
that would be evidence that evolution preserves the quality
(as measured by proximity to the consensus) of the binding
site. Several possibilities are suggested: 1) consensus sequence
is a poor measure of binding affinity; 2) there is neutral evo-
lution within a sphere of sites, so intraspecies variability is
comparable to that between homologs; or 3) the unit of se-
lection is larger than just one binding site. We favor the latter
possibility, and recall that even the McCue data (McCue et al.
2001) with all its assumptions about the sites misaligned the
typical crp (lexA) site by a range of 10 (4) bases. We take this
not as an indictment of their algorithm but rather as an in-
dication that even with reverse complement symmetry im-
posed, the most conserved signal between homologous up-
stream regions is not the same as the consensus signal defined
intragenome. There is abundant evidence that the quality of
the promoter site sets an upper limit to a gene’s expression
level, and for the known sigma 70 sites mapped to homolo-
gous upstream regions by the best weight matrix match, we
did find evidence for compensatory mutations. Some of this
could be an artefact of the selection method (though it might
be a model for what the protein itself does), and we suspect
that the existing compilation of sigma 70 sites is biased in

favor of those close to the consensus. We did not find statis-
tical evidence of preservation for bases both up- and down-
stream of the footprinted (�10, �35) region, which are also
known to influence transcription rate.

The transcription regulatory network is preserved in an
average sense for all the bacteria we examined, since when the
known binding sites are mapped with their weight matrix to
the homogous upstream region, the score of the new weight
matrix composed from the mapped sites is as specific as it was
in E. coli. For some of the less specific factors such as sigma 70,
this is expected by chance, but for most factors, mapping to
random upstream regions generates a poor new weight ma-
trix.

In spite of the complexity of our conserved blocks we did
observe a statistically very significant correlation between the
DNA binding specificity (i.e., the number of binding sites) of
E. coli transcription factors and their conservation on the
amino acid level. This is consistent with the natural expecta-
tion that on the average, factors which regulate many genes
evolve more slowly than others. However, it is very surprising
that our naive measure of evolutionary distance, the overall
amino acid percentage identity, is a suitable quantity at all
since only a small part of the transcription factor protein is in
direct contact with the DNA. Perhaps the proteins which
regulate many genes are also involved in many protein-
protein interactions. It would be interesting to look at the
outliers in Figure 5 in this regard. Futhermore, one can use our
results to make a rough prediction about the DNA binding
specificities of the putative ∼ 300 transcription factors in E. coli
(Perex-Rueda and Collado-Vides 2000) from the conservation
of the factor.

Additional statistical information is lost because we have
ignored the one feature that intraspecies algorithms exploit,
namely repetition between different genes. One strategy is to
use as input to an algorithm such as that of Bussemaker et al.
(2000) the portion of the E. coli control regions whose prob-
ability envelope is over some threshold. Since that code al-
ready predicted ∼ 1/4–1/3 of the known sites using only the
complete E. coli genome (H. Li, V. Rhodius, C. Gross, and E.D.
Siggia, preprint), the results should improve.

Another interesting task is to cluster sequences which are
conserved by means of our analysis, and thus to identify regu-
lons. Preliminary results (E. van Nimwegen, M. Zavolan, N.
Rajewsky, and E.D. Siggia, in prep.) indicate that this is indeed
possible; the number of statistically significant clusters (i.e.,
regulons) is roughly 70 (including some of the known regu-
lons).

APPENDIX
We work within the parameter space defined by a gap open-
ing (closing) parameter µ, a gap extention parameter �, and a
substitution matrix w defined in terms of a transition matrix
T for base b to change to b�,

w(b, b�) = �T(b → b�)/pb�, (A.1)

where pb is the probability of base b. The matrix T has diago-
nal elements 1 � 3� and off-diagonal elements �, thus defin-
ing a third parameter �. The scale factor � will be defined
subsequently. Label the bases in the two sequences under
comparison with i, j running from 1 to (m, n) and define
Z1,2,3(i, j) to be the cumulative weight for all alignments end-
ing in the configurations (i, j), (i, gap), and (gap, j) respec-
tively, and we will use the shorthand of (i, j) to stand for the
ith, jth bases when there is no possibility of confusion, with the
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index. The standard dynamic programming recursions then
read for 1 	 i 	 m, 1 	 j 
 n,

Z1�i, j� = w�i, j�Z1�i − 1, j − 1�,
+ �w�i, j� �Z2�i − 1, j − 1� + Z3�i − 1, j − 1��,

Z2�i, j� = �Z1�i − 1, j� + �Z2�i − 1, j�,

Z3�i, j� = �Z1�i, j − 1 � + �Z3�i, j − 1�. (A.2)

Note we forbid adjacent gap closing/opening on opposite
strands (e.g., omit a term µ2Z3(i � 1, j) in the equation for Z2).

These equations must be supplemented by boundary
conditions for the fictious points (i � 0, j = 0) and (i = 0, j �
0), in order to initialize (A.2); and by additional conditions
along the lines (i � 0, j = n) and (i =m, j � 0), to terminate the
recursions and extract a single global alignment score Z from
the Z1,2,3 matrices.

Free boundary conditions do not penalize overhangs (i.e.,
when the alignment begins as (i, gap) or (gap, j)). For initial-
ization, they read

Z1 �i � 0, 0� = Z1�0, j � 0� = 1,

Z2�i � 0, 0� = Z2 �0, j � 0� = 0,

Z3�i � 0, 0� = Z3�0, j � 0� = 0,

and for termination

Z = Z1�m, n� + �
i=0

m−1

Z1�i, n� + �
i=0

n−1

Z1�m, i�

+ ���
i=0

n−1

Z2�m, i� + �
i=0

m−1

Z3�i, n��. (A.3)

Fixed boundary conditions assess a gap penalty for over-
hangs. For initialization, they are

Z1�i � 0, 0� = 0 , Z1�0, j � 0� = 0,

Z2�i � 1, 0� = ��i−1 , Z2�0, j � 0� = 0,

Z3�i � 0, 0� = 0 , Z3�0, j � 1� = ��j−1,

and for termination

Z = Z1�m, n� + ��Z2�m, n� + Z3�m, n��. (A.4)

The two classes of boundary conditions can be mixed
freely, and one can then verify that if the iteration is begun
from the right and terminated on the left with the appropriate
rules, the result is identical in all cases to the left-to-right
iteration we have defined.

We want to interpret the Z in (A.2) as probabilities of
alignment conditioned on boundary conditions and the se-
quences being compared. More precisely, Z1 multiplied by the
probabilities of two random uncorrelated sequences (e.g.,
4�(i+j) for equiprobable bases) should be a distribution func-
tion in the space of pairs of sequences. As a consequence,
when (A.2) is averaged over all sequence pairs, which is easy
to do because w(i, j) is independent of the factors of Z1,2,3 it
multiplies, the result must be of order 1 for all (i, j). Thus the
matrix

�
�w� ��w� ��w�

� � 0

� 0 �
�

derived by averaging (A.2) (here 〈w〉 is the average of the w
matrix over all pairs of bases and equals the scale factor �
under our definitions), must have 1 as its largest eigenvalue.
This determines

� =
1 − �

1 − � + 2�2 . (A.5)

This condition has several useful consequences. The influence
of the boundary conditions on average falls exponentially as
powers of the next largest eigenvalue, and (A.2) can be iter-
ated as written without transforming to ratio variables.

So far, we merely have a scoring function for the global
alignment of pairs of sequences given arbitrary parameters �,
µ, and �. However, the probablistic interpretation that leads
to (A.2) permits one to reinterpret (A.1) as a Markov process
that generates pairs of sequences with prescribed mutation
and gap opening and extension parameters (Yu and Hwa
2001). It is then plausible that if we do a maximum likelihood
fit of Z as a function of our three parameters to synthetic data
generated by the Markov model, the generating parameters
will be recovered to within fluctuations.

The optimization of Z was done simultaneously in three
variables using the ‘amoeba’ program from Press et al. (1992)
subject to the constraints

0 < � 	 0.25, µ 	 � < 1.

Note there is an ostensible degeneracy in the parameter space
in that two random sequences can be fit with either � = 0.25
or µ = � = 1, and boundary conditions or fluctuations in the
sampling will determine which is obtained. Fits were stable
when performed on samples of 1000 bases or more and re-
produced the generating parameters to within 10%. There
were sometimes multiple local maxima in Z, but in all cases
examined in detail a single putative global maximum was
found by repeatedly sampling on initial conditions.

Within the context of a probabilistic alignment, the
plausible local alignment counterpart to (A.2) is simply de-
rived by adding 1 to the equation for Z1 (Yu and Hwa 2001).
Islands of local sequence similarity are signaled by Z1 >> 1
(N.B. a large Z1 immediately propagates to Z2,3), so the device
of adding 1 to Z1 (i, j) is equivalent to optimizing over all
starting base pairs in the Smith-Waterman algorithm. More
precisely, Yu and Hwa (2001) have shown that the log odds
score for observing z = maxi,j Z

1 (i, j) when comparing two
random sequences is mne�z.

We need to generalize this result to find ungapped regions
with significant sequence similarity for two sequences related
by the evolution parameters �, µ, and �. We score sequence
similarity using a transition matrix T� (b → b�) with mutation
frequency � replacing the � implicit in T in (A.1), but now the
analog of the matrix w is defined as

w��b, b�� =
T��b, b��

�T� �b, b�� + �1 − ��pb�

. (A.6)

The denominator of (A.6) is just the probability of a match/
mismatch predicted for the Markov interpretation of (A.2).
For a base b on the reference E. coli sequence, either the
Markov model branches (with probability �) and the � tran-
sition matrix is executed, or there is an indel and a random
base b� is inserted. Note that the denominator correctly sums
to 1 on the second, b�, index and reduces correctly in the � =
0, 1 limits. Equation (A.6) contains an implicit restriction on
�, w(b, b) > 1 (and thus off-diagonal elements less than 1),
since a scoring function only makes sense if mismatches are
penalized relative to background.

The logarithm of (A.6) would be the scoring function we
would use for the Smith-Waterman alignment program, and
its statistics follow the Karlin-Altschul distribution. However
there is no guarantee that the best scoring segment under this
algorithmwould agree with what we find for the same reasons
that the requirement of minimum energy in thermodynamics
is not the same as imposing minimum free energy.

To plot a log odds score along a reference sequence (e.g.,
from E. coli) for whether the base in question is part of an
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ungapped conserved island when comparing with a homolo-
gous region in another organism, we define the matrices (us-
ing free boundary conditions from the left, L, or right, R)

Z�
L�i, j� = 1 + w��i, j�Z�

L�i − 1, j − 1�

Z�
R�i, j� = 1 + w��i, j�Z�

R�i + 1, j + 1� (A.7)

and define a profile,

��i� =
maxj�Z�

L�i, j� * Z�
R�i, j�	

w��i, j�
(A.8)

The log odds score that two sequences correlated via �, µ, �
but otherwise random have at a particular site i a profile value
ln(�(i)) > z is ne�z. Since we are not allowing gaps, this signifi-
cance formula merely compares the length of the interval
being scanned with the product of the match/mismatch prob-
abilities. Note the scoring parameter � is at our disposal. Any
value of � that gives �/n >> 1 over some interval(s) which
collectively are a fraction of the total, flags the parts of the
reference sequence which are improbable given our evolution
model. Note we can trivially genealize (A.7) and (A.8) to pick
out motifs with two conserved regions separated by a length
2l gap, by averaging points (i � l, j � l), (i + l, j + l).
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