
SI Materials and Methods

Gibbs Sampling with Informative Priors. Full description of the PhyloGibbs algorithm,
including comprehensive tests on synthetic and yeast data sets, can be found in Siddharthan et
al. (1). Here we extend the relevant formulas to the case of informative priors. The PhyloGibbs
algorithm assigns a posterior probability P (C|S) to each configuration C which is a partition of
the input sequence S into a set of nonoverlapping sequence windows corresponding to different
PWMs and background. For phylogenetically unrelated sequences, a sequence window is simply
a contiguous segment of bases with a fixed width m. For related species, sequence windows can
extend to include aligned bases from the other sequences (1). In what follows we restrict ourselves
to the single species case. The posterior probability of the configuration C can be computed using
Bayes’s theorem:

P (C|S) =
P (S|C)P (C)∑
C′ P (S|C ′)P (C ′)

, [3]

where P (C) is the prior probability of the configuration C, and P (S|C) is the probability of the
input sequence given C. We run PhyloGibbs for a fixed number of TFs (usually one) and a fixed
total number of sequence windows, effectively setting P (C) = 0 for all configurations outside of
this subspace. P (S|C) is given by:

P (S|C) = P (S /∈ C|B)
∏

c∈C

P (Sc), [4]

where P (Sc) is the probability that sequences assigned to a TF with index c in the current config-
uration are drawn from a common PWM, and P (S /∈ C|B) is the probability of the background
sequence (not occupied by any sequence windows). The background sequence is assumed to be
generated by a Markov model of order k = 0, 1, .. . P (Sc) is given by the integral over all possible
PWMs:

P (Sc) =

∫

wα
i

>0,
P

4

α=1
wα

i
=1

dw P (Sc|w)P (w), [5]

where P (Sc|w) =
∏m

i=1

∏4
α=1(w

α
i )nα

i is the probability that all sequences assigned to the same TF
are sampled from a particular (but unknown) PWM, and P (w) describes our prior knowledge of
the PWM. wα

i is the probability of base α at position i in the PWM w, nα
i is the number of times

base α is found at position i among all sequences in Sc, and m is the site width. The integral is
taken over all PWM components, subject to the normalization constraint:

∫

wα
i

>0,
P

4

α=1
wα

i
=1

dw .. =
m∏

i=1

[∫
dw1

i

∫
dw2

i

∫
dw3

i

∫
dw4

i δ(w1
i + w2

i + w3
i + w4

i − 1) ..

]
.

When the informative prior is available,

P (w) =
m∏

i=1

Γ(n̄i)∏4
α=1 Γ(n̄α

i )

4∏

α=1

(wα
i )n̄α

i
−1, [6]
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where Γ(x) is the gamma function, n̄α
i is the number of prior counts of base α at position i, and

n̄i =
∑4

α=1 n̄α
i . Eq. 6 is a product of Dirichlet distributions which is a generalization of the prior

with the constant pseudocount. We assume that the total number of prior counts is independent
of the PWM column i (n̄i = n̄, ∀i), and that the minimum possible value of any n̄α

i is one (i.e.
any base is allowed at any PWM position). Taking the integral in Eq. 5 with the help of the
standard formula: ∫

wα>0,
P

4

α=1
wα=1

dw
4∏

α=1

(wα)nα−1 =

∏4
α=1 Γ(nα)

Γ(
∑4

α=1 nα)
, [7]

we obtain:

P (Sc) =
m∏

i=1

[
Γ(n̄)

Γ(n + n̄)

4∏

α=1

Γ(nα
i + n̄α

i )

Γ(n̄α
i )

]

, [8]

where n is the total number of sequences assigned to TF c, and n̄ is the total number of prior
counts as discussed above.

It is interesting to note that P (Sc) is related to the information score, defined as (2):

I(nα
i ) = −

1

n
log P (nα

i |b
α), [9]

where P (nα
i |b

α) is the probability of observing nα
i counts of base α at position i in the alignment

of n sequences of length m (given the background model which assigns probabilities bα to base α
regardless of its position in the PWM):

P (nα
i |b

α) =
m∏

i=1

n!
4∏

α=1

(bα)nα
i

nα
i !

. [10]

If all nα
i are sufficiently large for the Stirling approximation to hold, the information score can be

rewritten in a more familiar form (2):

I(nα
i ) =

m∑

i=1

4∑

α=1

wα
i log

(
wα

i

bα

)
, [11]

where wα
i = nα

i /n is the frequency of base α at position i in the binding site. From Eq. 8, the ratio
of probabilities P (Sc) for two independent sequence alignments (corresponding to two different
PhyloGibbs configurations) is given by:

P (Sc)

P (S̃c)
=

exp[(n + n̄ − 4)I(nα
i + n̄α

i − 1)]

exp[(ñ + n̄ − 4)I(ñα
i + n̄α

i − 1)]
A(nα

i , ñα
i ), [12]

where nα
i (ñα

i ) are the base counts in the first and second alignment respectively, n (ñ) is the
number of aligned sequences (n =

∑4
α=1 nα

i , ñ =
∑4

α=1 ñα
i , ∀i), and

A(nα
i , ñα

i ) =
m∏

i=1

(ñ + n̄ − 1)(ñ + n̄ − 2)(ñ + n̄ − 3)

(n + n̄ − 1)(n + n̄ − 2)(n + n̄ − 3)

4∏

α=1

(bα)nα
i
−enα

i . [13]
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Note that A(nα
i , ñα

i ) = 1 if n = ñ and the background is uniform: bα = b = 0.25, α = 1 . . . 4.
In this case Eq. 12 reduces to:

P (Sc)

P (S̃c)
= exp{(n + n̄ − 4)[I(nα

i + n̄α
i − 1) − I(ñα

i + n̄α
i − 1)]}. [14]

In the absence of any prior information it is convenient to simply set n̄α
i = 1. With this choice

of the pseudocount Eq. 14 becomes:

P (Sc)

P (S̃c)
= exp{n[I(nα

i ) − I(ñα
i )]}. [15]

Therefore, the purpose of Gibbs sampling is to find an alignment of sequences with the highest
information score. In other words, the process of maximizing the posterior probability P (C|S) in
Eq. 3 amounts to searching for clusters of sites whose alignments produce the highest information
score with respect to the background model.

When the informative prior is available Eq. 14 becomes:

P (Sc)

P (S̃c)
= exp{(n + n̄)[I(nα

i + n̄α
i ) − I(ñα

i + n̄α
i )]}. [16]

Here we rewrote the pseudocounts as n̄α
i = 1+ n̄

′α
i (n̄

′α
i = 0 in the uninformed case), and dropped

the primes. The ability of the Gibbs sampler biased in this way to find the “true” binding sites
strongly depends on how closely the “true” counts nα

i correspond to the informative prior. For
example, if our guess for the informative priors is so poor that it is actually complementary to nα

i ,
we will have I(nα

i + n̄α
i ) = 0, resulting in assigning the lowest probability to the correct answer.

On the other hand, if both nα
i and n̄α

i are sampled from the same PWM (i.e. I(nα
i + n̄α

i ) = I(nα
i ))

the log-probability of the “true” alignment will be amplified by a factor of (n+ n̄)/n compared to
the uninformed case (cf. Eqs. 15 and 16).

Introducing accurate prior information also biases the algorithm towards the correct binding
sites. In particular, as shown above, in the absence of the informative priors the Gibbs probability
of the alignment of n sites drawn from a PWM divided by the probability of the alignment of n
sites drawn from the background is given by exp{nI(nα

i )}. By definition, exp{−nI(nα
i )} is the

background model probability of observing nα
i counts in the alignment of n sites of width m.

Given an input sequence of length L and the information score I(nα
i ), we expect to find

(
N

n

) ∫

ewα
i

>0,
P

4

α=1
ewα

i
=1, I(enα

i
)≥I(nα

i
)

dw̃ exp{−nI(ñα
i )} $ B exp{n[1 + log(N/n) − I(nα

i )]} [17]

alignments with the information score I(nα
i ) or higher by chance. Here, N $ L is the number of

allowed site positions in the input sequence, and the integral in

B = exp{nI(nα
i )}

∫

ewα
i

>0,
P

4

α=1
ewα

i
=1, I(enα

i
)≥I(nα

i
)

dw̃ exp{−nI(ñα
i )}
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is taken over the hypervolume in the weight space on which all sets of weights are constrained
to have the information score of at least I(nα

i ). The intergal in Eq. 17 reflects the fact that
in the absence of informative priors the algorithm cannot distinguish between the alignment of
true sites and any other alignment which happens to have a high enough information score by
chance. Thus we need to compute the total probability that any alignment of the background
sites have the information score of I(nα

i ) or higher. This probability is given by B exp{−nI(nα
i )},

where B can be approximately interpeted as the total number of acceptable alignments (those
that pass the information score test). It follows from Eq. 17 that with N greater than Nmax =
n exp[I(nα

i ) − 1 − log(B)/n] it is no longer theoretically possible to always converge to the true
alignment during Gibbs sampling. In practive the threshold is even lower because deep local
maxima make sampling convergence to the true global maximum progressively more difficult.

If we use the counts n̄α
i sampled from the same PWM as the true binding sites to construct

the informative prior, the Gibbs probability relative to the alignment with zero information score
becomes exp[(n + n̄)I(nα

i )], where n̄ =
∑4

α=1 n̄α
i , ∀i (cf. Eq. 16). Such a high score can only

be attained by the alignment of background sites if it has the counts nα
i which happen to match

the informative prior by chance. The probability of such an alignment is simply exp{−nI(nα
i )},

resulting in Nmax = n exp[I(nα
i )−1]. The advantage over the uninformed case is that here we have

to observe an alignment of n background sites with specific counts nα
i for the algorithm to miss all

the true sites, whereas in the uninformed case any alignment with a high enough information score
will do. We expect that B % 1 in most cases, making it possible to find true binding sites in much
longer sequences. Besides a higher probability assigned to the cluster of true sites compared to
the uninformed case, we observe faster rates of convergence towards the global maximum during
sampling (data not shown). Intuitively, the probability landscape is biased towards the true sites
by the informative prior such that the search space is significantly reduced.

Eq. 3 allows us to calculate the probability of any configuration C given the input sequence S.
Since the space of all allowed configurations is exponentially large, PhyloGibbs employs simulating
annealing to search for the configuration C" with the maximum posterior probability. During the
simulated annealing phase the prior counts are permanently assigned to a TF with a fixed index.
This assignment is not affected by the sampling moves. The simulated annealing phase is followed
by the tracking phase which is designed to estimate the posterior probability p(s, c) that a site
s belongs to a TF with index c. The counts from the informative prior form a stable tracking
cluster with which additional sequences sampled from S may be associated with probability p(s, c).
Thus adding the informative prior biases the simulated annealing search towards the sites whose
specificity matches that of the prior (cf. Eq. 16).

The PhyloGibbs code is available at www.biozentrum.unibas.ch/∼nimwegen/cgi-bin/phylogibbs.cgi.

Yeast Sequence Data. Intergenic sequences for the probes bound with p < 0.001 were down-
loaded from the supplementary web site for Harbison et al. (http://18.68.8.35/Harbison/) (3).
The probe sequences correspond to the March 2003 release of the yeast genome. Many TFs have
experiments for more than one environmental condition. Thus, if the PWM was predicted by
Harbison et al. we used the same environmental condition, otherwise we chose the experiment
with the highest number of bound intergenic regions. In a few cases information about regulated
genes available from the literature was used to assemble a set of upstream promoter sequences.
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The upstream sequences extended in the 5′ direction from the gene ORF and terminated either at
the next ORF (regardless of its orientation) or at 1,000 bp. In particular, for NDT80 we collected
the upstream sequences for the genes expressed in mid-late and late sporulation phases (4). For
PPR1 we used the genes likely to be involved in the pyrimidine pathway (URA1 through URA8,
URA10 ).

Structural Database of Protein-DNA Complexes. We downloaded all structures with at
least one protein and one nucleic acid chain from the May 2006 release of the Protein Data Bank
(PDB; www.rcsb.org). For each of these structures we checked if a corresponding “biological unit”
file from the Nucleic Acids Database (NDB; http://ndbserver.rutgers.edu) was available. In order
to make biological units crystallographic symmetry transformations are applied to half-structures,
or if multiple copies of the same protein-DNA complex are present in the PDB file separate files
are made for each copy (in such cases we simply used the first file). We required that the final
structure have two DNA chains. We then attempted to pair these chains by using base-to-base
distance cutoffs and sequence complementarity. If the attempt was successful, the structure of
the protein-DNA complex was added to the structural database. In addition to the automatic
processing, some structures were manually modified so that their DNA chains could be recognized
as complementary in the subsequent analysis. In the end, the database contained 515 structures
of proteins bound to double-stranded DNA, 252 of which were classified as transcription factors
(5).

Pfam Classification. All protein sequences in the final database of structures were classified
using Pfam. Pfam is a database of protein domain families (6). It contains manually curated mul-
tiple sequence alignments for each family (Pfam-A) and the corresponding profile hidden Markov
models (profile HMMs) (7). Profile HMMs are built in Pfam using the HMMER package (hmmer-
2.3.2, http://hmmer.janelia.org), which can also be used to search an HMM database for the
matches to a query protein sequence. We searched for domain matches in all protein sequences
from the structural database using a collection of Pfam-A HMMs
(command line: hmmpfam -E 0.1 Pfam ls pdb.fasta >& pdb.hmmer), and restricted all subse-
quent Pfam searches only to those HMMs with at least one hit in the structural database. HMMER
uses bit scores to evaluate the statistical significance of the match:

S = log2

P (seq|HMM)

P (seq|null)
, [18]

where P (seq|HMM) is the probability that a sequence is generated by the HMM, and P (seq|null)
is the probability that a sequence is generated by the null model based on aligned nonhomologous
sequences. More often, an e-value is reported instead of the bit score: it is defined as the expected
number of false positives with bit scores at least as high as the current bit score. By definition, the
e-value is proportional to the total size of the sequences in the Pfam database. If multiple protein
domains of the same type are detected, the domain bit scores sum up to the total bit score, and
the e-values are reported both for the whole protein and for each separate domain.
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Web site for Structure-Based PWM Prediction and Protein-DNA Homology Mod-

eling. We have set up an interactive web site which enables users to employ structure-based
PWM predictions in a range of sequence analysis projects (Protein-DNA Explorer: http://protein-
dna.rockefeller.edu). Given a query protein sequence, the user can: (i) identify its DNA-binding
domains by running HMMER (http://hmmer.janelia.org); (ii) for each domain, find the struc-
tural templates sorted by the interface score Shm. The user can then download the template
PDB files, or examine the number and type of interface mutations by inspecting the structures
in Jmol (http://jmol.sourceforge.net). For each structural template the user can download a
structure-based PWM prediction, or display it as a Weblogo image (http://weblogo.berkeley.edu).
Structure-based PWM predictions can be used as the informative priors, constraints, or starting
points in many sequence analysis algorithms. Furthermore, once the structural template has been
chosen the user can identify the orthologous proteins in a number of pre-computed species by
carrying out protein-DNA interface alignments. In this approach, proteins with the maximum
conservation at the DNA binding interface are reported as putative orthologs even though they
may not exhibit the highest overall sequence similarity. Finally, given a PWM of the unknown
origin (e.g. independently discovered using bioinformatics methods) the user can check for statis-
tically significant alignments to the database of structure-based PWMs, and determine which TF
the input PWM is most likely to have come from.
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