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ABSTRACT

In eukaryotic genomes, nucleosomes function to
compact DNA and to regulate access to it both by
simple physical occlusion and by providing the sub-
strate for numerous covalent epigenetic tags. While
competition with other DNA-binding factors and
action of chromatin remodeling enzymes signifi-
cantly affect nucleosome formation in vivo, nucleo-
some positions in vitro are determined by steric
exclusion and sequence alone. We have developed
a biophysical model, DNABEND, for the sequence
dependence of DNA bending energies, and validated
it against a collection of in vitro free energies of
nucleosome formation and a set of in vitro nucleo-
some positions mapped at high resolution. We have
also made a first ab initio prediction of nucleosomal
DNA geometries, and checked its accuracy against
the nucleosome crystal structure. We have used
DNABEND to design both strong and weak histone-
binding sequences, and measured the correspond-
ing free energies of nucleosome formation. We
find that DNABEND can successfully predict
in vitro nucleosome positions and free energies,
providing a physical explanation for the intrinsic
sequence dependence of histone–DNA interactions.

INTRODUCTION

Genomic DNA is packaged into chromatin in eukaryotic
cells. The building block of chromatin is the nucleosome,
(1), a 147 bp DNA segment wrapped in �1.8 superhelical
coils around the surface of a histone octamer (2).
The unstructured histone tails are targets of numerous
covalent modifications (1) and may influence folding of
nucleosome arrays into higher order chromatin structures.

Chromatin can both block access to DNA (3) and juxta-
pose sites far apart on the linear sequence (4).
While nucleosome positions in vitro are determined only

by intrinsic sequence preferences and steric exclusion,
in vivo chromatin remodeling enzymes play a role that
needs to be clarified. In one scenario, the role of such
enzymes is purely catalytic, modifying the rate of assembly
but not the final disposition of nucleosomes on DNA. In
the other, chromatin remodeling enzymes actively reposi-
tion nucleosomes to control access to DNA, in analogy
with motor proteins. It has not been possible to determine
by genetics where living cells fall between these extremes.
Therefore, to quantify the contribution of chromatin
remodeling enzymes to in vivo chromatin structure a
model is required that can accurately position nucleo-
somes in vitro.
Recent computational approaches used collections of

nucleosomal sequences isolated in vivo (5–8) and in vitro
(9) to train pattern matching tools that were then applied
genome wide. However, the training data may not be rep-
resentative of direct histone–DNA binding because other
factors may reposition nucleosomes in vivo, while in vitro
genomic data are affected by steric exclusion between
neighboring nucleosomes and by the chromatin fiber
formation which results in long-range contacts between
distant nucleosomes. Furthermore, models based on
alignments of nucleosome positioning sequences (5,6)
require a choice of background or reference sequence
and it is known that nucleotide composition varies
among functional categories of DNA and among
organisms.
Here, we focus on developing a biophysical model for

the intrinsic sequence dependence of nucleosome forma-
tion—a first step towards quantitative description of
in vivo chromatin. Our model resolves the nucleosome for-
mation energy into the sum of two terms: histone–DNA
interactions and DNA bending energy. The histone–DNA
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potential is assumed to be sequence independent because
there are few direct contacts between histone side chains
and DNA bases (10). For the DNA bending, we construct
an empirical sequence-specific quadratic potential (11,12)
using a database of 101 nonhomologous, nonhistone pro-
tein–DNA crystal structures to infer the elastic force
constants.
In particular, we model DNA base stacking energies by

defining three displacements (rise, shift and slide) and
three rotation angles (twist, roll and tilt) for each dinucleo-
tide [two adjacent base pairs, Figure 1a; (11)]. Together
the six degrees of freedom completely specify the spatial
position of base pair i+1 in the local coordinate frame of
base pair i (Figure 1b), and can be used to reconstruct an
arbitrary DNA conformation in global Cartesian coordi-
nates (see Methods section). We assume that the histone–
DNA potential is at aminimum along an ideal superhelix

whose pitch and radius are inferred from the nucleosome
crystal structure (2), and varies quadratically when the
DNA deviates from the ideal superhelix. This sequence-
independent term represents average attractive interac-
tions between the histones and the DNA phosphate back-
bone (13) and steric exclusion between the histone octamer
and the DNA.

The sum of the DNA bending and the histone–DNA
potentials isminimized to yield the elastic energy and the
DNA conformation for each nucleosomal sequence
(Figure 1a). This is in contrast with the currently available
DNA mechanics methods that impose DNA conforma-
tion from the nucleosome crystal structure (14) or from
the ideal superhelix (15) regardless of the DNA sequence.
Because the total energy is quadratic, energyminimization
is equivalent to solving a system of linear equations
for which efficient algorithms are available. There is no

(a)

(b)

Figure 1. (a) DNA mechanics model of histone–DNA interactions. Conformation of a single DNA basestep (defined as two consecutive DNA base
pairs in the 50 ! 30 direction) is described by six geometric degrees of freedom: rise, shift, slide, twist, roll and tilt. (11) DNA base pairs are shown
as rectangular blocks. Theminimized nucleosome energy (a weighted sum of the elastic energy Eel and the restraint energy Esh which penalizes
deviations of the DNA conformation from the ideal superhelix, see Methods section) is computed for each position along the DNA sequence. (b)
Schematic illustration of a single dinucleotide (basestep) geometry. Coordinate frames attached to base pairs i and i+1 are shown in blue, and the
MST coordinate frame is shown in green. For illustrative purposes, only rise Dz and twist � are set to nonzero values. The origin of the MST frame
is at the midpoint of the line connecting the origins of two base pair frames (which are separated by Dz Å along the z-axis); the MST frame is rotated
through �/2 with respect to the frame i.
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genomic background in this model, but the results may
depend on the quality of the protein–DNA structural
data set. Since our bending energy is empirical and
inferred from co-crystal structures, it lacks a physical
energy scale. However, by comparison with the worm-
like chain model our units can be converted to kilocalories
per mole through multiplication by 0.26 (see Methods
section). Our program DNABEND is not limited to
nucleosomal superhelices—we can compute sequence-spe-
cific bending energies for DNA molecules of arbitrary
length, restrained to follow arbitrary spatial curves
imposed by DNA-bound proteins, experimental con-
straints, etc.

To model formation of multiple nucleosomes on longer
DNA tracts, we have adapted a standard dynamic pro-
gramming algorithm to positioning multiple nucleosomes
and other factors on DNA (5,16). The algorithm uses
standard thermodynamics and enforces steric exclusion
between bound factors in any given configuration (see
Methods section). The binding energy landscapes for
each factor are used to infer their binding probabilities
and base pair occupancies (defined as the probability for
a base pair to be covered by any factor of a given type).
DNABEND software and additional supporting data are
available on the Nucleosome Explorer web site: http://
nucleosome.rockefeller.edu.

We check the performance of DNABEND using sets of
short DNA sequences for which free energies of nucleo-
some formation and nucleosome positions are not affected
by steric exclusion and chromatin fiber formation, and for
which we had high-resolution experimental measurements,
either our own or from the literature. We also design and
experimentally test nucleosomal sequences with both high
and low free energies of nucleosome formation, and rank
sets of sequences selected for their ability to facilitate or
hinder nucleosome formation. We find that using
DNABEND is preferable to keeping DNA geometry
fixed for predicting free energies of nucleosome formation.
Relaxing DNA geometries is less critical for predicting
nucleosome positions, where all versions of the DNA
mechanics model and the most recent bioinformatics algo-
rithm (9) yield comparable results.

MATERIALS AND METHODS

DNA geometry

We model each DNA base pair as a rigid body to which a
local coordinate frame is attached (Figure 1b). The posi-
tion of base pair i in the local frame of base pair i� 1 is
uniquely specified by six geometric parameters: three
Euler angles that define the unit vectors of frame i
and the displacement vector which gives its origin:
�i ¼ ð ~�i; ~diÞ; i ¼ 1; . . . ;N. Here ~�i ¼ f�i; �i; tig are the
helical twist, roll and tilt angles, and ~di is the displacement
vector with the x, y, z components called slide, shift and
rise, respectively (Figure 1a) (17–20). These geometric
parameters can be used to construct the global rotation
matrix of the base pair i recursively:

Ri ¼ Ri�1Ti ði ¼ 1; . . . ;NÞ; 1

where each Ti matrix is a product of three rotations:

Ti ¼ Rzð�
�i

2
þ �iÞRyð�iÞRzð�

�i

2
� �iÞ: 2

Here, Ry(�) and Rz(�) are the rotation matrices around
the y and z axes, and the middle term on the right-hand
side of Equation (2) introduces both roll and tilt with
a single rotation through �i:

Ryð�Þ ¼

cos � 0 sin �

0 1 0

� sin � 0 cos �

0
BB@

1
CCA;

Rzð�Þ ¼

cos � sin � 0

� sin � cos � 0

0 0 1

0
B@

1
CA;

�i ¼ ð�
2
i þ t2i Þ

1=2;

cos�i ¼ �i=�i;

sin�i ¼ ti=�i:

8><
>:
It is conventional to use the mid-step triads

(MSTs) rather than the base pair triads to transform the
displacement vector ~di into the global frame (18–20):
~d ðgÞi ¼ RMST

i
~di, where MSTs are defined by:

RMST
i ¼ Ri�1T

MST
i ; 3

TMST
i ¼ Rz �

�i

2
þ �i

� �
Ry

�i

2

� �
Rzð��iÞ: 4

Thus, a complete set of local geometric parameters ai
is equivalent to knowing the global conformation of
the DNA molecule with (N+1) bp: first, the recursive
relation (1) is employed to determine the orientations
of all base pair coordinate frames (except for R0 which
is fixed and determines the overall orientation and posi-
tion of the molecule). Second, Equation (3) is used to con-
struct the MST frames, which are then employed to
transform all local displacements ~di into the global
frame. Finally, the displacement vectors are added up to
determine the origins of the base pair coordinate frames.
The inverse problem is also well-defined: a full set of base
pair and MST rotation matrices in the global frame is
sufficient for reconstructing all local degrees of freedom
{ai} (19).
Introducing nonzero roll and tilt angles imposes curva-

ture onto the DNA conformation: consider the curvature
vector ~�i ¼ ~tiþ1 � ~ti, where ~ti is the tangent unit vector of
base pair i. It can be shown that to the lowest order in roll
and tilt j~�ij ¼ ð�

2
i þ t2i Þ

1=2
¼ �i. Furthermore, the roll and

tilt contributions to curvature are shifted by 908 with
respect to one another.

Ideal superhelix

DNA in the nucleosome core particle approximately
follows an ideal left-handed superhelix with pitch
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P and radius R (2):

~rðsÞ ¼

R cosðs=ReffÞ;

R sinðs=ReffÞ;

�ðP=2�ReffÞs

8><
>: 5

where s is the arc length, and Reff ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ ðP=2�Þ2

q
.

A local frame at position s is given by a set of three
orthonormal Frenet vectors (tangent, normal and binor-
mal) (21):

~tðsÞ ¼ d~r=ds;

~nðsÞ ¼ d~t=ds=jd~t=dsj;

~bðsÞ ¼ ~t� ~n:

8><
>: 6

We position N+1bp equidistantly on the ideal
superhelix by distributing N+1 sets of Frenet basis vec-
tors along the superhelical curve: si=2�Reffa(i/N)
(i=0, . . . ,N), where a is the number of nucleosomal
superhelical turns. Fitting an ideal superhelix to the
high-resolution crystal structure of the nucleosome core
particle (2) gives a=1.84, P=25.9 Å and R=41.9 Å.
To model helical twist, we impose a rotation around
the tangent vector ~t, such that the neighboring frames
differ by �0=34.6968—the average helical twist from
the structure. These rotations are applied to both base
pair and MST frames [the MST frames are located at
si=2�Reffa(i� 1/2)/N (i=1, . . . ,N)].
A superhelix described by Equation (5) has constant

curvature: j~tðsiþ1Þ � ~tðsiÞj ¼ 2 sinð��=NÞ, corresponding
to �i=4.538, 8i. In the ideal superhelix, roll and
tilt make equal contributions to the curvature:
~�i ¼ ð�0;�i cosð�

i
tot þ �0Þ;�i sinð�

i
tot þ �0ÞÞ and ~di ¼

ð0; 0; dÞ, where d=3.333 Å, �i
tot ¼ i�0, and �0 is the initial

phase determined by the first base pair. Thus, twist and
rise are constant for every base pair in the ideal superhelix,
slide and shift are zero, whereas roll and tilt exhibit oscil-
lations resulting from the superhelical curvature and
shifted by 908 with respect to one another (cf. green
curves in Figure 2).

DNA conformational energy

The total energy of a nucleosomal DNA is given by a
weighted sum of two quadratic potentials:

E ¼ Eel þ wEsh; 7

where Eel is sequence-specific DNA elastic energy (11,12)
and Esh is nonspecific histone–DNA interaction energy.
Below we elaborate on each energy in turn.

DNA elastic energy. We represent DNA elastic energy
as (11):

Eel ¼
1

2

XN
s¼1

½�s � h�nðsÞi�TFnðsÞ½�s � h�nðsÞi�; 8

where as is the six component vector of angles and displa-
cements, the sum runs over all consecutive dinucleotides
(basesteps) s and hani are the average values of the local
degrees of freedom computed for all basestep types

(n=AA, AC, AG, . . . ,TT ) using a collection of oligonu-
cleotides extracted from a set of 101 nonhomologous pro-
tein–DNA structures (12). The matrix of force constants
Fn is evaluated by inverting the covariance matrix Cn of
deviations of local geometric parameters from their aver-
age values (an�hani) (11):

ðFnÞ
�1
¼ Cn;where Cn

ij ¼ hð�
n
i � h�

n
i iÞð�

n
j � h�

n
j iÞi: 9

Note that our elastic energy model utilizes only the
first and second moments of the empirical distributions
of dinucleotide geometries. Strongly bent dinucleotides
(with one or more geometric parameters further than 3
SD from the mean) are iteratively excluded from the
data set (11). Our model does not use any higher order
moments of empirical geometry distributions, which
would lead to a nonquadratic elastic potential; nor are
there sufficient data to model more than successive base
pairs. The empirical parameters of the elastic model con-
sist of 10 basestep-type dependent averages for each of the
six local degrees of freedom (out of 16 basesteps only 10
are unique, i.e. not related by reverse complementarity)
and 15 (6� 5/2) independent force constants in each of
the 10 symmetric 6� 6 matrices F n. All elastic model
parameters are listed in the Supplementary Tables 1–3.

To transform the local displacements (shift, slide
and rise) into the global frame, we apply the following
coordinate transformation to Equation (8):

Rs ¼
1 0

0 RMST
s

� �
10

(1 and 0 denote 3� 3 unit and zero matrices, respectively).
The transformed elastic force constants are Fn ¼ RsF

nR�1s ,
leading to:

Eel ¼
1

2

XN
s¼1

½Rsð�
s � h�nðsÞiÞ�TFnðsÞ½Rsð�

s � h�nðsÞiÞ�: 11

Finally, we express all degrees of freedom in terms of
their deviations from the ideal superhelix:

~d ðgÞs ¼
~d ðgÞ;0s þ � ~ds;

~�s ¼ ~�0
s þ �

~�s:

(
12

Note that all the transformations described in this sec-
tion involve no additional approximations to the original
DNA elastic energy [Equation (8)]. Thus, we are free
to choose the most convenient rotation matrix in
Equation (10), and use RMST

s j0 from the ideal superhelix
in Equation (11).

Histone-DNA interaction energy. Nonspecific histone–
DNA interactions are modeled with a quadratic potential
that penalizes deviations of nucleosomal DNA from the
ideal superhelix:

Esh ¼
XN
s¼1

ð~rs � ~r
0
s Þ

2; 13
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where ~rs and ~r0s are the nucleosomal DNA and the
ideal superhelix radius vectors in the global frame
(s=1, . . . ,N):

~rs ¼ ~r0 þ
Ps

j¼1
~dðgÞj ;

~r0s ¼ ~r
0
0 þ

Ps
j¼1

~dðgÞ;0j :

(
14

Then to the lowest order the difference between the
radius vectors is given by:

r	s � r0;	s ¼
Xs
j¼1

�d	j þ
X3
�¼1

Xj
j0¼1

b�	jj0 ��
�
j0

" #
; 15

where a, b=1, . . . , 3 label the vector components, and

b�	jj0 ¼
@RMST

j

@��
j0
j0
~d0j

� �	
are the connectivity coefficients. The first term in Equation
(15) represents the net change in the global radius vector
r	s caused by the changes in the preceding displacements ~dj,
while the second term reflects the change in the global
radius vector resulting from modifying one of the rotation
angles ��

j ; j � s. Note that changing a rotation angle at
position j affects downstream base pair positions linearly
by introducing a bend into the DNA chain, whereas chan-
ging a displacement at position j results in a parallel shift
of all downstream coordinates. The first derivative of the
rotation matrix is evaluated as:

@RMST
j

@��
j0
j0 ¼

T0 . . .Tj�1
@TMST

j

@��
j

j0 ¼ j

T0 . . .Tj0�1
@Tj0

@��
j0
Tj0þ1 . . .Tj�1T

MST
j 1 � j0 < j:

8<
:

Upon substitution of the expansion (15) into the
restraint energy, we obtain an effective quadratic
potential:

Esh ¼
XN
i;j¼1

��i
T
Gij��j; 16

where ��i ¼ ð� ~�i; � ~diÞ, and the 6� 6 matrix of force con-
stants is given by three distinct 3� 3 submatrices:

Gij
¼

Hij Fij

Fij Gij

� �
:

Here,

G�	ij ¼ ��	Mði; jÞ;

F�	ij ¼
XN
l¼j

Mði; lÞb�	lj ;

H�	
ij ¼

XN
k¼i

XN
l¼j

Mðk; lÞ
X3

¼1

b�
ki b
	

lj ;

where M(i, j )=N+1�max(i, j ), and dab is the
Kronecker delta (�,	=1, . . . , 3). G�	ij couples displace-
ments with displacements, F�	ij couples displacements
with angles (and thus has one connectivity coefficient),

and H�	
ij couples angles with angles through two con-nec-

tivity coefficients.

Total energy and DNA conformationminimization. The
total energy of nucleosomal DNA is a function of the
fitting weight w, introduced to capture the balance
between favorable histone–DNA interactions and the
unfavorable energy of bending DNA into the nucleo-
somal superhelix. We fit w to maximize the average
correlation coefficient between the distributions of geo-
metric parameters observed in the high-resolution crys-
tal structure of the nucleosome core particle [PDB
code 1kx5; (2)] and the corresponding DNABEND
predictions (Figure 2). This procedure yields w=0.1 for
the 147 bp superhelix and w=0.5 for the 71 bp superhelix
bound by the H32H42 tetramer (base pairs 39 through
109 in the 147 bp superhelix). DNABEND is not very
sensitive to the exact value of w: we found a correla-
tion of 0.99 between the free energies computed using
w=0.1 and w=0.5 for the 71 bp superhelix (data not
shown).
The final conformation of the DNA molecule is the one

thatminimizes its total energy E [Equation (7)]:

@E

@��si
¼ 0 s ¼ 1; . . . ;N; i ¼ 1; . . . ; 6; 17

where ��s ¼ ð� ~�s; � ~dsÞ and N is the number of dinucleo-
tides. The numerical solution of the system of linear
equations (17) yields a set of geometric parameters
ð� ~�s; � ~dsÞ and the corresponding elastic energy Eel for
a given nucleosome position. The geometric parameters
in the local frame can also be reconstructed:
ð�0

s þ �
~�s; ~d

0
s þ RMST

s

�1
� ~dsÞ.

Worm-like chain. We use estimates based on the worm-
like chain model of DNA to convert elastic energies
into kilocalories per mole. According to the worm-like
chain model, the energy required to bend a DNA molecule
is given by (22):

Ewlc ¼
kBTLp

2

Z L0

0

dsj
d~t

ds
j2; 18

where L0 is the Contour length of the molecule, Lp is
the persistence length (estimated to be .400 Å) (22),
kBT. 0.6 kcal/mol and ~t is the tangent unit vector.
The contour length of the ideal 147 bp superhelix is
given by 146� 3.333 Å. From Equations (5) and (6), we
obtain jd~t=dsj2 ¼ R2=R4

eff, and thus

Ewlc ¼
kBTLpL0

2

R2

R4
eff

’ 32:6 kcal=mol:

In Figure 4c, the mean and the standard deviation s of
DNABEND energies computed for chromosome III are
127.0� 6.1. Equating the worm-like chain model estimate
with the mean DNABEND energy, we obtain a scaling
coefficient of 0.26. This yields a difference of 15.2 kcal/
mol between the best and the worst chromosome III
sequences, and s=1.6 kcal/mol. Most sequences differ
by 2s or less in Figure 4c and are thus separated by
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�6.4 kcal/mol. A similar value of the scaling coefficient
(0.21) arises from a linear model fit between experimental
and DNABEND-predicted free energies in Figure 4a
(red circles).

Predicting genome-wide occupancies of DNA-binding
proteins

Nucleosome formation energies (given by Eel) and
DNA-binding energies of other factors at each genomic
position can be used as input to a dynamic programming
algorithm (16) that outputs factor binding probabilities
and base pair occupancies for each DNA element.
Here, we develop this approach for a general case of

M objects of length Lj (j=1, . . . ,M) placed on genomic
DNA. The objects could represent nucleosomes, trans-
cription factors (TFs) or any other DNA-binding proteins.
The binding energy of object j at each position i is
assumed to be known: Ej

iði ¼ 1; . . . ;N� Lj þ 1Þ, where
N is the number of base pairs. We assign index 0 to the
background which can be formally considered to be an
object of length 1: L0=1. In the simplest case which we
consider here the background energy is zero everywhere,
but more sophisticated models could incorporate a
global bias by making positions near DNA ends less
favorable, etc.
We wish to compute a statistical sum over all possible

configurations in which object overlap is not allowed
(including the background ‘object’):

Z ¼
X
conf

e�EðconfÞ; 19

where Eðconf Þ ¼
PM

j¼0

PNj
obj

i¼1 E
j
cðiÞ is the total dimensionless

energy of an arbitrary configuration of nonoverlapping
objects, Nj

obj is the number of objects of type j and Ej
cðiÞ

is the precomputed energy of the object of type j which
occupies positions c(i) through c(i)+Lj� 1.
It is possible to evaluate Z [or the free energy

F=log(Z)] efficiently by recursively computing the partial
statistical sums:

Zf
i ¼

XM
j¼0

Zf
i�Lj

e
�Ej

i�ðLj�1Þ�i�ðLj�1Þ; i ¼ 1; . . . ;N; 20

with the initial condition Zf
0 ¼ 1. The theta function

is defined as:

�i ¼
1; i > 0
0; i � 0

�
21

The partial free energies Fi ¼ logZf
i can be calculated in

a similar way:

Fi ¼ Fi�1 þ log
XM
j¼0

e
Fi�Lj
�Fi�1�E

j
i�Ljþ1�i�Ljþ1

 !
; i ¼ 1; . . . ;N;

22

with the initial condition F0=0. Since the algorithm
proceeds by computing partial sums from 1 to N it is
often called the forward pass. Similar equations can

be constructed for the backward pass which proceeds
from N to 1:

Zr
i ¼

XM
j¼0

Zr
iþLj

e�E
j
i�N�i�Ljþ2; i ¼ N; . . . ; 1; 23

with the initial condition Zr
Nþ1 ¼ 1. In terms of the back-

ward partial free energies Ri ¼ logZr
i :

Ri ¼ Riþ1 þ log
XM
j¼0

eRiþLj
�Riþ1�E

j
i�N�i�Ljþ2

 !
; i ¼ N; . . . ; 1:

24

with the initial condition RN+1=0. Note that
R1=FN=F=log(Z).

With the full set of forward and backward partial free
energies, we can evaluate any statistical quantity of inter-
est. For example, the probability of finding an object of
type j at positions (i, . . . , i+Lj� 1) is given by:

Pj
i ¼

Zf
i�1e

�Ej
i Zr

iþLj

Z
¼ eFi�1�E

j
i
þRiþLj

�F; i ¼ 1; . . . ;N� Lj þ 1:

25

Another quantity of interest is the occupancy of the
base pair i by object j, defined as the probability that
base pair i is covered by any object of type j (5):

Oj
i ¼

Xi
k¼i�ðLj�1Þ

Pj
k ¼ Oj

i�1 þ Pj
i � Pj

i�Lj�1
; i ¼ 1; . . . ;N: 26

(note that Pj
k ¼ 0 for k< 1 and k>N�Lj+1, and

Oj
0 ¼ 0).
Finally, we need to take into account the fact that the

objects can bind DNA in both directions, and thus there
are two binding energies for each position: Ej

i (object
j starts at i and extends in the 50 to 30 direction) and
E
jðrcÞ
i (object j starts at i+Lj� 1 and extends in the 30

to 50 direction). It is easy to show that the formalism
developed above applies without change if the binding
energies Ej

i are replaced by the free energies �Ej
i which

take both the binding orientations into account:

�Ej
i ¼ � logðe�E

j
i þ e�E

jðrcÞ
i Þ: 27

In the case of a single type of DNA-binding object
(such as nucleosomes described by DNABEND), there
are two free parameters: the mean nucleosome energy
hEnuc

i over a chromosome or a given DNA region which
plays the role of the chemical potential (note that Enuc

stands for Enuc
�m in the grand canonical ensemble for-

mulation used above), and the SD s(Enuc) which plays the
role of the inverse temperature. The temperature deter-
mines the fraction of stable nucleosomes (defined as
Pi>0.5, where Pi is the probability to start a nucleosome
at base pair i), while the chemical potential determines the
average nucleosome occupancy. We have set hEnuc

i=0.0
to produce the genome-wide nucleosome occupancy of
0.797 [which is close to previously published models
(5,23)]. We also set s2(Enuc)=45.0, which results in
stable, nonoverlapping nucleosomes covering 16.3% of
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the yeast genome. Thus, the DNABEND energy land-
scape was rescaled to fit the bulk nucleosome occupancy
in yeast.

Histone–DNA binding affinity measurements

We used a standard competitive reconstitution procedure
to measure the relative affinity of different DNA sequences
for binding to histones in nucleosomes (24). In this
method, differing tracer DNA molecules compete with
an excess of unlabeled competitor DNA for binding to
a limiting pool of histone octamer. The competition is
established in elevated [NaCl], such that histone–DNA
interactions are suppressed and the system equilibrates
freely. The [NaCl] is then slowly reduced by dialysis,
allowing nucleosomes to form; further reduction in
[NaCl] to physiological concentrations or below ‘freezes-
in’ the resulting equilibrium, allowing subsequent analysis,
by native gel electrophoresis, of the partitioning of each
tracer between free DNA and nucleosomes. The distribu-
tion of a given tracer between free DNA and nucleosomes
defines an equilibrium constant and a corresponding
free energy, valid for that competitive environment.
Comparison of the results for a given pair of tracer
DNAs in the identical competitive environment eliminates
the dependence on the details of the environment, yielding
the free energy difference (��G) of histone interaction
between the two tracer DNAs. To allow for comparison
with other work, we include additional tracer DNAs as
reference molecules: a derivative of the 5S rDNA natural
nucleosome positioning sequence 24 and the 147 bp
nucleosome-wrapped region of the selected high affinity
nonnatural DNA sequence 601 (25).

The 5S and 601 reference sequences were prepared by
PCR using plasmid clones as template. The 146- and 147-
bp long DNAs analyzed in X-ray crystallographic studies
of nucleosomes (PDB codes 1aoi and 1kx5, respectively)
were prepared as described (26) using clones supplied
by Professors K. Luger and T.J. Richmond, respectively.
New 147-bp long DNA sequences designed in the present
study were prepared in a two-step PCR-based procedure
using chemically synthesized oligonucleotide primers. All
synthetic oligonucleotides were gel-purified prior to use.
The central 71 bp were prepared by annealing the two
strands. The resulting duplex was gel purified and used
as template in a second stage PCR reaction to extend
the length on each end creating the final desired 147-bp
long DNA. The resulting DNA was again purified by gel
electrophoresis.

DNA sequences to be analyzed were 50-end labeled with
32P, and added in tracer quantities to competitive nucleo-
some reconstitution reactions. Reconstitution reactions
were carried out as described (24) except that each reac-
tion included 10 mg purified histone octamer and 30 mg
unlabeled competitor DNA (from chicken erythrocyte
nucleosome core particles) in the 50 ml microdialysis
button.

Hydroxyl radical footprinting of nucleosomal templates

DNA templates. Plasmids pGEM-3Z/601, pGEM-3Z/603
and pGEM-3Z/605 containing nucleosome positioning

sequences 601, 603 and 605, respectively, were described
previously (27). To obtain templates for hydroxyl radical
footprinting experiments the desired �200-bp DNA frag-
ments were PCR-amplified using various pairs of primers
and Taq DNA polymerase (New England BioLabs). The
sequences of the primers can be provided on request. To
selectively label either upper or lower DNA strands one of
the primers in each PCR reaction was 50-end radioactively
labeled with polynucleotide kinase and g32P-ATP (28).
The single-end-labeled DNA templates were gel-purified
and single nucleosomes were assembled on the templates
by dialysis from 2M NaCl (28). Nucleosome positioning
was unique on at least 95% of the templates.

Hydroxyl radical footprinting. Hydroxyl radicals intro-
duce nonsequence-specific single nucleotide gaps in
DNA, unless DNA is protected by DNA-bound proteins
(29). Hydroxyl radical footprinting was conducted using
single-end-labeled histone-free DNA or nucleosomal tem-
plates as previously described (29). In short, 20–100 ng of
single-end-labeled DNA or nucleosomal templates were
incubated in 10mM HEPES buffer (pH 8.0) in the pres-
ence of hydroxyl radical-generating reagents present at the
following final concentrations [2mM Fe(II)-EDTA, 0.6%
H2O2, 20mM Na-ascorbate] for 2min at 208C. Reaction
was stopped by adding thiourea to 10mM final concentra-
tion. DNA was extracted with Phe:Chl (1:1), precipitated
with ethanol, dissolved in a loading buffer and analyzed
by 8% denaturing PAGE.

Data analysis and sequence alignment. The denaturing
gels were dried on Whatman 3MM paper, exposed to a
Cyclone screen, scanned using a Cyclone and quantified
using OptiQuant software (Perklin Elmer). Positions of
nucleotides that are sensitive to or protected from hydro-
xyl radicals were identified by comparison with the
sequence-specific DNA markers (Supplementary Figures
2 and 3). The dyad was localized by comparison of the
obtained footprints with the footprints of the nucleosome
assembled on human a-satellite DNA. The latter foot-
prints were modeled based on the available 2.8 Å resolu-
tion X-ray nucleosome structure (10).

RESULTS

Prediction of DNA geometries from the nucleosome
crystal structure

Unlike the previous approaches that keep DNA con-
formation frozen regardless of the sequence (14,15),
DNABEND finds both sequence-specific nucleosome for-
mation energies and the corresponding DNA geometries.
Therefore, one way to validate DNABEND is to predict
the DNA conformation in the high-resolution (1.9 Å)
nucleosome crystal structure [(2); PDB code 1kx5], using
only DNA sequence as input. As can be seen in Figure 2,
DNABEND predictions are significantly correlated with
the experimental geometries for twist, roll, tilt and slide
(r� 0.49), but are less successful with shift and rise,
although the peak positions are generally correct. The cor-
relation between our model and 1kx5 is significantly
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higher than the correlation between 1kx5 and the ideal
superhelix (see Figure 2, caption), although part of the
predicted correlation in roll and tilt is simply due to the
ideal helical oscillations.
There are several inaccuracies in DNABEND predic-

tions: e.g. rapid shift oscillations in the region between
bps 35 and 105 are not reproduced, and in general the
magnitude of observed oscillations in rise and shift is
underestimated. Furthermore, most slide peaks are
under-predicted, which is especially important because
positive slide makes a significant contribution to the
superhelical trajectory in the nucleosome crystal structure
(14). Slide is under-predicted by DNABEND because for
certain key base pairs the protein–DNA structures in our
training set imply a much smaller mean value of slide (e.g.
0.18 Å for CA basesteps) than that observed in a currently
available, limited set of nucleosome structures (0.91 Å for
CA basesteps). Changing just this one mean value pro-
duces slide peaks of a more reasonable magnitude,
but does not improve the correlation coefficient (data
not shown). Because nucleosomal DNA is highly bent,
different degrees of freedom are strongly coupled
(Supplementary Figure 1a): for example, base pairs tend
to tilt and shift simultaneously to avoid a steric clash.
These couplings are much less pronounced in the nonhis-
tone protein–DNA complexes used to derive the elastic
energy model (Supplementary Figure 1b), but nonetheless
appear prominently when the 1kx5 DNA geometry is pre-
dicted by DNABEND (Supplementary Figure 1c). Thus,
DNABEND is reasonably successful in reproducing

nucleosomal DNA geometries ab initio; remaining discre-
pancies can be attributed to the deficiencies of the elastic
energy model (which by necessity is based on the currently
available set of protein–DNA complexes), and to the
approximation inherent in expanding DNA geometries
around the ideal superhelix.

Relationship between DNA geometries and sequence
specificity

Analysis of available nucleosome crystal structures shows
that tight DNA wrapping is facilitated by sharp DNA
kinks if flexible dinucleotides (e.g. 50-CA/TG-30 or
50-TA-30) are introduced into the region where theminor
groove faces the histone surface. For other sequences and
other structural regions the bending is distributed over
several dinucleotides (2). We substituted all possible dinu-
cleotides into the 1kx5 atomic structure (keeping DNA
conformation fixed), and computed the elastic energy for
each sequence variant. The most sequence-specific regions
are those where theminor groove faces the histone octa-
mer (Figure 3a). The specificity is especially dramatic
if DNA is strongly kinked (e.g. at positions 109, 121
and 131; Figure 2) (2). Although these positions are occu-
pied by the CA/TG dinucleotides in the crystal structure,
the model assigns the lowest energy to the TA dinucleo-
tide, consistent with the periodic TA signal previously
observed in good nucleosome positioning sequences
(30) (Figure 3b). The observed dinucleotide ranking is
in agreement with the averages, standard deviations
and force constants inferred from the structural database

Figure 2. DNABEND-predicted and experimentally observed DNA geometries. Six dinucleotide degrees of freedom in the crystal structure of the
nucleosome core particle [(2); PDB code: 1kx5] (blue), in theminimum energy structure obtained using 1kx5 DNA sequence as input to DNABEND
(red) and in the ideal superhelix with no energy relaxation (green). The 2-fold nucleosome symmetry axis is shown as a dashed vertical line. Mean
values of the geometric degrees of freedom in the ideal superhelix are shown as dashed horizontal lines. Correlation coefficients between the degrees
of freedom from the native and theminimized structures are: (rtwist, rroll, rtilt, rslide, rshift, rrise)= (0.489, 0.709, 0.539, 0.536, 0.247, 0.238) (hri=0.460).
Correlation coefficients between the degrees of freedom from the native structure and the ideal superhelix are: (rtwist, rroll, rtilt, rslide, rshift, rrise)=
(�0.066, 0.669, 0.322, �0.550, 0.027, 0.021) (hri=0.071).
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of protein–DNA complexes: for example, standard
deviations of the roll, slide and twist degrees of freedom
are the highest for the TA dinucleotide (Supplementary
Table 2).

In vitro free energies of nucleosome formation and
ranking of selected sequence sets

DNABEND accurately predicts experimental free energies
of nucleosome formation (31–33) (Figure 4a and b).
Geometryminimization is essential for these predic-
tions—the same calculations are much less successful if
DNA geometries are taken from the nucleosome crystal
structure (1kx5) (14), or if DNA is threaded along an ideal
superhelix [Supplementary Figure 4; (15)]. DNA base
pairs threaded along the ideal superhelix do not form an
accurate representation of nucleosomal DNA, which fol-
lows a ‘zig-zag’ path and exhibits numerous kinks and
irregularities in the crystal structure (2). At the same
time, DNA conformation taken from 1kx5 or any other
crystal structure is necessarily sequence specific—for
example, it is likely that major slide kinks at positions

109, 121 and 131 in 1kx5 are caused simply by the pres-
ence of the CA dinucleotides, and will occur elsewhere
or disappear altogther if these dinucleotides are mutated
or moved. Thus, it is not a priori obvious that any partic-
ular geometry which reflects a single DNA sequence
provides a universal structural template.
DNABEND can also separate sequences selected

in vitro for their ability to form stable nucleosomes (27)
or occupied by nucleosomes in vivo (5) from genomic yeast
sequences (Figure 4c). Note that the lowest energies are
assigned to a set of sequences that were chemically synthe-
sized and then subjected to multiple rounds of selection
for binding affinity (Figure 4c, black histogram) (27).
Thus, these sequences can be expected to form more
stable nucleosomes than those typically found in the
yeast genome. In contrast, a selection experiment on
yeast genomic sequences, or an MNase digestion assay
used to find stable in vivo nucleosomes (5) result in the
energy distributions that overlap much more with the his-
togram of genomic energies. Finally, DNABEND cor-
rectly ranks mouse genome sequences selected in vitro on

Figure 3. Elastic energy analysis of the nucleosome crystal structure. (a) Position-dependent sequence specificity in the nucleosomal DNA revealed by
the energetic analysis of dinucleotides substituted into the crystal structure of the nucleosome core particle [PDB code: 1kx5; (2)] All possible
dinucleotides were introduced at every position into the 147 bp nucleosomal site using DNA dihedral angles from the native dinucleotide, and DNA
elastic energy was computed for every sequence variant. Upper panel: the difference between the energy of the most favorable dinucleotide and the
average energy of all dinucleotides at this position. Lower panel: information entropy, defined as IðsÞ ¼ log2ð16Þ þ

P16
i¼1 p

s
i log2ðp

s
i Þ, where

psi ¼ expð�Es
i Þ=
P16

i¼1 expð�E
s
i Þ, and Es

i is the elastic energy change which results from introducing a dinucleotide of type i=1, . . . , 16 at position
s: Es

i ¼ E
sðmutÞ
i � E

sðwtÞ
i . To enforce the 2-fold symmetry of the nucleosome core particle, all dinucleotide energies were symmetrized around the middle

of the DNA site, shown as a dashed vertical line. Middle panel: roll angle of the ideal superhelix showing DNA geometry in relation to the histone
octamer. Negative roll angles correspond to theminor groove facing the histone surface. (b) Elastic energy components for all possible dinucleotides
substituted into the 1kx5 crystal structure at position 109 where the DNA conformation is kinked (Figure 2) (2). Dinucleotides are ranked by their
total energy as shown in the legend (best to worst energy from top to bottom). TA is the lowest energy dinucleotide (thick golden line). The energy
component analysis reveals that it is the degrees of freedom related to slide (slide–slide and slide–twist components) and roll (roll–roll component)
that make the TA dinucleotide most favorable, although the slide–slide component is slightly better in the native CA/TG dinucleotide (red/brown
dots). In contrast, the AT dinucleotide (black lines) has the highest energy due to its low flexibility with respect to roll, slide and twist
(Supplementary Table 2).
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the basis of their high or low binding affinity (34,35)
(P=1.42� 10�9), although there is still substantial over-
lap between the two sets (Figure 4d).

Prediction of footprinted nucleosome positions

A direct test of how accurately DNABEND positions
nucleosomes on DNA can be provided by a collection of
sequences where in vitro nucleosome positions are known
with 1–2 bp accuracy. We have determined nucleosome
positions on synthetic high-affinity sequences 601,
603, and 605 (27) using hydroxyl radical footprinting
(Supplementary Figures 2 and 3), and combined these
data with three more footprinting experiments from the
literature (36–38). We use DNABEND energies (com-
puted using the full 147 bp superhelix) followed by
the dynamic programming algorithm (16) to make a

probabilistic prediction of nucleosome positions.
Whereas with longer genomic sequences a typical config-
uration consists of many nonoverlapping nucleosomes,
only one nucleosome can form on the shorter sequences
considered here, its position typically determined by the
global energyminimum (except for two sequences with
two experimentally mapped alternative positions, cf.
below). We compute the grand canonical partition func-
tion and the probability for the histone octamer to bind
DNA starting at every possible position along the
sequence. We also compute the nucleosome occupancy
for each base pair, defined as its probability to be covered
by any nucleosome, regardless of the nucleosome’s start-
ing position (see Methods section).

We find that DNABEND predicts footprinted nucleo-
some positions reasonably well: the measured position is

Figure 4. DNABEND accurately ranks free energies of nucleosome formation and sets of nucleosome sequences. (a) Prediction of in vitro free
energies of nucleosome formation measured using nucleosome dialysis (red circles) (31) and nucleosome exchange (green circles) (32,33). High affinity
sequence 601 (25,31) is shown in black. Free energies were computed using only the central 71 bp of the 147 bp nucleosomal site, because competitive
nucleosome reconstitution on DNAs with any lengths between 71 and 147 bp gives identical apparent free energies, and quantitatively equivalent free
energies are obtained using either the full histone octamer or just the core histone tetramer (5,25). (b) Ranking of the nucleosome free energies shown
in (a). Blue triangles: nucleosome dialysis (31). Black triangles: nucleosome exchange (32,33). (c) Histograms of DNA elastic energies (in arbitrary
units) computed using the 147 bp nucleosomal site, consistent with the sequence lengths found in the in vitro selection on the yeast genome. (5) Yeast
genomic sequences are compared with three sets of sequences selected for their nucleosome positioning ability. Blue: energies of all 147-bp long
sequences from Saccharomyces cerevisiae chromosome III, green: energies of sequences from a genome-wide in vivo mononucleosome extraction assay
(5), red: energies of sequences from an in vitro selection assay on yeast genomic DNA (5), black: energies of sequences from a SELEX experiment on
a large pool of chemically synthesized random DNA molecules (27). Sequences shorter than 147 bp were omitted from all selected sequence sets; in
sequences longer than 147 bp the most favorable energy was reported, taking both forward and reverse strands into account. (d) Histograms of DNA
elastic energies for the mouse genome sequences selected for their ability to position nucleosomes (red) (34), or to impair nucleosome formation
(blue) (35). Because most of these sequences are shorter than 147 bp, it was assumed that selective pressure was exerted mainly on the central 71 bp
stretch of the nucleosomal DNA which interacts with the H32H42 tetramer. In sequences longer than 71 bp the most favorable energy of binding with
the tetramer was computed, taking both forward and reverse strands into account.
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always within 1–2 bp of a localminimum in our energy
profiles, and that energyminimum in 5 out of 6 cases is
within 0.5–1.0 kcal/mol of the global energyminimum
(Figure 5; note that the total range of sequence-dependent
binding energies is �5 kcal/mol). We expect nucleosome
energies to be approximately equal for positions that are
in phase with respect to the helical twist, and indeed

consecutive energyminima and maxima in Figure 5 are
separated by 10–11 bp. However, in several cases (e.g.
for clone 601) where the experimental nucleosome posi-
tion coincides with a local rather than a globalminimum,
the relatively small energy difference between thesemin-
ima is sufficient to misplace the predicted nucleosome by
tens of base pairs from its experimentally known location.

Figure 5. DNABEND predictions of in vitro nucleosome positions. Probability of a nucleosome to start at each base pair (green), nucleosome
occupancy (blue) and nucleosome formation energy (violet). Vertical lines: experimentally known nucleosome starting positions, with base pair
coordinates listed in parentheses below. (a) The 180 bp sequence from the sea urchin 5S rRNA gene (bps 8,26) (36). (b) The 183 bp sequence from the
pGUB plasmid (bps 11,31) (37). (c) The 215 bp fragment from the sequence of the chicken b–globinA gene (bp 52) (38). (d,e,f) Synthetic high-affinity
sequences (27) 601 (bp 61), 603 (bp 81) and 605 (bp 59). Nucleosomes on sequences 601, 603 and 605 were mapped by hydroxyl radical footprinting
(Supplementary Figures 2 and 3). All DNA sequences used in this calculation are available on the Nucleosome Explorer web site: http://
nucleosome.rockefeller.edu.
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Errors of similar magnitude are made if DNA geometry is
taken from the ideal superhelix [(15); Figure 5], from the
1kx5 crystal structure [(14); Supplementary Figure 6], or if
nucleosome positions are predicted using the latest bioin-
formatics model which was trained on sequences from
nucleosomes reconstituted in vitro by salt dialysis on
yeast genomic DNA [(9); Supplementary Figure 7]. We
compare all four prediction methods in Figure 6, using
the number and the height of predicted probability
peaks near experimentally known positions as a metric.
Our results underscore the exacting level of accuracy
(�0.5 kcal/mol) required to position nucleosomes precisely
on genomic or synthetic DNA. It is also possible that
suboptimal nucleosome positions are in fact produced in
experiments but not detected because such sub-popula-
tions would be relatively small.

Design of nucleosomal sequences

We also asked if DNABEND could be used to design
de novo DNA sequences with intrinsically high and low
histone binding affinities. We used simulated annealing to
search for 147 bp sequences whose free energy of nucleo-
some formation would be eitherminimum or maximum.
The sequences with lowest free energies were created using
a computationally optimized 71 bp histone tetramer bind-
ing site, because competitive nucleosome reconstitution
on DNAs with any lengths between 71 and 147 bp gives
identical free energies under our experimental conditions
(25). The 71 bp designed site was annealed to two different
fixed flanking sequences (sequences B71S1 and B71S2 in
Table 1). The free energy of nucleosome formation is
dominated by the computationally designed site: both pre-
dicted and experimental free energies depend on the flank-
ing sequence very weakly (Table 1). For the worst histone
tetramer binder, we have designed a 147 bp sequence

(W147S in Table 1) that has no favorable H32H42 binding
sites anywhere along the sequence.

We measured in vitro free energies of nucleosome for-
mation using salt gradient dialysis [(25,31); see Methods

Figure 5. Continued.

Figure 6. Comparison of four alternative methods for predicting
nucleosome positions. For each experimentally mapped nucleosome
position, we compute a sum over all predicted probabilities to start a
nucleosome (green curves in Figure 5 and Supplementary Figures 5–7)
that are separated by �D bp from the experimental position. Shown are
the averages over all experimental positions for a given method, as a
function of D. Blue—DNABEND, green—DNABEND with geome-
tries from the nucleosome crystal structure, red—DNABEND with
geometries from the ideal superhelix, cyan—an alignment-based
method from Kaplan et al. (9). Alignment-based nucleosome position-
ing software was downloaded from http://genie.weizmann.ac.il/pubs
/nucleosomes08/ and run with default parameters. Note that the
provided software does not output nucleosome energies or scores.
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section] for the computationally designed sequences, the
71 bp tetramer site from the 601 sequence flanked in the
same way as B71S1 and B71S2, and two sequences from
the nucleosome crystal structures. Although the free
energy of the designed best sequence was lower than the
free energy of the designed worst sequence, the free energy
difference was only 1.6 kcal/mol, less than the experimen-
tally known range of free energies (see e.g. the difference
between 601S1 and X146 in Table 1). These results under-
score both the ranking power and the limitations of our
current DNA mechanics model.

Periodic dinucleotide distributions in high and low
energy sequences

DNABEND-selected nucleosome sequences exhibit peri-
odic dinucleotide patterns that are consistent with those
determined experimentally (27): for example, with lowest
energy sequences, 50-AA/TT-30 and 50-TA-30 dinucleotide
frequencies are highest in the negative roll regions
(where theminor groove faces inward), while 50-GC-30 fre-
quencies are shifted by �5 bp (Supplementary Figure 8).
Surprisingly, the distributions of AT and AA/TT, TA
dinucleotides are in phase, despite a very low flexibility
of the former (Figure 3). It is possible that rigid AT
steps are used to flank and ‘anchor’ more flexible kinked
dinucleotides. We estimate the energy difference between
the best and the worst 147 bp nucleosome forming
sequences to be 15.2 kcal/mol, with the energies of 95%
of genomic sequences separated by <6.4 kcal/mol. This is
larger than the experimentally accessible range (Figure 4)
because nucleosomes cannot be forced in experiments to
occupy the worst possible location on DNA, but instead
find a local energyminimum with respect to the 10–11 bp
helical twist.

Nucleosome stability and gene expression levels

It is at present unclear whether nucleosome positions and
stabilities are fine-tuned genome wide to achieve optimal
transcriptional response. Here, we show that nucleosome
stabilities may play a crucial role in gene activation and
background gene expression levels of two yeast promoters:
MEL1 and CYC1. Specifically, DNABEND predicts
that both TATA boxes in the promoter of the yeast
MEL1 (a-galactosidase) gene are occupied by a stable
nucleosome, in agreement with the extremely low level
of background gene expression observed in MEL1 promo-
ter-based reporter plasmids (39,40) (Figure 7). The nucleo-
some is not displaced in competition with TBP. In
contrast, the TATA elements of the CYC1 promoter
were previously shown to be intrinsically accessible
in vivo (41,42) resulting in high background expression
levels. Consistent with these findings, we predict that
one of the CYC1 TATA boxes has intrinsically low nucleo-
some occupancy, and moreover that the nucleosome is
easily displaced in competition with TBP (Figure 7).

DISCUSSION AND CONCLUSIONS

We have developed a nucleosome model based on a
combination of an empirical DNA elastic potential (11)
with another potential designed to capture favorable his-
tone–DNA interactions that bend nucleosomal DNA into
a superhelix. Despite several approximations (such as
neglecting direct interactions between DNA base pairs
and amino acid side chains, and assuming that on average
nucleosomal DNA forms an ideal superhelix), the model is
reasonably successful in predicting in vitro free energies of
nucleosome formation (Figure 4). Energyminimization is
essential for this success: using static DNA geometries
from the ideal superhelix or from the nucleosome crystal
structure was found to be detrimental to the prediction
accuracy (compare Figure 4 and Supplementary Figure
4). Presumably, this is because the DNA conforma-
tion (and in particular the pattern of kinks that facilitate
superhelix formation) is strongly sequence dependent.
Minimized DNA geometries for the 1kx5 DNA thus
constitute an ab initio prediction that can be compared
with the crystal structure; we find both overall correlation
and significant discrepancies (Figure 2). In particular, we
underestimate the magnitude of the slide peaks that are
very prominent in the crystal structure. This could be fixed
by constraining our geometries around the ‘piecewise’
ideal superhelix into which a ladder of slide steps is built
in by hand. However, this approach can only be justified
in our framework if the slide steps come from the direct
contacts between base pairs and histone side chains and
do not appear ‘spontaneously’ when DNA is bent. There
is currently no direct evidence to support the former point
of view; it is equally likely that the elastic potential para-
meters are inaccurate for some of the flexible dinucleotides
and so improving DNA mechanics models would result
in better correspondence with the crystal structure.
Despite the ability of DNABEND to rank sets of

sequences selected for binding affinity (Figure 4c and d),
our designs of extremely stable and unstable nucleosomes

Table 1. Predicted (Fpred) and measured (Fexp) free energies of

computationally designed and control sequences

Fpred (arb.units) Fexp (kcal/mol)

B71S1 �20.09 �1.57� 0.41
B71S2 �20.10 �1.51� 0.27
601S1 �0.49 �2.99� 0.55
601S2 �1.74 �2.46� 0.18
W147S 15.26 0.09� 0.23
X147 5.92 0.75� 0.29
X146 6.86 0.45� 0.91

Experimental free energies are shown relative to the reference sequence
from the Lumbriculus variegatus 5S rRNA gene. Histone binding is
dominated by the contribution from the H32H42 tetramer with the
71 bp binding site (25). The best binder was created by using simulated
annealing to introduce mutations and thusminimize the energy of a
71 bp DNA molecule. B71S1 and B71S2 have different sequences flank-
ing the 71 bp designed site (whose contribution dominates the total free
energy). 601S1 and 601S2 consist of the 71-bp site from the center of
the 601 sequence (27) and flanking sequences from B71S1 and B71S2,
respectively. W147S is a 147 bp sequence whose free energy (with con-
tributions from multiple H32H42 binding sites) was maximized by simu-
lated annealing. X146 and X147 are 146 and 147 bp DNA sequences
from nucleosome crystal structures 1aoi (10) and 1kx5 (2).
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were only partially successful: although free energies
measurements confirmed our computational ranking of
designed sequences (with the free energy difference of
1.6 kcal/mol), nucleosomes with free energies that are
both lower and higher compared with our designed
sequences are already available in the literature (Table
1). Evidently, the accuracy of our model is not sufficient
to handle these extreme cases. Finally, our nucleosome
footprinting experiments reveal the exacting level of accu-
racy required for predicting in vitro nucleosome positions:
even a small discrepancy on the order of 0.5 kcal/mol may
result in the positioning error of 10–20 bp in the absence of
steric exclusion. This is true both for DNABEND, for
the models that employ fixed DNA geometries (14,15),
and for the alignment-based bioinformatics model
[(9); Figures 5 and 6; Supplementary Figures 5–7].

This problem may be alleviated in vivo where formation
of nucleosome arrays is guided as much by steric exclusion
and other factors as by sequence specificity.

DNABEND presents a useful biophysical frame-
work for the analysis of in vivo and in vitro nucleosome
positions and TF-nucleosome competition. In vivo chro-
matin structure is affected by intrinsic sequence prefer-
ences, steric exclusion and extrinsic factors such as
nonhistone DNA-binding proteins and chromatin remo-
deling enzymes. Our approach helps disentagle these
contributions to in vivo nucleosome positioning, and
should provide a useful foundation for future models of
chromatin. In particular, our results linking nucleosome
stability with gene expression in MEL1 and CYC1 promo-
ters (Figure 7) open a pathway towards modulating gene
expression levels in model systems through computational

Figure 7. Nucleosome positioning explains background gene expression levels observed in reporter plasmids. Panel I (from top). Blue: nucleosome
energies (in arbitrary units, au) in the CYC1 promoter region from the lacI::lacZ reporter plasmid (42). Note the 10-11 bp periodicity due to DNA
helical twist. Panel II. Probability of a nucleosome to start at each base pair, in the absence (blue) and presence (maroon) of TBP. Some of the latter
nucleosomes are also shown as orange ovals (note that in general nucleosome positions with P< 0.5 may overlap). Green: probability of a TBP to
bind a TATA box. Panel III. Nucleosome occupancy in the absence (blue) and presence (maroon) of TBP. Green: TBP occupancy, red vertical lines:
known TATA box positions. Arrows on the right correspond to the order of calculations. Panel IV. Nucleosome occupancy of the MEL1 promoter
region from the DIT1::GFP reporter vector [(39); see CYC1 legend above for the color scheme]. Red vertical lines: known TATA box positions. Note
that blue and maroon occupancy profiles completely overlap. TBP DNA-binding energies were computed as weight matrix log scores. The weight
matrix was constructed using the alignment of TATA box sites from Basehoar et al. (43). From left to right the TBP binding energies were set to
�5.819 au (TATATATA site) and �5.327 au (TATATAAA site) for CYC1, and to �4.726 au for both MEL1 sites (TATAAAAA).
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design of nucleosome occupancy profiles. Finally, unlike
previously published bioinformatics approaches, our
model is not trained on genomic data and thus should
be equally applicable to other eukaryotic organisms,
including longer metazoan genomes.
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