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A quantitative understanding of nucleic acid hybridization is es-
sential to many aspects of biotechnology, such as DNA microarrays,
as well as to the structure and folding kinetics of RNA. However,
predictions of nucleic acid secondary structures have long been
impeded by the presence of helices interior to loops, so-called
pseudoknots, which impose complex three-dimensional conforma-
tional constraints. In this paper we compute the pseudoknot free
energies analytically in terms of known standard parameters, and
we show how the results can be included in a kinetic Monte Carlo
code to follow the succession of secondary structures during
quenched or sequential folding. For the hepatitis delta virus
ribozyme, we predict several nonnative stems on the folding path,
characterize a kinetically trapped state, interpret several experi-
mentally characterized mutations in terms of the folding path, and
suggest how hybridization with other parts of the genome inac-
tivates the newly formed ribozyme.

The secondary structure elements of RNA, the base-paired
helices, are energetically stable and thus building blocks for

the three-dimensional configuration (1). Beyond the nested
secondary structures whose minimum free energy configuration
can be readily evaluated by dynamic programming (2) are those
that contain stems interior to loops—i.e., the so-called
pseudoknots. The prediction of these nonnested configurations
by means of an exhaustive search algorithm is both difficult and
computationally expensive (sequences currently limited to '130
nt) (3). By contrast, algorithms that seek to follow the actual
folding dynamics (4) can in principle treat pseudoknotted and
nested structures on similar bases.

RNA folding kinetics is known to proceed stochastically via a
succession of partially folded secondary structures in quasi-
equilibrium. Elementary transitions which make or break single
helices can thus be assigned Arrhenius-like rates (5, 6), k 5 k°
3 exp(2DGykT), where k° reflects only local stacking processes
within a transient nucleation core. Hence, merely evaluating free
energy differences DG between the transition states and the
current configurations can provide access to the molecular
folding dynamics. Within this so-called ‘‘kinetic Monte Carlo’’
scheme (4), the simulation actually follows the folding kinetics,
in addition to providing the equilibrium distribution of states in
the long time limit.

In Theory and Methods, we first show how the free energy
contribution of pseudoknots can be evaluated by using polymer
theory and known stacking free energies for the helices. We then
outline the main steps of the kinetic Monte Carlo scheme for
RNA. This includes, in particular, an efficient optimization
scheme to account for the presence of competing helices in most
partially folded as well as transition configurations along the
folding path.

The first structure predictions are encouraging, as judged by
experiments on small pseudoknotted RNAs, and constitute a
base line against which more elaborate schemes that employ
pseudoknot-specific parameters can be compared.

As for folding kinetics, the hepatitis delta virus (HDV)
ribozyme is perhaps the best example on which to test our code.
The ribozyme is active in vitro, and it has been the subject of

many experiments that explore the effects of various mutations
(7). Concentrating on its folding paths, we identify (i) a transient
kinetic trap that dominates quenched folding and (ii) a succes-
sion of transient stems that cooperatively guide sequential
folding. Our quantitative predictions, which could be directly
tested experimentally (8, 9), largely support the suggestion that
sequential folding kinetics of the HDV ribozyme directly regu-
late its in vivo function (7, 10), a feature also suspected for other
ribozymes (1, 11).

Theory and Methods
Evaluating Free Energies. We calculate a free energy G for an
arbitrary secondary structure in terms of the thermodynamic
free energies of the individual helices (12, 13) and a conforma-
tional entropy of the entire structure, including pseudoknots. All
helices with 3 or more base pairs and a stem free energy of at
least 210 kT (i.e., 26 kcalymol) are included. Structurally, the
helices are modeled as rods of appropriate length and the
unpaired regions as Gaussian chains with Kuhn length b 5 1.5
nm (14) or 2.5 bases of size a . 6 Å. Conformational entropies
are then evaluated in two stages, by first defining substructures
we call nets (see Fig. 1 for details), whose entropy can be
calculated exactly and analytically, and then treating constraints
among nets more globally, by adopting a coarse-grained
crosslinked-gel-like description of the RNA molecule at larger
scales (see Fig. 2 for details). The introduction of these two
complementary descriptions, appropriate for short and large
scales, respectively, enables us to overcome the general
‘‘pseudoknot problem’’ with an algorithm that evaluates free
energies of nested and nonnested secondary structures in about
the same computation time.

As an example of short-scale conformational entropy, we
present here the analytical result for the canonical pseudoknot
(i.e., open-net-2a in Fig. 1; see also Fig. 4b) originally proposed
by Pleij et al. (16). Its conformational entropy S depends on the
total length of three single-stranded sections (s1, s2, and s3) and
on the length of two nonnested helices (l1 and l2) (see Fig. 4b).
Modeling the single-stranded sections by Gaussian chains, we
find:

e2S 5 a2
e2A1l1

22A2l2
2

D3/2 3
e2A3l1l2 2 e22A3l1l2

4A3l1l2
, [1]

D 5 s1s2 1 s1s3 1 s2s3,
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A1 5 3~s1 1 s3!/2abD,

A2 5 3~s2 1 s3!/2abD,

A3 5 3s3/2abD,

l1,2 5 ~d2sin2~pn1,2/np! 1 h2~n1,2/np!2!1/2,

where n1,2 are the number of bases in helices 1 and 2, d 5 4a is
the helix diameter, np 5 11 is the number of base pairs per
complete turn, and h 5 5a is the stem length for one turn (17).
a 5 0.0068, which is the ‘‘confinement’’ cost each time a loop is
formed, has been tuned to best fit the tabulated thermodynamic
parameters for short loops (12).

Note, we employ only the conventional helix free energies (12),
and the measured dimensions of paired and single-stranded re-
gions; there are no additional parameters for the pseudoknots, in
contrast to earlier phenomenological approaches (3, 18). This
physical modeling of pseudoknots is also expected to be more
widely applicable than previously proposed estimates (19, 20), as it
explicitly takes into account important physical-structural con-
straints of the RNA molecule, such as those embodied in Eq. 1.

Kinetic Monte Carlo Scheme for RNA. Each step of the kinetic
Monte Carlo algorithm involves making or breaking a stem, and
thus a change in topology. For each topology, it often happens
that some helices overlap over a few nucleotides on either strand.
In such case, a free energy minimization is done to optimally
position the boundaries between all competing stems while
always leaving a minimum core of Nc bp in each stem. (Typically
Nc 5 2 or 3 gave very similar kinetics.)

It is also essential to adjust competing helices in any
transition configuration, so as to obtain realistic stem forma-
tion and dissociation rates. Hence, the barrier DG1 for nucle-
ation of a new stem consists of an entropic term involved in

bringing two complementary single strands together at a point,
plus possibly a free energy term representing the cost of
freeing up a minimal stretch of Nc nt when either strand is
already engaged in another stem. For each placement of this
Nc-long core in the current structure, there can be up to four
existing stems in direct overlap with it (Fig. 3a). Considering
all possible ways of placing the core (dashed box in Fig. 3.) on
the two strands (see parallel dashed lines), we then find the
least energetically costly way of shrinking these stems (always
keeping the minimum core of Nc bp in any stem) so as to
expose the nucleation core. Note that if one strand of the
nucleation core falls entirely within a previously formed helix,

Fig. 1. Short-scale description: The 8 allowed ‘‘nets.’’ We define ‘‘closed-
nets’’ on a configuration by labeling all single-stranded closed circuits that can
be drawn on the structure by hopping between adjacent single-stranded
sections each time a stem end is encountered (see ‘‘closed-net-1’’). (The
dashed stems connect to other nets, but do not affect the order of the nets
drawn. Other net-connecting stems may also be present along any single
strand.) This procedure readily identifies hairpin, bulge, internal, and multi-
branched loops as other instances of closed-nets-0. However, the same pro-
cedure delimits also more complex single-stranded circuits (closed-nets-n)
which pass through both ends of a number n of stems (i.e., n internal stems in
a closed-net-n). Those nets correspond to locally pseudoknotted substruc-
tures. Similarly, for noncircular RNA sequences, we also partition the 59 to 39
open path into adjacent ‘‘open-nets-n’’ which are the continuous sections of
the path that contain a minimal number n of internal stems. Note that open-
and closed-nets-n can be simply related by the additionydeletion of one
single-stranded section. Although this classification is quite general, we have
limited our numerical studies to all structural topologies that can be decom-
posed into nets enclosing up to 2 internal helices, which includes most known
RNA structures.

Fig. 2. Large-scale description: ‘‘Crosslinked gel.’’ At large scales, we model
RNA secondary structures by replacing each constitutive net with a single
vertex. These vertices are connected by single-stranded and double-stranded
regions. The large-scale conformational entropy is evaluated assuming that
the vertices are connected by Gaussian ‘‘springs’’ whose mean squared elon-
gation in isolation equals the relaxed mean squared distance between the
connected nets in question. The conformational entropy of such a ‘‘Gaussian
crosslinked gel’’ is then calculated numerically by n 2 1 algebraic integrations,
where n is the number of vertices and hence nets on the secondary structure.
(In some cases, two vertices are connected by several stems, in which case we
treat them as springs in parallel and lump accordingly.) To better agree with
known structures as described in the text, we crudely incorporate excluded
volume effects at this large scale by redefining the equilibrium elongation of
the ‘‘springs’’ with an excluded volume exponent of 0.65 (vs. 0.5 for the ideal
chain).

Fig. 3. (a) Nucleation core exposed by shrinking up to four overlapping
stems. The two horizontal dashed lines highlight the complementary strands
of the stem whose formation rates are being evaluated. (b) Each position of
the nucleation core may lead to several transition rates corresponding to
different topologies.
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the latter can be shrunk from either end, which leads to
different topologies in the final state, Fig. 3b. The rate is
therefore labeled by the topologies of the two states it
connects.

We complete the calculation of the nucleation rates k1 5 k°
3 exp(2DG1ykT) using Gaussian chain statistics to determine
the one remaining free constant k° . 108 s21 from experiments
on an isolated stem-loop (5, 6). (In this case, there is no partial
unpairing of preexisting stems, so that the Arrhenius rate for
each placement of the nucleation core simply reads k°ays3/2,
where s is the length of the corresponding loop.)

Note that, for computation efficiency, the formation rates of
new stems involve only local adjustments in helices that directly
overlap with the core. For transition rates that remove a stem,
however, a global optimization over all of the other competing
stems that remain is first done to find the corresponding ground
state; the breaking rates k2 are then calculated from the
reformation rates of the initial stems, k1, as above, modified by
the Boltzmann weight between the two ground states, so as to
achieve detailed balance. It is computationally tractable to
globally optimize the free energy while evaluating breaking rates,
because the total number of such transitions is only a small
fraction of the number of all possible ways of nucleating new
stems. (For example, there are 90 possible helices for the
ribozyme in Fig. 4a and over 400 when the ‘‘attenuator’’ se-
quence is included, Fig. 4c.)

The outline of the final algorithm runs then as follows: For
each new structure visited along the folding path, we (i) optimize
the boundaries between the competing helices, (ii) recalculate all
transition rates (to add or remove single stems), and (iii) select

the next transition at random with a probability proportional to
its rate. This procedure is then iterated until the time-averaged
distribution of the sampled configurations appears stationary,
and folding statistics are accumulated by simulating many mol-
ecules (typically 30 to several hundred).

It happens frequently during the relaxation that the configu-
ration oscillates repeatedly between a few states, and only much
more slowly transits to a new configuration. These local kinetic
traps severely impact the efficiency of the code (19). Although
these traps can be quite complex, we have found it sufficient to
consider only two-state traps (which typically differ by one short
stem) for which we can analytically add the rates for all transitions
from either trap state to any third state. Thus, we can define a
composite move that exits the trap and preserves detailed
balance. Since this is exact (no matter how trapped the last two
configurations visited are), we in fact use these composite moves
continuously.

As the prediction of pseudoknotted structures is not yet
settled (3, 20), we have first tested our code on a number of
short molecules with proven structures. We obtain good
agreement for most examples from refs. 20 and 21. These
results are summarized here in the form of the free energy gap
predicted between the accepted pseudoknotted structure and
the first ‘‘excited state,’’ which differs by at least one helix. For
the following RNAs we find: potato leaf roll virus (22 kT),
simian retrovirus 1 (211 kT), murine leukemia virus (23 kT),
T4 gene 32 (20.8 kT), mouse mammary tumor virus (28 kT),
and for turnip yellows mosaic virus the accepted pseudoknot-
ted structure is only marginally higher (10.4 kT) than the
ground state we find. However, for tobacco mosaic virus
(TMV) the pseudoknotted phylogenetic structure appears to
be about 7 kT above the alternative nested ground state we
find, and this difference persists for plausible variations in the
physical and thermodynamic parameters, such as the helix
stacking interactions. Experimental results that probe TMV
refolding under the addition of Mg21 ions (22) suggest that this
discrepancy may be because of specific Mg21 interactions
beyond the thermodynamic parameters we used (12).

The current kinetic algorithm needs a few hours of compu-
tation on a standard PC to simulate the folding of 200- to
300-nt-long RNA molecules for several minutes. HDV is a
single-stranded RNA virus, which contains an 87-nt catalytic
piece (Fig. 4a) that refolds into an inactive conformation when
attached to a 128-nt attenuator sequence that is contiguous to it
in the genome (Fig. 4c) (7, 10). In the remainder of this paper,
we present a detailed numerical study of the folding kinetics of
this 215-nt-long sequence.

Results: Folding Paths and Regulation of the HDV Ribozyme
The HDV ribozyme and its attenuator sequence are appealing
test cases for our algorithm because extensive kinetic data exist
for the native sequence as well as many mutants (7, 8); the
functional self-cleaving ribozyme is pseudoknotted (Fig. 4a) and
active in vitro; and the alternative nonenzymatic conformation,
once paired with the attenuator (Fig. 4c), makes the folding
kinetics potentially relevant to the efficacy of viral replication in
vivo (7, 10).

When we simulated the 87-nt HDV ribozyme, the secondary
structure in Fig. 4a represents the lowest free energy state we
ever observed, and thus plausibly the globally stable state for our
parameters.¶ When quenched from a random coil configuration,
about 1y3 of the molecules folded within a fraction of a second
to the conformation in Fig. 4a, whereas the remainder were

¶We are currently unable to account for the short additional stem P1.1 observed in ref. 23,
as P1.1 would be intertwined with P1, P2, and P3 within an open-net-4, excluded from our
analysis (see Fig. 1).

Fig. 4. (a) The secondary structure of the HDV genomic ribozyme (7). (b) The
labeling of stems (l1, l2) and single-stranded sections (s1, s2, s3) for the pseudoknot
whose entropic free energy is given in Eq. 1; it corresponds to the main
pseudoknotted scaffold of the HDV ribozyme (a). (c) The secondary structure of
the ribozyme (black) plus attenuator (blue) as it presumably occurs in the HDV
genome, except during replication. It corresponds to the absolute free energy
minimum obtained by Zuker (ref. 13; http:yymfold2.wustl.eduy;mfoldyrnay
form1.cgi). Figs. 4, 5, and 7 are drawn by using RNAVIZ (15).
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trapped in nonnative conformations for up to a minute (escape
time consistent with a single exponential decay statistics). By
contrast, when folding occurred simultaneously with regular
chain synthesis at 50 ntys (i.e., the estimated rate for metazoan
RNA polymerase II) the fraction of misfolded molecules de-
creased to less than 10%. Interestingly, at a synthesis rate of 1000
ntys (the maximum rate for a T7 RNA polymerase used in most
in vitro experiments) the misfolded fraction increased to '30%.
Thus folding is more efficient when coupled to slow synthesis, a
fact noted for other systems (11, 24), which suggests that the
sequence codes for an efficient folding path, as well as a final
structure.

When folding occurs during synthesis, we have found a
characteristic bifurcation that occurs within the first '40 nt and
predicts with high probability whether the molecule in question
will be diverted into a kinetic trap when fully synthesized (Fig.
5; see legend for details). Molecules that present both P1 and P5
stems at this stage reach the native structure by the end of
synthesis (or shortly after).

Interestingly, at a number of other steps in the sequential
pathway, strong stems form that are not part of the final structure
but overlap significantly other strong downstream helices. Suc-

cessive exchanges of stability then occur during synthesis, and the
native stems eventually form without any large barriers appear-
ing on the path. For example, we have found that stems P5 and
P8 act as transient ‘‘folding guides’’ for the final structure.
Indeed, the early formed P5 is first replaced by the combination
of P8 and P3 when the sequence length is around 60 nt (Fig. 5).
But P5 then reappears (not drawn) once P4 has nucleated and
in turn displaces P8 by a simple ‘‘zipping–unzipping mechanism’’
(see Fig. 5). The final native stem to form is P2, which eventually
displaces P5 in favor of P3. We note that a stable P5 stem has
indeed been recently observed in truncated HDV ribozyme
molecules representing several stages along the HDV folding
path (see figure 3 in ref. 8), but the role of P8 remains to be
confirmed experimentally. Note that this sequential folding
process, circumventing large kinetic barriers, is also expected to
be fairly insensitive to a large range of synthesis rates, in
agreement with our observation (see above). This should ensure,
in particular, proper folding with nonconstant—e.g., sequence-
dependent—replication rates.

Further evidence that the native sequence is optimized for
a synthesis-driven folding comes from the complementary
mutations we have tried on P2 and P3, most of which perturb
the early optimized folding path, hence increasing the fraction
of transiently trapped ribozyme (e.g., C13zG82 3 A13zU82

('30%) or G17zC30 3 C17zG30 ('30%)). On the contrary,
complementary mutations in the top 3 bp of P1 have little
negative effect or even increase the fast folding fraction to
nearly 100% (e.g., G6zC32 3 A6zU32) because they do not
disrupt the early folding path (i.e., P0, P5, P1) while weakening
P6 with an internal mismatch.

As expected, however, the effect of a specific mutation is
difficult to predict a priori. An additional base pair added to
the top of P1 could act by means of the stem length and the
conformational entropy (25), but instead operates through the
alternative folding paths in Fig. 5. Indeed, a UzA base pair has
a minor effect on the folding kinetics, whereas adding a GzC
base pair at the same location increases the length of P6 by 2
bp and facilitates its nucleation ('30%) via a new ‘‘kissing
hairpin-loops’’ transition (26) from the stable intermediate
structure consisting of stems P0 and P5. It also lowers the free
energy of the trapped misfolded structure (283.6 kT) below
that of the catalytic one (280.6 kT), which may explain the
poor enzymatic activity seen in experiments (25).

Investigating for possible influence of the 20-nt-long sequence
upstream of the cleavage site (Fig. 4a), we observed that the
wild-type 59 tail (59-UUCCAUCCUUUCUUACCUGAU-39)
essentially behaves as an inert ‘‘spacer’’ preventing cross-
hybridization between the upstream sequence and the ribozyme.
However, a strongly mutated 59 tail can potentially prevent the
ribozyme from folding correctly (e.g., 59-UUCCAUCuUgUC-
UagCugGAU-39 strongly interferes with P1).

The ‘‘folding chart’’ in Fig. 6 allows one to visualize in a
single image the more complex folding pathways of the 215-nt
ribozyme plus attenuator sequence. For either pathway in Fig.
5, we find that essential single-stranded regions of the ri-
bozyme’s catalytic core hybridize with part of the attenuator,
as soon as it is being synthesized (Figs. 6 and 7). Thus for the
virus, there is a short window of times during which self-
cleavage must occur in the context of the ‘‘double-rolling-
circle’’ mechanism by which HDV replicates (7). Failure to
rapidly cleave with 100% efficiency should lead to the forma-
tion of a few mainly dimeric copies, which indeed have been
detected in vivo (10). The globular structure in Fig. 7 then
evolves on a time of several minutes to the linear structure of
minimum free energy shown in Fig. 4c.

Our complementary study of the HDV antigenomic ribozyme
(7) confirms recent experiments proposing an elongated P2 stem
(27). The lowest free energy configurations we find for this RNA

Fig. 5. The two competing sets of stems that define the rapid and trapped
folding pathways during synthesis. The native stem P1 will tend to nucleate
once the first 32 nt are made, provided the current configuration (not drawn)
consists of P0 and P5. However when the available sequence is between 26 nt
and 31 nt long—i.e., before P1 can nucleate—the alternative stem P6 can form
on the structure in conjunction with P09 (not drawn), and may then become
stabilized by another nonnative strong stem, P7. In this event, an inactive
misfolded ribozyme is eventually formed at the end of synthesis. It typically
consists of stems P6, P4, and P2 plus a sampling of other stems and nucleates
P1 only much later if the attenuator is not present. (The same three stems also
delineate the trapped species following a quench.) P8 acts as a ‘‘folding guide’’
for both pathways and is easily removed as soon as P4 nucleates and displaces
it (see last structures drawn).
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contain, however, a 1-bp mismatch and a 2-bp elongation on top
of P4. Although this extension overlaps the catalytic core of the
ribozyme, it is weak enough (ca. 25 kT) to be removed by
thermal fluctuations. However, if the mismatch is corrected

(e.g., G42zG753 C42zG75), the strain induced on the pseudoknot
by the longer and stronger P4 breaks P3, the breaking presum-
ably coinciding with the loss of enzymatic activity observed in
vitro (27).

Discussion
Although our code does relax to the accepted ground state for
a number of RNA molecules and provides plausible kinetic
explanations for a number of experiments, it is only a heuristic
tool. Stem free energies change by ;15% between different
releases of the parameter sets (http:yymfold2.wustl.eduy
;mfoldyrnayform1.cgi); we use only approximate parameters
for stacked helices; there is no excluded volume effect between
nearby single strands and stems; and all of the chemical
specificity of the three-dimensional structure is lost. Certain
results, such as the dynamic bifurcation and the transient
guiding stems we have found, are fairly insensitive to such
details, as they remain unchanged for plausible changes in
thermodynamic and structural parameters. But numbers such
as individual kinetic rates and the overall folding time can
easily be off by a factor of 10. Still, simulations promise to be
an important adjunct to the many detailed studies of RNA
folding now underway (8, 9), as they can reach comparable
times and rapidly generate hypothesis as to how sequence
changes affect structure and kinetics, in particular transient
guiding stems on the folding path.

For our simulations of the HDV ribozyme, we find that a
fraction of the molecules fold rapidly (i.e., by the end of
synthesis when the two processes occur simultaneously),
whereas the remainder are trapped. The distribution of folding
times for the trapped fraction is consistent with a single-
exponential decay statistics (i.e., standard deviation equals
mean), whereas the average folding time decreases with in-
creasing temperature. Both results are consistent with a single
thermally activated rate-limiting step required to exit the trap,
in contrast to the general downward trend with no large
barriers we have found for the main sequential folding path.
These are all issues that have arisen in protein folding (28, 29),
and our findings for the HDV ribozyme are similar to the
consensus for proteins.

Indeed, vastly more theory and simulation studies have been
devoted to the folding of proteins than to RNAs because of their
central place in biochemistry and medicine. Yet, the RNA
problem is technically simpler because the self-paired stems are
better defined energetically than the corresponding a-helices
and b-sheets of proteins. Independent experimental studies (1,
5, 9) also strongly support a processive folding kinetics for RNAs,
with relatively well-defined transition states and rates between
the intermediate folded structures. Hence, in comparison with
the much more cooperative folding dynamics of proteins, these
simpler folding kinetics of RNAs can be easily used in kinetic
algorithms such as ours, which ultimately provide more realistic
predictions on interesting time scales.

Such code can also be readily adapted to include a force
applied to the two ends of the molecule, hence modeling the
succession of structures realized in a mechanical unfolding
experiment. Measurements of force vs. distance under these
conditions may provide interesting insights on RNA structures,
but their interpretation will require theory. Finally, similar
kinetic simulations may also provide a quantitative understand-
ing of hybridization kinetics, which is an issue very relevant to the
performance of DNA microarrays (30) and the efficacy of
artificial antisense RNAs for therapeutics (31).

We thank M. D. Been, M. Newman, N. Socci, E. Westhof, and G. S.
Wickham for discussions. H.I. was supported in succession by Cornell
University, a Lavoisier Fellowship from the French Foreign Ministry, a
National Institutes of Health grant, and the Klaus Tschira Foundation.

Fig. 6. Chart of helices present in the ribozyme plus attenuator sequence as it
folds during and after synthesis for a molecule that folds via the catalytic folding
path in Fig. 5 (red), and a molecule following the main noncatalytic path in Fig.
5 (green). At each time, a point is marked for the 39 end of all helices present on
thestructure(withredandgreenslightlyoffset), thus isolatedpointsaretransient
helices and continuous lines, stable ones. Synthesis is complete at 4 s, and the
labeled stems follow the numbering of Fig. 5. The last intermediate structures
drawn in Fig. 5, when the top of P4 has just nucleated and starts displacing P8,
correspond to the time indicated by the arrow.

Fig. 7. The secondary structure corresponding to the red curve at 10 s in Fig.
6 (i.e., catalytic path). The native ribozyme stems are still present, but various
single-stranded regions (red) have already paired with the attenuator se-
quence (blue), presumably preventing further catalytic activity.
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