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Abstract
Simulations of evolution have a long history, but their relation to biology is questioned because
of the perceived contingency of evolution. Here we provide an example of a biological
process, adaptation, where simulations are argued to approach closer to biology. Adaptation is
a common feature of sensory systems, and a plausible component of other biochemical
networks because it rescales upstream signals to facilitate downstream processing. We create
random gene networks numerically, by linking genes with interactions that model
transcription, phosphorylation and protein–protein association. We define a fitness function
for adaptation in terms of two functional metrics, and show that any reasonable combination of
them will yield the same adaptive networks after repeated rounds of mutation and selection.
Convergence to these networks is driven by positive selection and thus fast. There is always a
path in parameter space of continuously improving fitness that leads to perfect adaptation,
implying that the actual mutation rates we use in the simulation do not bias the results. Our
results imply a kinetic view of evolution, i.e., it favors gene networks that can be learned
quickly from the random examples supplied by mutation. This formulation allows for
deductive predictions of the networks realized in nature.

1. Introduction

Evolution is a retrospective theory, it explains the similarities
among genes or organisms as a consequence of common
ancestry. However, if one wants to predict the sequence of
a protein that has a desired activity, or a gene network that
realizes some function, Darwinian evolution does not provide
an answer. The impediments to true prediction in biology
are (i) lack of a mathematical expression for the fitness, the
quantity to be optimized, (ii) ignorance of mutation rates and
(iii) inability to infer phenotype from genotype. In this paper
we will show how these difficulties can be overcome for the
problem of adaptation.

The choice of fitness (more accurately termed a fitness
function since it assigns a number to an arbitrary genetic
network) is analogous to setting up a genetic screen. It
defines the problem in quantitative terms. Our ignorance of
the mutation rates is circumvented by showing for the chosen
fitness function that there is a smooth monotone path leading
to at least a good local optimum in the fitness. So like a rock
tumbling down a valley, the bottom is unique even though the
path leading to it may have arbitrary jigs and jags.

1.1. Defining a proper fitness function

Genetic algorithms have become a standard component in the
toolbox of techniques for nonlinear optimization of a cost
function. They mimic biology by following a ‘population’ of
potential solutions that are ‘mutated’ by changing each one into
a related solution in a random way. The most ‘fit’ solutions,
as measured by the cost function, are replicated and replace
the less fit ones. The topography of the cost function and the
way mutations sample it control the convergence rate to an
optimum. If the topography is a funnel leading to a unique
minimum, convergence for any reasonable mutation process
is assured. For a ‘golf course’ with multiple local minima and
no cues about proximity to any one of them, there will be long
periods of neutral evolution and occasional trapping.

Both the fitness function and the mutation process are
hard to quantify in biology. For simulations, we need a
precise fitness function that can be evaluated for any system
even if far from optimum. The stock answer of reproductive
success is not helpful since it depends on too many unknown
factors, when in fact all we can hope to evolve is some
small part of an organism such as a signaling pathway. Our
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definition of fitness should be guided by a salient fact of organic
evolution that pathways do not evolve in isolation, but are
shared among many species and reused in many contexts. The
fitness function should select for the generic features of the
system, and ideally provide cues that will direct an arbitrary
genetic network along a path of continuous increasing fitness.
This both makes for efficient numerical search but also has
implications for how biological evolution may operate.

In some cases there is a natural fitness function, such as
visual acuity in the case of the eye [1], from which the authors
demonstrated a monotonic adaptive path from a photosensitive
patch to a compound eye. Another plausible fitness function
was segment number for somitogenesis [2]. Interesting clock
and bistable systems were obtained in [3] and particular
networks for adaptation in [4], but in both cases the choice
of fitness function was ad hoc.

More typical is the situation where multiple criterion
impinge on fitness and the tradeoffs among them are not
apparent and likely organism or context dependent. It is
not a matter of imposing additional numerical criterion on a
geometric quantity such as segment number (e.g., demanding
segments of a particular spacing or size). If biological clocks
evolved to anticipate light–dark cycles, how should one weigh
the persistence of the anticipation, the strength of the response,
its sensitivity to the phase of the light source and not its
amplitude, etc. To only reward the perfect circadian oscillator
would reduce the topography of the fitness landscape to a ‘golf
course’, and render a computational study either infeasible or
irrelevant to biology. Organisms certainly benefit from a less
than perfect clock.

Evolutionary computation has to be generalized to
optimize an entire class of fitness functions. For adaptive
circuits we can solve this generalized problem and show
there exists a path in the parameter space of our networks
that continuously improves both components of the fitness
function.

1.2. Adaptation in biology

It is convenient to describe adaptation as a feature of gene
network that converts an input, e.g., a ligand, into an output,
e.g., a transcriptional response. Adaptation occurs when a
network registers a transient response to a rapid jump of input
between two nearly constant states. Perfect adaptation ensues
when the output returns to precisely the same value whenever
the input is constant, no matter what its value.

A classic example of adaptation in sensory transduction
is the Ca-mediated desensitization of the photoreceptors in
vertebrates [5, 6] and allows us to perceive gradients over
a wide range of ambient illuminations. This is not perfect
adaptation in that we still sense the average light level.
The MAPK pathway when stimulated by a step in the EGF
concentration will generate a pulse in active ERK and then
return to near-background levels [7]. Both processes are
driven by negative feedback [8]. Bacterial chemotaxis exhibits
perfect adaptation, in that the tumble frequency is independent
of the mean chemo-attractant level [9]. Adaptation is useful
to the organism in that it extends the range of the sensory

Figure 1. Illustration of input and output relationships for a general
network. The (external) input of the network is displayed in dashed
red while the output is in green.

system. A quantitative analysis of biologically plausible
adaptive circuits was presented in [10] along with a refined
characterization of their dynamics. An evolution simulation
asks the converse question, what networks are preferred if
certain criterion are imposed.

1.3. Mathematical definition of adaptation

We simulate networks of interacting genes and proteins as a
system of differential equations. To evolve an adaptive circuit
within this system, we designate a prescribed time-dependent
‘input’ concentration, and a second ‘output’ concentration
from which the fitness is derived. The first requirement for
perfect adaptation is that for constant input I, the output should
tend to a constant O(I); so any fitness function should penalize
persistent time dependence.

Next, fix the concentration of the input to I1, far in the
past so O assumes a steady state O(I1), and at t = 0 change
I to I2, and follow O till it reaches a new steady state O(I2).
For adaptive networks, the deviation

!Oss = |O(I2) − O(I1)| (1)

should be small and ideally zero.
Although !Oss = 0 is necessary for perfect adaptation,

it is not sufficient, since the trivial network where O is
independent of the input satisfies the condition. So we also
have to impose that O varies if the input changes. We quantify
the change in O after the input I switches from I1 to I2 at t = 0,
in terms of

!Omax = maxt>0|O(t) − O(I1)|. (2)

This quantity defines the response of the network to a
change of the input. We do not care about the sign of the
response or whether it is monotonic. Intuitively, a bigger
response should correspond to a better fitness. More generally,
when our model input consists of a series of plateau, (1) is
the difference in O between the first and last time on each
plateau, and the maximum in (2) is taken over one plateau at
a time. Both functions should be averaged separately over all
plateau.

To sum up, a network is perfectly adapting if and only if

• it responds to the input: !Omax > 0;
• its steady states concentration does not depend on the

input, i.e. !Oss = 0.
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Thus, evolving adaptation requires the optimization of
these two quantities. Since fitness is one function we have to
combine these two quantities, e.g.,

fa = !Oss −!Omax, (3a)

fb = !Oss + ε/!Omax, (3b)

fc = (!Oss + ε)/!Omax, (3c)

fd = (!Oss + εOav)/!Omax, (3d)

where ε is a fixed number, small in comparison with typical
values of O, and Oav is the average value of O over the time of
simulation. Note by analogy with statistical physics we have
defined the fitness as a cost function to be minimized.

Any reasonable fitness function such as those in (3) favors
!Oss small and !Omax large but assumes different tradeoffs
between them. For example, an evolutionary path that is
monotone decreasing for one fitness function may not be
monotone for another, even if the optima are the same.

Still, some fitness functions are more meaningful than
others. For instance, (3a) and (3b) are clearly dependent
on the absolute value of the output. In the limit ε → 0,
fitness (3c) is dimensionless and therefore is less arbitrary. The
ε term has been added to prevent an ambiguous ratio of 0/0.
Once !Oss = 0, the ε term pushes !Omax to higher values.
Fitness (3d) is also dimensionless, but tends to select for big
responses relative to the average concentration of output Oav.
For random networks relaxing exponentially toward a steady
state, !Omax # !Oss , so that a ratio fitness, such as (3c)
and (3d), correctly assigns a (maximum) value 1 to all such
networks. Later in evolution, any increase of !Omax relative
to !Oss will be selected.

2. Results

Our evolutionary algorithm was described previously [2]. It
models transcription as a Hill function with three parameters:
a maximum rate, a binding affinity between transcription
factor and promoter and an exponent defining the nonlinearity.
The steps between transcription and the appearance of new
protein are modeled as a time delay [11, 12]. Proteins
can form complexes as defined by forward and backward
rates. We define a phosphorylation interaction between
kinase and substrate by a Hill–Michaelis–Menten forward
rate (with an exponent to model cooperativity) and a constant
dephosphorylation rate. Explicit formulae are given in the
appendix.

Mutations can create or remove genes, change the
topology of the interaction network by adding or removing
interactions or change parameters of existing genes and
interactions. A ‘population’ consists of typically 50 different
networks. After one round of mutation, the most-fit half of
the population is copied and replaces the remainder, and the
process repeats.

The input as a function of time is a series of level plateau,
whose values are log-normally distributed and whose average
duration imposes an upper bound on the timescale on the
network. The metrics !Oss and !Omax are averaged over
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Figure 2. Typical evolutionary trajectories for fitness functions
(3a), (3b) and (3d) from top to bottom. The fitness contour lines are
smooth and equally spaced with red high and blue low as labeled.
A typical evolutionary trajectory is shown in green evolving toward
low values and ending at the blue cross. Almost perfect adaptive
networks are evolved in 400 generations with similar topologies for
all the three functions.

all the plateau and used in equations (3). There is an overall
timescale in our simulations that will adjust to fit the response
within the duration of the steps in the input time course. This
feature of the environment is directly mapped into the evolved
parameters by any of our fitness metrics.

Similar results were obtained for all fitness functions in
(3) as illustrated in figure 2. We next discuss the two classes
of networks obtained and then show that they do not depend
on the fitness function, mutation rates or the statistics of the
inputs.

2.1. Type I: buffered output type

Example: figure 3
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Figure 3. Network topology of type I. Sketch of the topology of the network with the typical behavior of the output (green) under the
control of a random input (dashed red) as a function of time (parameters for this simulation are ρ = 1, ε = 2, δO = 1, d = 0.5, δC = 0 and
f (O) = O). Only the output undergoes constitutive degradation in the limit of perfect adaptation.
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Figure 4. Network topology of type II. Sketch of the topology of the network with the typical behavior of the output (green) under the
control of a random input (dashed red) as a function of time (parameters for this simulation are ρ = 1, ε = 0.1, δO = 1, d = 0, δR = 0 and
f (R) = R).

Ȯ = ρ − εf (O)I + dC − δOO, (4)

Ċ = εf (O)I − dC − δCC, (5)

where f is an arbitrary function describing the coupling of the
input to the output (f (O) = O for protein–protein interactions
or f (O) = On

/(
On

0 +On
)

for catalytic interactions; both kind
of networks were obtained) and ε is our generic symbol for
the strength of interaction. Selection forces δC to zero.

2.2. Type II: ligand–receptor type

Example: figure 4

Ṙ = ρ − εf (R)I + dO − δRR, (6)

Ȯ = εf (R)I − dO − δOO. (7)

Computational evolution sets δR to zero.

3. Why are these topologies selected?

We need to show both that the final network is adaptive
and explain why the evolutionary algorithm is able to find
it independently of the mutation parameters. Let us consider
a sufficiently general equation of the type I networks:

Ȯ = ρ − εOI + dC − δOO, (8)

Ċ = εOI − dC − δCC. (9)

Now, in this problem, there is a clear correspondence
between the physical parameters in the equation and the two
metrics comprising the fitness functions:

• !Omax > 0 iff ε > 0: there must be an interaction
between O and I to make the output depend on the input;

• at steady state, Oss = ρ

δO + δC εI

d+δC

, so that !Oss = 0 for all I

iff δC = 0 or ε = 0.

Any plausible fitness function for this problem should
increase !Omax: it is therefore obvious that evolution should

4
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Figure 5. Variation of !Omax and !Oss with parameters for the type I networks. The left panel shows the parameter sampling used in the
simulations with color indicating values of δC as seen in scale bar. Smaller sizes correspond to smaller values of δC . The right panel shows
typical trajectories while varying only one parameter, δC , at fixed epsilon (dashed, ε = 0.1, 0.3, 0.5, 1) and ε at fixed δC (solid,
δC = 0, 0.1, 0.3, 1), the other parameters being held constant. Arrows indicate the directions of increasing δC and ε.

choose ε > 0. In other words, this interaction and thus the
network topology will be selected as the first step of evolution.

It can also be seen that the fitness should decrease
monotonically as δC decreases to 0 from the expression for
Oss when expanded for small δC :

!Oss # ρ

δ2
O

δC

d
ε|!I |.

In the opposite limit of large δC, Ċ will be close to 0, so
a quasi-equilibrium value of C can be substituted into the O
equation:

Ȯ = ρ − εOI − δOO. (10)

It is clear from this equation that O simply relaxes
exponentially toward its steady state, so we have

!Omax = !Oss # ρε|!I |
(δO + εI )2

. (11)

Since by definition !Omax ! !Oss , the equality in (11)
clearly corresponds to a (bad) limiting case; any move that
breaks the equality of!Omax and!Oss should be evolutionary
favorable. Thus, selection must decrease δC to decrease!Oss

(and increase the relative value of!Omax). This is also seen on
the left panel of figure 5 when all parameters are randomized,
adaptive networks are obtained only for low values of δC .

We can also compute an estimate of the optimum!Omax.
Let us suppose that δC = 0. The network will have a maximum
response if O relaxes quickly (δO + ε $ 1), while C relaxes
very slowly (d % 1) toward its steady state value. Shortly
after the jump from I1 to I2, when O reaches its maximum
Omax, C has not moved appreciably from its pre-jump value,
C1. Using Oss = ρ/δO the stationary value of O, one has

0 = ρ − εOmaxI2 + dC1 − δOOmax

= δOOss − εOmaxI2 + εOssI1 − δOOmax,

and one gets

Omax = Oss

δO + εI1

δO + εI2
, (12)

!Omax # −Oss

ε

δO + εI2
!I. (13)

Note that !Omax is an increasing function of ε under our
assumptions. However, the typical timescale of response will
be controlled by d, which cannot be too slow if we want a
quick response (i.e., within the duration of the plateau I2).
The statistics of the plateau duration enter here since a larger
!Omax may be realized by tolerating an incomplete response
for very short plateau so that d can be smaller and increase the
response from more typical plateau.

From the right panel of figure 5, we can see that for typical
parameters there is no tradeoff between increasing!Omax and
decreasing !Oss : increase of !Omax is not only relative to
!Oss , but also absolute all other parameters being fixed, i.e.
by decreasing δC , one moves toward the upper-left corner of
the plane displayed in figure 5.1 This is the reason why any
fitness function tending to maximize!Omax while minimizing
!Oss should be able to select for this network.

From all these considerations, one can predict that
(figure 5)

• evolution will select the topology first since
ε > 0, !Omax > 0, and thus create the other
parameters on which selection can act,

• once the topology is selected, evolution should decrease
δC , since !Oss = 0 iff δC = 0 and since decreasing δC
both increases !Omax and decreases !Oss ,

• evolution should increase ε and adjust the various rates
to maximize !Omax, in response to features of the input
such as its typical timescale.

Similar arguments can be given for the other network
topology (figure 4) that evolved for which a sufficiently general
system of equations is

Ṙ = ρ − εRI + dO − δRR, (14)

Ȯ = εRI − dO − δOO. (15)

Now, in a similar way

• O is defined as the reaction between R and I so trivially
!Omax > 0 iff ε > 0, and there will be a response of O
to I;

1 The increase in !Omax when δC decreases can made plausible by taking
the ratio between equations (11) and (13), to yield 1 + εI/δO which is always
bigger than 1.
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Figure 6. Variation of !Omax and !Oss with parameters for the type II networks. The left panel shows the parameter sampling used in the
simulations for different values of δR . The panels follow the same conventions as in figure 5.

• at steady state, Oss = ρ

δO+ δR(d+δO )

εI

, so that!Oss = 0 for all

I iff δR = 0.

Given the interaction, it is very easy to evolve parameters
to get an adaptive network: as before, it is clear that !Oss is
an increasing function of δR , so that one has to minimize δR
to minimize the fitness. When δR is large the R equation is
at quasi-equilibrium, so R is a linear function of O and the O
equation describes exponential decay to its steady state. So
reducing δR also increase !Omax with respect to !Oss .

Now, if δR = 0, again one can estimate!Omax. Assuming
that O responds more rapidly than R, then R will still be
approximately R1 when O attains its maximum Omax and
Ȯ = 0. So we can solve for Omax:

0 = εI2R1 − dOmax − δOOmax

= I2/I1(d + δO)Oss − (d + δO)Omax,

i.e.

Omax = (I2/I1)Oss

or !Omax # Oss!I/I1.
This represents a clear physical limit on the maximum

value O can reach for any set of parameters. Thus evolution
will favor rapid O and slow R responses, which can be realized
by several different parameter combination. Again, there is no
competition between minimizing!Oss and increasing!Omax

in figure 6.2

The shapes of the ε and δR contour lines in figure 6 are
partially due to the breakdown in the quasi-static assumptions
made above. For δR ∼ 0, increasing ε decreases the response
time of R and thus allows !Oss more time to reach its
asymptotic value of 0. But a more rapid response of R
limits the maximum excursion of O and thus !Omax. For
large δR , the curve parameterized by ε is double valued over
!Oss . The upper branch has the same rational as for small δR .
On the lower branch for small ε, the system behaves as if O is
a function of I and thus !Omax and !Oss are proportional.

2 In the limit of big δR , it is clear from equations (14) and (15) that R, O and
therefore !Omax are zero so one has to decrease δR to have nonzero !Omax.

4. Networks with constraints on the types of inputs

The previous examples did not place any restrictions on the
types of input, and the evolution selected an input that could
either participate in a protein complex or act catalytically, the
input was never a transcription factor. What happens if we
constrain the input to act transcriptionally but let evolution
define all other parameters?

Again we found adaptation, with one predominant
topology shown in figure 7 along with the fitness as a function
of time.

The general equations of these network are

Ȯ = f (I)(t − τO) − εRO + dC − δOO, (16)

Ṙ = g(I)(t − τR) − εRO + dC − δRR, (17)

Ċ = εRO − dC − δCC, (18)

where we make explicit the temporal lags τO, τR between the
protein concentration at the promoter and the appearance of
new protein.

4.1. Why is this topology selected?

Since three interactions are needed to build this network versus
only one for the type I and II networks, it was necessary to
constrain the type of input to eliminate the latter two networks.
It is less obvious why there is a downward path in fitness
favoring it. As before, since evolution favors !Omax > 0,
the first mutation will be for the regulation of I by O. Then a
neutral mutation can create another protein R under the control
of I. We then have to show why a protein–protein interaction
between O and R (i.e. ε > 0) is favorable.

At steady state, one clearly has the following
relationships:

0 = f (I) − O

O + λ
g(I) − δOO, (19)

with λ = δR(d+δC)
δCε

. For small ε (large λ), one therefore has at
lowest order

Oss # f (I)

δO + g(I)/λ
# f (I)

δO

(
1 − g(I)

δOλ

)
,

6
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Figure 7. Topology of evolved networks when the input is a transcription factor. Right panel: typical evolution of fitness (3d) for this
simulation. The first plateau occurs when activation of the output by the input is selected. When the protein–protein interaction appears, the
fitness drops further and parameters are optimized to reach perfect adaptation.

so that

!Oss #
∣∣∣∣

(
f ′(I )

δO
− g(I)f ′(I ) + f (I)g′(I )

δ2
Oλ

)
!I

∣∣∣∣ .

From this expression, one clearly sees that !Oss is
reduced for ε > 0 if f and g are both increasing or
decreasing functions of I. This is assumed by our algorithm
(and accords with biological norms) since most transcription
factors (together with cofactors, and absent any covalent
modifications) act either as activators or repressors.

To evaluate Omax, we evaluate (16) and (17) in the quasi-
static limit and assume for the lag times τO < τR , so that O
responds before R does and returns O to the steady state (when
the opposite inequality between the lag times applies, it can
be shown that !Omax = !Oss):

Omax = f (I2)

δO

(
1 − g(I1)

δOλ

)
,

(20)
!Omax # f ′(I )

δO

(
1 − g(I)

δOλ

)
!I

or

!Omax

!Oss

#
1 − g(I )

δOλ

1 − g(I )
δOλ

− g′(I )f (I )
δOλf ′(I )

. (21)

Because g′(I ) and f ′(I ) have the same sign, !Omax >

!Oss . So this evolutionary move increases !Omax relative to
!Oss . However, there is an implicit tradeoff in that !Omax

decreases from its value with ε = 0. Both fitness functions
(3c) and (3d) avoid this problem since they score just the ratio
of !Omax and !Oss .

Once this topology was selected, we verified many times
numerically that perfect adaptation follows on a decreasing
fitness path (see figure 7 for a typical example). Again
this requires one species to be stable, i.e. δO = 0, and the
parameters in g(I) and f (I) changed so that g(I) = µf (I).
Then Oss = λ/(µ − 1). The response is much stronger if
the time lag in the O equation τO = 0, while the lag in the

R equation is large. When combined with g(I) = µf (I) the
input to the O equation becomes a finite time difference (cf
equation (19)). However, if the input does not vary over too
wide a range, it is possible to have approximate adaptation
if δO is nonzero for some specific values of f and g (see
figure 8 for examples of both situations). Plausibly a larger
region of parameter space is compatible with approximate
adaptation than the exact variety.

5. Extensions to more general networks

Subnetworks with the topology of types I and II can evidently
be found in more complex circuits, but there is rarely specific
evidence that their parameters are in an adaptive regime.
We have obtained elaborations of the basic types which can
appreciably amplify the response. Figure 9 generalized the
type I network and obeys the equations

Ȯ = ρ − f (O)I + dCC − δOO, (22)

Ċ = f (O)I − dCC − Ig(C) + dDD, (23)

Ḋ = Ig(C) − dDD. (24)

A generalization of type II networks, figure 4, replaces the
output by a transcription factor which drives the new output
species (figure 10). If the parameters in the transcriptional
interaction are adjusted properly, the output can be made to
respond to only upward jumps in the input.

5.1. General adaptive networks

Reference [10] classifies adaptive networks loosely as feed
forward where one input activates two parallel pathways
which combine to generate an output, or feedback where the
output negatively regulates itself. The feedback can either
promote the decay of the output or block its activation by
the input or both. Activation of a phosphatase is a common
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Figure 8. Behaviors of evolved networks from (16), (17) and (18). Left panel: dynamics for an example where non-linearities are different
in f and g. Parameters are f (I) = 0.6/(1 + I/0.54), g(I ) = 0.96/(1 + (I/0.7)1.4), δ0 = 0.18, δR = 0.14, ε = 0.9, d = 0.3, δC = 0.8,
τO = 0.8 and τR = 16. Right panel: example where nonlinearities on f and g have evolved independently to be very similar. Parameters
are f (I) = 0.4I 4.4/(0.674.4/ + I 4.4), g(I ) = 0.98I 4.2/(0.684.2/ + I 4.2), δ0 = 0.01, δR = 0.09, ε = 0.8, d = 0.4, δC = 0.8, τO = 0 and
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way to deactivate pathways that signal by phosphorylation
and receptor deactivation blocks further input after pathway
activation.

Our network in figure 7 is loosely feed forward, the input
activates the output and a second species, and the protein–
protein interaction compares them. It actually implements
a finite time difference of the input, so constant inputs
produce no response. Most of the networks in [10] are
based on phosphorylation–dephosphorylation, so the total
concentration of any protein is constrained which makes it
more difficult to achieve perfect adaptation.

Our type I and II networks are best understood as buffered,
there is a continual production and decay of protein, pinning
the output to a fixed value irrespective of the input, provided
it is constant in time. A change in input transiently affects the
production or decay rates of the output and therefore elicits
a response. Output buffering is accomplished by the other
variable in the network which records the absolute level of the
input. In the type I networks C ∼ I , while in type II R ∼ 1/I .
These networks parse the input into its derivative and mean
amplitude.

A potentially biologically relevant distinction between the
type I and II networks is how they respond to large jumps in
input. The response of the former is ∼I2 − I1 (in the limit of
large δO), while the latter respond as ∼I2/I1, i.e. linear versus
logarithmic.

A generalization of networks of types I and II considers
a set of species Oi that are inter-converted at rates governed
by I, and which when summed satisfy

∑
Ȯi = ρ −

∑
δiOi. (25)

At steady state, we have
∑
δiOi = ρ, so this specific

weighted sum of Oi is adaptive. To capture this sum
into a single variable would require implementing the decay
processes by some common interaction (e.g. protein–protein
complex formation). The concentration of the common
reactant would then itself adapt. Note that the concentration
of any Oi with a nonzero decay constant in equation (25) is
uniformly bounded for all values of I. In the type I and II
networks, the designated adaptive output was one of the Oi in
the sum, so the decay rate of the remaining variable had to be
zero for adaptation. Thus nothing constrains the non-adaptive
variable to be uniformly bounded irrespective of input level,
and as already noted C ∼ I in type I, while R ∼ 1/I in
type II.

6. Discussion

There is a large literature on ‘digital life’, compact programs
that increase in copy number, mutate and complete for
resources in a biologically inspired fashion [13, 14].
Evolutionary simulations also purport to illuminate more
general issues of complexity, robustness and evolvability in
biology [15–17].

Our focus is much more on engineering, namely specific
differential equation models that perform specific tasks. For
the results to be biologically credible requires a demonstration
that the fitness function is realistic and the mutation rate

parameters do not matter. The mathematical expression of
the fitness function should be as general as possible and omit
numerical constants, other than those that define scales of time
and concentration.

To understand the space of plausible fitness functions, it
is very helpful to parameterize it with multiple metrics. For
vision, both acuity and brightness play a role, but their relative
weight depends on the animals lifestyle [1]. For adaptation
we choose conditions (1) and (2). Additional less important
criterion might include a rapid response, which we imposed
implicitly by randomizing the duration of the constant plateau
in the input function, and limits on the total amount of protein
used in the network, which we ignored. We assume then that
for a particular network, organism and environment the true
fitness is some function of these metrics. Mutations that
improve all metrics should clearly be accepted. When
tradeoffs are necessary, we need to pause and enumerate the
limiting networks for which no further improvements in all
metrics are possible. For adaptation this last step was not
necessary, both metrics could be satisfied simultaneously.

A single fitness function that may seem natural for
adaptation just forces O to behave as İ + cst , by means of
a dimensionless linear correlation

1 − r(O, İ ) = 1 −
∣∣∣∣∣

〈Oİ 〉 − 〈O〉〈İ 〉
√

(〈O2〉 − 〈O〉2)(〈İ 2〉 − 〈İ 〉2)

∣∣∣∣∣ . (26)

Its deficiencies from our perspective are that it favors
an overly specific linear correlation between the instantaneous
derivative of I with O at the same time. With a more continuous
input time course, we have seen that (26) gives rise to networks
of types I and II, but the amplitude of the response was free,
not optimized, and in many cases very small.

Once a fitness space is defined in terms of several metrics,
we can argue for the irrelevance of mutation rates if there is
a monotone decreasing path to the desired state. If there are
bifurcations in the path, and the fitness improves along both
branches, then both arms have to be followed, since in reality
the branch chosen will depend on the relative rates, which are
unknown. On a serial path, the mutation rates only matter
for the overall time, which is of no interest. When positive
selection directs the parameter choice in a model, ‘parameter
tuning’ is no longer a pejorative, it is how nature works.

Incremental evolution and arguments about the efficacy
of positive selection suppose small mutational changes in the
gene network. To check our analytic arguments we have
run our simulations in this mode. But all adaptive networks
were also obtained by taking random parameters (within fixed
bounds) for each mutation. We can then argue that adaptive
networks occupy a nonzero volume of parameter space. Of
course a parameter cannot be set exactly to zero by random
sampling, but the network can get close enough to give a
good fitness. Small genetic changes can have many variable
effects on parameters, e.g. there are dominant negative point
mutations.

We evolved small adaptive networks, e.g. (3), (4) that
can be inserted into larger gene circuits in any context, but
it is often not clear if they occur with parameters that render
them adaptive. One case where rates are known are G-protein
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receptor kinases [18, 19]. They are very specific for activated
receptors, and lead to the binding of arrestin and subsequent
endocytosis. Thus they fall into our type II class with δR = 0.
If the cell receives stimuli with a repeat time much shorter
than the recycling time of the receptors, then there will be an
average steady state and the recycling process would satisfy
our assumption of constitutive production (e.g., the ρ term in
(14)). However, one instance of G-protein signaling that has
been quantified does not exhibit adaptation [20].

Prior work on adaptive networks includes a large literature
on bacterial chemotaxis [21–25], which is much more complex
than anything we have evolved. Bacteria can chemotax over
a huge, 105 range in ambient ligand levels and do so in
part by receptor clustering [26] which is not included in our
algorithm (though we can evolve receptor dimerization prior to
activation). In addition, there is probably considerable signal
amplification happening along the pathway from receptor to
motor, and molecular noise could well be an important factor
in defining the network. We have only evolved deterministic
equations here, but could easily generalize to stochastic ones.
Other specific features of the Escherichia coli chemotactic
network, such as the four-receptor methylation states, are not
necessary for adaptation; two will suffice. It remains an
interesting question whether if we took the known network
topology and evolved just the parameters from a random
starting point, adaptation would emerge. There are many
constrained parameters in all existing models: for instance
methylation and demethylation rates are assumed independent
of the methylation state, fully methylated receptor are always
active, fully demethylated receptors are inactive, etc.

Soyer et al [4] evolved parameters with a fitness function
correlating the derivative of the input with the output (and
therefore similar in principle to (26)) for a phosphorylation
network with fixed topology. Iglesias and co-workers [27, 28]
wrote down several quadratically nonlinear adaptive systems
in two variables that encompass our type I and II models in
certain limits. They did not consider their evolution.

7. Outlook

More refined simulations of adaptive networks are possible
by imposing more criteria on the selection. One can model
stochasticity due to small numbers of molecules and then
impose a cost based on the amount of protein used [29].
In stochastic simulations, selection for amplification can be
combined with adaptation, with obvious relevance to signal
transduction. One can also ask for adaption that minimizes
the rates of protein production and decay to which we did not
assign a cost. The questions and approach remain the same:
are there obligatory tradeoffs between the multiple criterion,
and can an adequate solution to the problem be achieved by
stepwise positive selection.

Evolution driven by selection is fast, as Darwin
understood intuitively, and [1] made explicit for the eye.
The alternative metaphor of multiple fitness peaks created
by epistasis makes transitions much more contingent on
unknowable parameters implicit in moving through fitness
valleys.

With the exception of [2], all efforts we are aware
of to evolve simple genetic networks do not control for
biases implicit in the fitness function and the mutation rates.
Adaptation has provided a clear illustration of how to treat a
family of fitness functions, and an example where mutation
rates demonstrably do not matter for the final outcome.
If pathways in developmental biology can be recovered in
general terms by our methods, it implies that evolution selects
for structures that can be learned rapidly from the random
changes supplied by mutation. Better structures that cannot
be reached incrementally are invisible. Evolution recast as a
search for networks that can be found by incremental selection
may become a deductive theory.
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Appendix A. List of interactions with equations

The following table summarizes all possible interactions that
our algorithm can choose, with corresponding equations and
ranges of variation for parameters:

Authorized
range of

Example of parameters
interaction Equations variation

Degradation of
protein A

dA
dt

= −δAA δA ∈ [0, 1]

Unregulated
protein B
production

dB
dt

= ρB ρB ∈ [0, 1]

Transcriptional
regulation of
protein B by
protein A

dB
dt

= ρB
1

1+(A(t−τB)/A0)n
A0 ∈ [0, 1]

n ∈ [−5, 0] for
activation
n ∈ [0, 5] for
repression
τB ∈ [0, 20]
ρB ∈ [0, 1]

Dimerization: A
and B form a
dimer C

dA
dt

= −εAB + dC ε ∈ [0, 1], d ∈
[0, 1]

dB
dt

= −εAB + dC
dC
dt

= εAB − dC

Phosphorylation:
K phosphorylates
protein A into
protein A∗

dA
dt

= −εK (A/A0)n

1+(A/A0)n
+ dA∗ ε ∈ [0, 1]

dA∗

dt
= εK (A/A0)n

1+(A/A0)n
− dA∗ d ∈ [0, 1]

A0 ∈ [0, 1]
n ∈ [0, 5]
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When multiple transcriptional activators are present, their
combined output is defined by the maximum of their activities.
Repressors are combined multiplicatively. This is analogous
to using an OR between activators and an AND between
repressors in discrete systems.

All these interactions are combined to create the final
equations. Suppose for instance that P is repressed by R,
activated by A1 and A2 and phosphorylated by K, the P reaction
rate would typically look like

dP

dt
=

(
max

[
An1

1

An1
1 + (A1P )n1

,
An2

2

An2
2 + (A2P )n2

]

× ρP

1 + (R/RP )n3

)
(t − τP )

− εK
(P/P0)

n
4

1 + (P/P0)
n
4

+ dP ∗ − δP P . (A.1)

Appendix B. Algorithm overview

The strategy is to evolve genetic networks by repeated rounds
of selection, growth and mutation, and is very similar to our
previous works [2, 3].

Typically 50 different networks are followed in parallel.
At each step of the algorithm, differential equations
corresponding to each network are integrated with random
inputs as described in the main text. Then, the fitness function
is computed from the final state of each network.

After the fitness function is computed, the 25 best
networks are retained (selection), copied (growth) and mutated
(mutation). Mutations are chosen randomly from among the
following types:

• creation or removal of an existing gene,
• creation or removal of any regulatory linkages

(transcriptional regulations, protein–protein interactions,
phosphorylations),

• change of any kinetic parameter,
• change of the reporter proteins on which the fitness

function is computed (i.e. change of the output).

Kinetic parameters are changed by resampling uniformly
from a predefined range from 0 to a maximum of O(1) times
arbitrary constants defining the units of time and concentration.
Mutations that change topology (add or remove a gene or
interaction) occur at one-tenth the rate of parameter changing
moves. As explained in the main text and described earlier
[2], results are insensitive to mutation rates. The degradation
rates in particular never converge to their upper limits.

After the mutation step, the entire process is iterated. A
‘generation’ is one iteration of this selection/growth/mutation
process. Since the creation of genes and interactions are
separate mutations, a gene may be created which has no
effect on the output and thus a neutral change. This gene
may disappear in subsequent generations, or may be linked by
an interaction to favorably affect the output. It will then be
favored by selection and may ultimately fix in the population.

We used a simple Euler algorithm for time integration,
to simply take into account transcriptional delays. The

integration time step was typically 10% of the minimum
timescale set by the kinetic parameters (i.e. for most cases
since the range for degradation constants and most kinetic
parameters is [0, 1], the time step used is 0.1).

Specific tools have been developed in PYTHON to define,
encode and modify genetic network structures and evolution
parameters. A PYTHON translator has been developed to
automatically write small C programs encoding the dynamics
of each network, compile and run it to integrate equations and
compute the fitness function. This computational strategy was
used to minimize the overall computational time for evolution.
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