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Segmentation is a common feature of disparate clades of metazoans, and its evolution is a central
problem of evolutionary developmental biology. We evolved in silico regulatory networks by a
mutation/selection process that just rewards the number of segment boundaries. For segmentation
controlled by a static gradient, as in long-germ band insects, a cascade of adjacent repressors
reminiscent of gap genes evolves. For sequential segmentation controlled by a moving gradient,
similar to vertebrate somitogenesis, we invariably observe a very constrained evolutionary path or
funnel. The evolved state is a cell autonomous ‘clock and wavefront’ model, with the new attribute
of a separate bistable system driven by an autonomous clock. Early stages in the evolution of both
modes of segmentation are functionally similar, and simulations suggest a possible path for their
interconversion. Our computation illustrates how complex traits can evolve by the incremental
addition of new functions on top of pre-existing traits.
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Introduction

Although only a minority of the around 30 bilaterally
symmetric animal phyla display a segmental anterior–posterior
body plan, examples can be found in each of the three major
clades of bilaterians (Tautz, 2004). Thus the question, did
segmentation appear once in some putative ‘urbilaterian’ and
was then lost from most phyla or did it evolve several times?
The great variety of embryonic patterning mechanisms found
among insects, annelids, and vertebrates argues for the later
alternative. The appearance of similar genes in the segmenta-
tion networks of diverse phyla (Peel et al, 2005) raised the
question of whether this was independent recruitment or
common ancestry. In this study, we simulate the evolution of
transcriptional regulatory networks subject to a fitness
function favoring segments. We find the repeated emergence
of networks sharing a common structure that resembles what
is observed in nature.
The segmented bodies of insects and the somites of

vertebrates are the two best characterized segmentation
networks. Insects divide into long-germ band species such as

Drosophila that create all segments in parallel, and short-germ
species such as Tribolium that segment the head and thorax
first and pattern the abdomen later, together with the
elongation of the posterior growth zone (Liu and Kaufman,
2005b). Segmentation is under the control of morphogen
gradients, for example, the anterior activator bicoid (bcd) in
Drosophila that is established maternally. Segments of long-
germ band insects are carved frombroad domains of activation
by short-range repression due to gap genes (Rivera-Pomar and
Jäckle, 1996). The genes responsible for these patterns can
change, most famously bcd is not present in other long-germ
band insects such asmosquito, though its functions of anterior
activation and translational repression of caudal (cad) mRNA
are subsumed by other genes (Liu and Kaufman, 2005b).
The segmented structures of the vertebrate body, such as the

vertebrae and skeletal muscles arise from the somites, blocks
of paraxial mesoderm cells partitioned into anteroposterior
domains by segmentation of the pre-somitic mesoderm (PSM).
Somites are produced from the posterior growth zone or tail
bud (Pourquié, 2003), through the interaction of time-periodic
gene expression or a ‘clock’ with a morphogen wavefront that
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moves along with posterior growth, as insightfully proposed
30 years ago by Cooke and Zeeman (1976). Candidates for the
morphogen include signaling molecules such as FGF8
(Dubrulle and Pourquié, 2004) and Wnt3a (Aulehla et al,
2003). While many cycling genes are known, including a
homolog to the Drosophila pair-rule gene hairy (Dequéant
et al, 2006), much less is known about the segmentation clock
than other genetic oscillators such as the circadian clock. The
transition between the oscillating posterior PSM and the more
anterior segmented part is also still under investigation
(Morimoto and Saga, 2005).
We have previously designed an evolutionary algorithm

(François and Hakim, 2004) that generates networks of
interacting genes and proteins that implement a predefined
function in a single cell. The simulations successfully
produced circuits very similar to circadian clocks when subject
to selection that favored periodic behavior. We evolved
segmentation in silico using a suitably adapted version of this
procedure to investigate its possible origin andmechanisms. In
the following, we show that for a static morphogen gradient,
segmentation networks evolve toward cascades of repressors.
When the gradient becomes dynamic, they evolve toward
molecular networks implementing a ‘clock and wavefront’
mechanism in a new way.

Evolution in silico

The evolutionary procedure is similar to the one described in
François and Hakim (2004). The strategy is to evolve genetic
networks by repeated rounds of selection, growth, and mutation.
The algorithm evolves a population of transcriptional

regulatory networks. We represent the binding of a transcrip-
tion factor A to the regulatory region of gene encoding a
protein P by a Michaelis function, with an equilibrium binding
constant, AP and a Hill coefficient n to represent cooperative
effects. A gene is described by a maximum protein production
rate, SP, a time delay, tP, (to represent all the steps between
transcription and the appearance of new protein (Lewis, 2003;
Monk, 2003)) and a decay rate, dP. The rate of protein
production defined by the regulatory interactions in Figure 1 is
described mathematically as follows:
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When multiple activators are present as in Figure 1, their
combined output is defined by themaximumof their activities.
Repressors are combined multiplicatively. This is analogous to
using an OR between activators and an AND between
repressors in discrete systems. Gene regulation is vastly more
complex than our simple model, yet if one were to measure
protein production in response to changing levels of activators
and repressors, the trends would be captured by our model.
Each network is evaluated in an ‘embryo’, which consists of

a linear array of cells (typically 100) sharing the same genetic
network. The embryo is one-dimensional: there is only one cell
for each anteroposterior position x along the embryo. Cells are
independent and cannot communicate with each other. A
protein G provides positional information to these cells. We
impose the dynamics of this ‘effector protein’, which we
assume to reflect the effect of a morphogen gradient. For
simplicity, we call G the morphogen in the following. The only
difference between cells in the same embryo is through their
exposure to G, which is a prescribed function of x and the same
in all embryos. A reporter gene E, whose product defines the
segments, is introduced into the system. Selective pressure
acts on the final profile of this protein.
Integration of the gene network equations in each embryo

then allows us to rank the genetic networks according to a
predetermined scoring or fitness function that counts the
number of boundaries in the profile between low and high
states of E (see below).
A hundred networks are followed in parallel. The first

generation network for all the simulations is the morphogen G
and uncoupled from it the reporter E. At each step of the
algorithm, after the fitness function is computed, the 50 best
networks are retained; then each is copied and mutated.
Mutations can create or destroy genes, add or remove
transcriptional regulatory linkages (e.g. G activates E), and
change any parameter. After the mutation step, the entire
process is iterated. A ‘generation’ is one iteration of this
selection/growth/mutation process, and corresponds to many
generations in a real organism since we are only concerned
with mutations in the one network under study. An overview
of the algorithm is provided in Figure 2.
The fitness function is a crucial ingredient in our evolution

of segmentation. Darwin originally proposed that a complete
eye could have evolved from a simple sensor if gradual
changes increased the ability to derive information about the
environment from light and were inheritable (Darwin, 1859;
Nilsson and Pelger, 1994). This argument potentially applies to
any complex trait; if there is a sequence of small steps each
increasing the fitness that lead to the desired trait, then
evolution can be rapid. It thus appears reasonable to assume
that segmentation arose from the potential benefit of more
specialization and modularity in the body plan.
To test this scenario in our computations, segmentation was

simply defined as the spatial alternation between high and low
concentrations of the test protein E. We then chose as a fitness
function the number of boundaries (transitions in either
direction between low and high) or ‘steps’ in the concentration
of E. This mathematically represents the general evolutionary
pressure that an increase in the number of segments is
beneficial without making arbitrary assumptions such as
insisting on predefined levels of E or rewarding only seven

A1 A2 R Gene P 

Figure 1 Transcriptional regulation of a prototypical gene P. In the example
shown, the expression of gene P is activated by proteins A1 and A2 and
repressed by protein R. The rate of production of the corresponding protein is
described mathematically by Equation (1).
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segments in the case of Drosophila. These more specific
functions not only contravene the notion of genericity and
gradualism, they also greatly slow the evolution, which
reduces to a random search through a vast space with no
clues indicating proximity to the desired state (see Figures S1–
S3 in Supplement).

The second crucial ingredient in our evolutionary computa-
tion is the choice of the dynamics of the morphogen G. We
explore two possibilities. In a first introductory set of
simulations, we take G to be a static gradient as in the fly
(Figure 3). For the more complicated case of sequential
segmentation, we take a uniformly translating (sweeping)
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Figure 3 Evolution of two segmentation networks in a static morphogen gradient. Two different evolutionary pathways are displayed (A–C,D–G). Successive stages
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exponential step (Figure 4B–E) decreasing from a constant
concentration to a concentration that is effectively 0 (i.e.
smaller than relevant binding affinities). This mimics forma-
tion of a signaling gradient upon exit from a growth zone,
similar to what happens in the PSM during somitogenesis.
Therefore, it is not necessary to model growth of the tail bud,
and for computational convenience, we just extend the
(constant) morphogen over all the posterior cells. The number
of boundaries in E is counted after the morphogen front has
run down the row of cells and is close to zero everywhere.

Results

Static gradient: in silico evolution produces
cascades of repressors

To test the relevance of themethod on a simplified example, we
first considered the in silico evolution of segmentation under
the control of a static morphogen gradient. Two typical
examples of simulations are displayed in Figure 3A–C and
D–G with the major stages of their evolutionary pathway.
Both evolutionary pathways begin in the same way: after

few generations, the gene E is put under the control of the
gradedmorphogen, and is transcriptionally activatedwhen the
morphogen G exceeds some level (Figure 3A and D).
A few generations later, the next event creates R1, a repressor

of E, only active in the region where the morphogen is highest.
As a result, this creates a second boundary (E from high to low)
in the region of R1 activity (Figure 3B and E).
The evolutionary processes then fork for the later genera-

tions. In the first case, a second repressor R2 is created, which
represses R1 in regions of yet higher concentration of the
morphogen. This creates a new region of E activity, where R2
lifts R1 repression (Figure 3C), so that E is expressed in two
broad domains.
In the second case, a second repressor R2 is created by

neutral evolution, at an intermediate concentration of the
morphogen G, and is repressed by R1 in regions of higher
concentration of G. Then, R2 represses E, which increases the
fitness by splitting the broad stripe of Figure 3E into two
smaller stripes, delimitated by the regions of high repressor
(Figure 3F). Later in the evolution, mutual repression between
repressors R2 and R1 is selected to sharpen the boundary of one
stripe (Figure 3G and Supplementary Figure S4).
Each stage in this evolutionary process creates new

boundaries by repressing or derepressing E. In the example
of Figure 3C, the evolutionary pathway creates a cascade of
repressors. Cascades were often found by the algorithm, since
cross-regulating repressors create adjacent regions of expres-
sion of E. Such networks, based on a cascade of repressors, are
suggestive of some part of the actual Drosophila gap-gene
regulation network as discussed below.

Dynamic gradient: spontaneous evolution of a
‘clock and wavefront’ mechanism

Since the algorithm succeeded in creating some simple
networks controlling localized expression of genes in a static
gradient, we allowed the gradient to sweep to create a dynamic
morphogenetic profile.

An example of a network with the corresponding evolu-
tionary pathway is displayed in Figure 4.
The first stage in the evolution of the sequential segmenta-

tion simulation (Figure 4) is always activation of E at some
intermediate level GE of the initial gradient and then positive
feedback of E onto itself so that high values are self sustaining
while low values decay to zero. This generates one step after
the morphogen gradient runs over the cells and G equals 0
everywhere (Figure 4B). Bistability is the first functionality to
evolve.
The next event is to create a repressor, R, of E that itself is

induced only for morphogen levels G greater than GE. This can
occur either by placing a pre-existing repressor of E under the
control of G or adding repressor function to some other gene
controlled by G.
Several conditions should be met for R to create a second

boundary of E expression without destroying the first one.
First, to preserve the boundary from low to high E expression:
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& R should turn on later than E while the morphogen is
sweeping past, so that E has time to autoactivate before
being repressed. Typically R turns on for higher value of G
than E, but the opposite could be true if R turns on much
more slowly than E.

& the high value of E in the bistable system should be stable
(persist) for low values of R. Weak induction of R by the
exponential tail ofG should not destroy the stable high value
of E.

The creation of a second boundary, from high to low E
concentration, requires that full expression of R should repress
E expression strongly enough to prevent its autoactivation,
thereby creating a limited domain where E concentration is
high.
When these conditions are satisfied, R drives E to zero well

ahead of the morphogen front, while in the morphogen-
decaying tail, an island of autoactivated E remains (Figure 4C
and Supplementary Figure S5).
Subsequent evolution creates, however, a more spectacular

improvement (Figure 4D) and a large fitness increase. In
addition to repressing E, the protein R becomes a transcrip-
tional repressor of its own gene. This negative feedback loop
produces temporal oscillations in R so long as G is large
enough to induce R. The oscillations in R produce islands of E
for the same reasons as before. The oscillation phase is
encoded in a binary way and rendered permanent by the
bistable dynamics of E as G decreases to 0. Figure 5 illustrates
this mechanism at the level of individual cells. As a
consequence of this process (and with the exception of the
very first segments), all segments are of the same size as can be
seen in Figure 4E: segment size is simply given by the product
of the velocity of the front times the period of the clock.
Bistability further implies sharp boundaries between domain
of high and low E expression. There are only two possible
concentrations for E at steady state and therefore E concentra-
tion profile jumps abruptly from one cell to the next.
After several dozen evolution experiments for a variety of

mutation parameters, the only networks that produced more
than one or two stripes always displayed a clock coupled to a
bistable system (see several examples in Supplementary
Figures S6–S11). However, some variability in the detailed
sequence of events was observed, most often in the final stage
(R represses itself) when sometimesmultiple repressorswould
appear, as in Figure 6 (evolutionary pathway is displayed in
Supplementary Figure S8). Each repressor creates a single
additional step in E, until finally an oscillator (similar in
principle to the engineered ‘repressilator’; Elowitz and Leibler,
2000) is created for a big increase in fitness. An interesting
property of this repressilator network is that delays are not
required for it to work efficiently and to produce many stripes
(even though delays are needed along the evolutionary
pathway leading to it).
To investigate the generality of these conclusions and the

ubiquity of the path leading to the clock and wavefront model,
we did 20 additional simulations with identical parameters
and stopped them after a fixed number of generations (Table I).
Five of the simulations consisted of a clock coupled to a
bistable system. In one, the oscillations were damped, and in
network 17 a repressilator-like clock evolved (as illustrated in

Supplementary Figure S12), slightly different from the one
displayed in Figure 4. Interestingly, all networks evolved at
least a bistable system, and several others one or more
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repressors, for example, network 7 had a cascade of repressors
and two others stopped at the stage displayed in Figure 2C.
Whenwe increased the rate of topology-changing mutations

relative to those that changed parameters, the evolutionary
path remained the same but the fraction of high fitness ‘clock
and bistable’ systems increased. Finally, we chose random
mutation rates and repeated the evolution using the same
dynamic morphogen and the same fitness function. Again we
found only networks with topologies coupling clock and
bistable systems or ones on the path leading to it, as detailed in
Table II. In this sense, there is a common path or fitness funnel
that all systems traverse as their fitness increases.

Discussion

The evolved cascades of repressors resemble
some modules of Drosophila segmentation
network

Both terminal networks in Figure 3 have approximate analogs
in selectedmodules of theDrosophila systemwith E a pair-rule
gene such as even-skipped (eve), and the various repressors
acting as gap genes. FromFigure 3C, knirps (kni) and giant (gt)
are known to be complementary and mutually repress in the
anterior part of the embryo (Kraut and Levine, 1991a, ). gt
defines the anterior border of the central Krüppel (Kr) domain
(Kraut and Levine, 1991b) and possibly splits it off from the
weak and dynamic Kr anterior domain (e.g. Figure 2 of Wu
et al, 1998).
The situation in Figure 3G is loosely like eve stripes 3–7 or 4–

6 in that one module creates two stripes with two repressors,
one central kni and the other hunchback (hb) defining the
outer boundaries of the pair of stripes (Clyde et al, 2003). The
analogy is incomplete in that the eve stripes are created from a
uniform activator, while we have a spacial gradient and the
simulation simply uses the limit of the activator domain in
place of hb to define the anterior boundary of the anterior
stripe. Mutual repression seen between R1 (hb) and R2 (kni)
occurs in the evolved systemwhen a small term favoring sharp
boundaries is added to the fitness.
The algorithm is therefore able to generate small modules

with topology close to gap genes interaction generating
localized expression domains. The complete Drosophila
patterning system involves both anterior- and posterior-
anchored morphogens, hence is much more complex than
what we have simulated. Drosophila segmentation network is
also a highly derived and hierarchical system (Peel et al, 2005),
presumably from more primitive (short germ) insects, so that
evolution of a complete long-germ band segmentation system
may require steps passing through a dynamic mode of
segmentation (see below). The networks presented here only
suggest possible building blocks for formation of gap or
segmentation gene domains (or anterior patterning in short-
germ band insects).

Table II Statistics on the nature and the dynamics of the networks obtained in 100 simulations, after 400 generations

Bistable Clock and wavefront

Topology Void Figure 4B Other Figure 4C Figure 4D Other

Sustained Damped Sustained Damped

Number 17 63 2 3 9 4 1 1
Fitness (±s.d.) 0±0 1±0 1±0 3.3±1.1 32±11 21±10 30±0 3±0

To assess the influence of mutation rates, they were chosen at random in different simulations as follows. For each possible mutation, the mutation rate was chosen
uniformly in [r/5, r], the non-zero lower bound ensuring that eachmutation remained possible. Here, r for creation of a gene or an interactionwas 0.1, r formodification
of one kinetics parameter was 1, while rate for removal of a gene or condition was enforced to be one half the rate for creation. This table indicates the number of
networks of each topology and the average fitness for each type with the standard deviation. ‘Void’ networks are network with fitness 0 where there is no relevant
connections between G and E. In general, these networks correspond to simulations where the probability of creation of nodes or links is too low for any network to be
built. Bistable networks are networks of fitness 1; most of the networks share the topology displayed in Figure 4B, two other networks built a positive feedback loop via
another gene activating E. Three networks where found to be similar to the network in Figure 4C; in two of them, parameter adjustment by evolution succeeded in
producing two stripes. Finally, 15 networks display clock and wavefront dynamics; 13 have the same topologies of the network of Figure 4D (including four damped
oscillators). The two alternate topologies add an additional gene but implement the same logical operator as in Figure 4D. Therefore, even though the mutation
parameters are chosen at random, the statistics are close to the one displayed in Table I.

Table I Outcome of a typical run of 20 random evolutionary simulations with
the same evolutionary parameters

Index Fitness Function and topology

0 30 Clock+bistable system, Figure 4D
1 1 Bistable system, Figure 4B
2 1 Bistable system, Figure 4B
3 6 Damped clock+bistable system, Figure 4D
4 44 Clock+bistable system, Figure 4D
5 1 Bistable system, Figure 4B
6 1 Bistable system, Figure 4B
7 7 Cascade of two repressors+bistable system,

Supplementary Figure S12
8 1 Bistable system, Figure 4B
9 1 Bistable system, Figure 4B
10 2 Repressor+bistable system, Figure 4C
11 1 Bistable system, Figure 4B
12 1 Bistable system, Figure 4B
13 35 Clock+bistable system, Figure 4D
14 1 Bistable system, Figure 4B
15 1 Bistable system, Figure 4B
16 2 Repressor+bistable system, Figure 4C
17 6 Clock (‘repressilator’)+bistable system,

Supplementary Figure S12
18 1 Bistable system, Figure 4B
19 1 Bistable system, Figure 4B

Fitness was the number of boundaries, with a term to prevent apparition of
traveling wave, as explained in the text and the Supplement. Here, relative
probability of mutating the parameters of the network was six times the
probability of changing the topology of the network. Each evolutionary
simulation was stopped after 400 generations.
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More uniform domains of expression could be obtained if a
subsidiary term were added to our primary fitness function
favoring that feature (see for an example, Supplementary
Figure S13). Uniform stripes in the fly may be a vestige of its
presumed short-germ band ancestor where uniform segments
arise naturally from a clock and wavefront system. Simply
counting boundaries as we do, leaves the spacing, shape, and
intensity of the segmentation marker completely unregulated.
In reality, selection will further play on these features while
leaving the topology of the network unchanged.
Finally, note that the network topology displayed in

Figure 3B (and also in Figure 4C) is a very general mechanism
to create a limited zone of expression of a protein E at
intermediate concentration of an effector G. There are several
examples in contexts other than segmentation where one
signal activates a protein over a threshold and shuts it down at
higher concentration via activation of a repressor. For instance,
in Xenopus development, the gradient of Activin induces
Brachyury (Xbra) and then Goosecoid (Gsc), that in turn
represses Xbra (Green, 2002).

Network evolution suggests new models of
sequential segmentation

Somitogenesis has long been the subject of quantitative
modeling (reviewed in Baker et al, 2006). Themodel suggested
by the evolutionary algorithm is characterized by a combina-
tion of two features: (1) a cell autonomous clock dependent on
the morphogen and (2) an independent bistable system driven
both by the morphogen and clock, which we identify as the
anterio-posterior somite marker. Most existing models focus
on more specific aspects of somitogenesis. Lewis (2003)
proposed a clock based on delayed negative feedback among
genes in the hairy/E(spl) family and demonstrated its
robustness against changes in transcription rate and mRNA
levels. The evolved network extends this model and suggests
that a bistable system may provide a discrete encoding of the
phase and sidestep the more subtle task of remembering the
continuous phase suggested in Kerszberg and Wolpert (2000).
Evidence for some bistability in single cells comes from
experiments where elimination of one of several delta paralogs
is thought to desynchronize oscillations, and yields a salt and
pepper pattern for an anterior somite marker (Jiang et al,
2000). We find partition of the anterior PSM into Notch1/Dll1
high and low activity domains suggestive of our bistable ‘gene’
E (Morimoto and Saga, 2005).
Another model (Baker et al, 2006) mathematically describes

the behavior in the transition zone by imposing thresholds on
the moving morphogen front. This is only part of the problem,
and our evolved network by construction gives a full model
transforming the prepattern into a static array of segments.
Meinhardt (1986) was the first to suggest an explicit model of
the complete process and proposed that diffusion or long-
range inhibition between cells played an essential role in
segmentation. Our model is situated in the opposite limit and
is purely cell autonomous.
The sweeping of the morphogen step ties segmentation to

the growth of new tail bud. In a static gradient, each segment
requires a new inhibitory interaction as can be seen in Figure 3.

Therefore, it is hard to generate more than a few segments. In
contrast, in a temporal gradient, the addition of a clock to a
series of one or more repressors appears as the highly favored
way to create many segments within our simulations.
Thus, it is tempting to speculate that in short-germ insects or

in myriapods, a clock will be found to complement the moving
morphogen gradient implicit in the elongating posterior
growth zone (Peel et al, 2005). Recently, a gradient of mkp3
has also been observed during chick limb bud growth (Pascoal
et al, 2007a) and cyclic hairy2 expression has been demon-
strated (Pascoal et al, 2007b). Interestingly, the period of the
limb bud formation clock is much longer than in the
segmentation clock. These results suggest that similar clock
and wavefront mechanisms, based on different molecular
players, may apply to other sequential segmentation pro-
cesses.
Simple as it is, our evolved model suggests biochemical

interactions (such as the need of bistability to fix the pattern)
that may be checked experimentally. It admits refinement,
such as cell–cell communication, that may be necessary to
keep the phase of the different oscillators synchronized and
makes the somite boundary straight in the direction perpendi-
cular to the morphogen gradient, and deals with the bilateral
symmetry. Such elaborations need not destroy the core cell
autonomous dynamics and the basic synchrony imposed on a
field of cells by the morphogen will enhance the efficacy
of cell–cell communication. Other variants can display
additional features of the experiments that did not sponta-
neously evolve such as the traveling waves posterior to the
front (Palmeirim et al, 1997; Dequéant et al, 2006). Such phase
waves could be simulated if one allowed the period of the clock
(mainly under control of the transcriptional delay in R in the
network displayed on Figure 4) to vary along the oscillatory
region, for instance under control of a secondary gradient.
Further work is needed to explore more precisely the interplay
among the clock, bistability and morphogen interactions in
our system.
Our simulations and recent experiments suggest a possible

evolutionary path between short- and long-germ insects. In the
basal short-germ insect Oncopeltus, Liu and Kaufman (2005a)
show that the prototype fly pair-rule gene eve actually feeds
back and activates the anterior gap genes hb and Kr.
The situation is very suggestive of the evolved network in
Figure 6. The cascade of repressors is common to what we
found for a static morphogen, and eve is one target of that
cascade. The feedback of eve into this cascade (i.e. E activates
R3 in Figure 6) could create an oscillator and thus drive
sequential segmentation. The early anterior gap-like expres-
sion of eve in Drosophila could be a vestige of this feedback
interaction, which could be a key transition linking short- and
long-germ band insects. A recent reassessment of the
phylogeny among themajor groups of Holometabolous insects
(Savard et al, 2006) makes the Hymenoptera (which includes
the long-germ band wasp Nasonia (Lynch et al, 2006)) an
outgroup with respect to Diptera (which includes long-germ
band insects) and Coleoptera (which includes short-germ
species such as Tribolium). Thus interconversion between
these two modes of development has occurred multiple times,
and evolutionary simulations suggest a possible pathway for
the evolution.
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Incremental evolution produces complex networks
from a generic fitness function

How can a numerical simulation performed in complete
ignorance of the actual mutation rates hope to capture even a
cartoon version of actual evolutionary pathways? The key
assumption, we believe, is the incremental increase in fitness,
and the contingency imposed on subsequent stages of
evolution by the earlier ones.
Evolutionary simulations for segmentation under the con-

trol of static gradients spontaneously evolved toward cascades
of repressors. New segment boundaries arose by the addition
of new proteins to the cascade, which restrict the domain of
expression of the downstream proteins. Evolution of sequen-
tial segmentation seems much more constrained. The first
stage that couples bistability to a moving front of G is the only
way to create one persistent step. A single cell sees a temporal
pulse of G, and from that stimulus has to assume either the
high or low state. This defines bistability.
Adding one ormore repressors creates additional high/low E

boundaries just as it did for a static gradient G. A negative
feedback oscillator is then only one mutation away from the
repressor itself. Note that repression accomplishes both the
regulation of E and the oscillations, so one protein can perform
both functions. In conformity with ideas about the evolution of
biochemical pathways (Horowitz, 1945), somitogenesis in our
simulation evolves by adding functionality upstream to an
existing, less fit, process.
The strict serial construction of a network renders the

process independent of rates of mutation. Numerically correct
rates become important when there are several parallel routes
to the same end; then the one realized depends on the rates
evolution explores them. A computational reconstruction of
evolution is most likely to succeed when real biological
networks are built serially. Thismayonly be true on themacro-
scale that we have modeled, while there may be many ways of
making a bistable system and negative feedback oscillator and
the one chosen depends on numbers.
Certain of our ‘genes’ such as the bistable E may be pre-

existing modules that are just recruited by the morphogen G.
The composite nature of our ‘genes’ does not matter, evolution
merely has to stitch pieces together. The relationships among
the nodes of our network, such as bistability and negative
feedback, could be realized no matter what the actual
molecular interactions are.
The choice of fitness is crucial, and it is noteworthy that

separate bistable and oscillatory modules evolved in response
to a fitness function that only scored the number of boundaries
in E. Both observations and theory support our choice of a
nonspecific fitness function. Although somite number is a
characteristic of an organism, it is notably disassociated from
other taxonomic features (Richardson et al, 1998). Tempera-
ture shock can change somite number (Primmett et al, 1988),
and local environment can shift the segment number of
centipedes (Arthur and Kettle, 2001). Once the topology of the
somitogenesis system is established, the number or spacing of
somites can be varied with the clock period or front velocity as
occurs between the backbone and tail of a mouse (Richardson
et al, 1998). Our function describes a component of fitness
common to all metazoans that favors segmentation. For a

particular phylum, there will be additional terms that are hard
to deduce a priori that favor a particular number and size of
segments.Mathematical search is efficient when one canmove
continuously uphill and arrive at the optimum. Similarly,
biological evolution is rapid when positive selection controls
the succession of states realized. Our fitness function, since it
is parameter free and rewards only ‘topological’ properties of
the solution, provides just such a smooth bias to facilitate, in a
natural way, the evolutionary search.

Robustness and evolution of genetic networks

Screening for parameter independence has been used to select
among biological networks. The onewhich realizes the known
transformation (taken from an extant organism) for the widest
range of parameters is considered as the most plausible (von
Dassow et al, 2000; Eldar et al, 2002).
This implicitly corresponds to a mode of evolution in big

jumps, each one creating a complex network (with associated
parameters); the first one that works is selected. However,
searching through all possible networks takes much longer
than building them incrementally. When evolution progresses
by small fitness-increasing increments, purifying selection will
control deleterious changes in the values of sensitive
parameters (see also Galis et al, 2002) once there is a workable
network topology.
For sequential segmentation, we found an almost unique

evolutionary path from an unsegmented ancestor to a species
embodying a novel version of the clock and wavefront
model of somitogenesis. We term this a fitness funnel and
note that it is an argument for convergent evolution.
Conversely, the observation of networks with similar topology
realized by non-homologous genes is evidence for convergent
evolution.
The traditional strategy for modeling a biological system is

to start with a network defined by genetics, obtain constants
for the interactions (from diverse sources), and then hope it
works. However, this strategy does not shed light on the
invariant dynamical structure that a particular set of genes
implement. This structure is important to understand since it
can be implemented by different genes in different species. For
instance, rather surprisingly, there appears to be only a small
overlap when comparing the genes that oscillate during
somitogenesis in the chick and mouse (O Pourquié, private
communication). Evolving a network as we have done inverts
this procedure. A logically complete dynamical model comes
first, lacking all connections to the genes. These models are
compact or condensed in comparison to the number of genes
implicated in the processes. Thus if correct, multiple genes will
impact each model variable, allowing for non-trivial predic-
tions or at least a principled organization of the genes into a
network.
If the topology of biological networks can be deduced

by evolutionary simulations from a generic fitness function
that gives rise to a fitness funnel, then evolution should
be viewed more as a learning process than an optimiza-
tion process. Networks that can be learned quickly are
what we observe, even if they are not the global optimum of
some fitness function specific to an organism and an
environment.
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Materials and methods
The evolutionary algorithm used in this study is similar to the one
described in François and Hakim (2004). Further details on this are
provided in the Supplementary information.

Supplementary information
Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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