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A PHENOMENOLOGICAL MODEL OF THE YEAST CELL CYCLE

Different types of models have been reported to describe the dynamics of the cell cycle. The

first quantitative analysis of the cell cycle kinetics was done by Hartwell and Unger[1] in order

to account for the average size and division timings of exponentially growing cells. Hartwell

et al. assumptions were the following : 1) cell volume is increasing exponentially with time at

a constant rate µ that is independent on the cell division cycle. 2) Division is morphologically

asymmetrical, in such a way that daughter cells are born smaller than their mothers. Following

a size control mechanism, the consequence of smaller daughter size is that the daughter division

time TD is larger that mothers’ TM . 3) Mother cell size is constant at each successive divisions,

i.e. it doesn’t increase with time. Consequently, according to the conservation of volume at

division, one can write :

VM + VD = VMeµTM (1)

= VDeµTD (2)

where VM and VD are respectively the volume of mother and daughter cells at division.

By combining equations (1) and (2), one can establish the following between growth rate and

division times, as first obtained by Hartwell [1]:

e−µTD + e−µTM = 1 (3)

An important consequence of it is that increasing the growth rate makes TD and TM converge

towards the same value Tµ = log(2)/µ (the mass-doubling time), i.e. the higher the growth

rate the more symmetrical the division process is, an important phenomenon that was indeed

observed experimentally[1].

In the 1970s, more elaborate models were not warranted by the data available. Since then,

many of the genes involved in the control of the cell cycle were discovered. Chen et al. have in-

tegrated most of the molecular data available into a model which describes the time dependence

of the genes that regulate the cell cycle[2]. This model uses effectively the same assumptions

as Hartwell and Unger regarding the growth of individual cells, namely the biomass increases

exponentially at a rate µ and the mother-daughter mass ratio is fixed at division, thus fixing
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TM and TD according to Eq. 6. These assumptions contradict the experimental evidence that

mother cells get bigger during successive divisions (see Fig. S3 Upper Left).

Recent methodological developments allowing the monitoring of single cell divisions have

shown the possibility to precisely retrieve the timings associated to cell cycle events using spe-

cific fluorescent markers[3, 4]. Extending this methodology by tracking a large number number

of cells in a custom microfluidic device has let us acquire large datasets of cell cycle events with

less and less efforts. Based on this type of data, we propose to derive a simple yet qualitatively

relevant description of the cell cycle whose agreement can directly be tested by comparing to

single cell measurements. This model is a phenomenological description of the growth and

division process of the yeast cycle, whose goal is to understand the dynamics of essential phys-

iological phenomena (timings, sizes, size control) associated to the cell cycle. Furthermore, we

show that such a description provides the necessary framework to understand the mechanism

by which cells can lock on external periodic pulses of G1 cyclins.

Principles and assumptions

The cell cycle oscillator (or clock) is described using one unique abstract variable φ, i.e the

phase of the oscillator. φ takes values between 0 and 1, respectively meaning the beginning and

the end of the cycle. The definition of φ implies no loss of generality if increases linearly with

time (with a velocity ω). φ is reset to 0 when it reaches 1, which means that the cell divides.

Cells are assumed to grow exponentially in volume with a rate µ. ω has no physical meaning at

the molecular level, it is an abstract parameter -the speed of the cell cycle clock-, just like the

growth rate µ is not simply connected to the molecular players involved in growth.

In order for the cells to achieve size homeostasis, the cell cycle clock is coupled to growth :

dφ

dt
= ω

V m

V m + V m
c

(4)

dV

dt
= µV (5)

where m is a Hill coefficient that characterizes the strength of size control and Vc is the cell

sizescale which sets the typical volume at which the cell cycle clock begins to tick. We define

φ1 as the phase at which the cell starts budding. For φ > φ1, we assume that the newly created
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mass goes to the daughter cell. Table I in this document summarizes the different parameters of

the model, their meaning and numerical values (that are justified below).
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Input parameters Meaning Remarks Numerical value used

µ Growth rate Mass-doubling time Tµ ≡ log(2)/µ = 84min

ω Cell cycle clock rate when V > Vc, 1/ω= 71min

division time TM ≡ 1/ω

Vc Cell size scale Threshold volume involved in Vc = 1000 (arbitrary unit)

the size control mechanism

φ1 Phase at budding φ1 = 0.25 (determined from the fraction of

the cycle time spent

in G1 in mother cells)

m Strength of size control m =∞ corresponds m =∞

to an ideal size control

TABLE I: Model parameters

case m =∞

We can get a simple understanding of the evolution of cells in the limit of m → ∞, since

an analytical solution of the model can then be derived. This case corresponds to an ideal size

control : the cell cycle phase of a small daughter cell (see blue lines on Fig. S4 Lower panel)

is halted until the cell reaches a critical size Vc, at which it resumes and increases linearly.

When φ = φ1, the cell buds, then all the newly created mass goes into the daughter, so that the

mother cell size stays constant from that time on (the total cell size, i.e mother + bud, keeps

increasing exponentially during this time). At division, the cell has generated a daughter cell

which experiences the same size-control delay, see red line on Fig. S4. On the other hand, the

mother cell enters its new cycle without delay (green curve on Fig. S4) since its size is now

larger than Vc.

We can calculate the various indicators, such as G1 duration, S/G2/M durations, division time

and size at division and budding for both mothers and daughters that follow this set of rules.

The cells behave differently depending on the initial volume Vn of a cell at division at the nth
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cell cycle. Two cases are detailed below :

Case Vn > Vc

This is typically the case of an old mother cells (green curve on Fig. S4). Because Vn > Vc,

the cells bypasses the size control mechanism. Since its size increases only during the unbudded

period (of duration φ1/ω), its size at the end of nth cycle Vn+1 (division) is given by :

Vn+1 = Vne
µφ1/ω > Vn

which means that the mother cell increases in size at each cell cycle (see blue and red circles

on Fig. S5).

The division time of these cells is a constant and given by : TM = 1/ω. According to

experiments (see Table I in this document for numeric value), ω is chosen such that TM is

smaller than the doubling time Tµ ≡ log(2)/µ. The G1 and S/G2/M durations (resp. τG1 and

τS/G2/M ) of these mothers are simply set by :

τG1 = φ1/ω

and :

τS/G2/M = (1− φ1)/ω

On the other hand, the volume of the newborn daughter at birth V D
n+1 is given by the conser-

vation of volumes at division :

Vne
µφ1/ω + V D

n+1 = Vne
µ/ω

so that :

V D
n+1 = rVn

where r is :

r ≡ V D
n+1/Vn = eµ/ω − eµφ1/ω = 2TM/Tµ − 2φ1TM/Tµ
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Since TM < Tµ, we have : r < 1 for any 0¡φ1¡1. In others words, the volume of the daughter

cell at birth is smaller than its mother’s at the beginning of the cycle. Therefore, successive

daughters from big mother cells have decreasing sizes. Eventually, they must therefore reach a

volume smaller than Vc at birth (and ultimately fall into the case described below).

Case Vn < Vc

In that case, the cell cycle clock is halted until the cell reaches a critical size Vc, at which the

clock resumes. Depending on the initial cell size at division Vn of a cell, the duration of the G1

period τG1 is given by :

Vbudding = Vne
µτG1

According to the rules defined above, Vbudding = Vceµφ1/ω. Consequently, the duration of G1

phase for these cells is given by :

µτG1 = −log(Vn) + log(Vc) +
µφ1

ω
(6)

This equation shows that a cell that is smaller than Vc at division experiences a G1 delay

that depends on its size at division Vn. This is the essence of the size-control mechanism, which

forces the cell to bud at a defined volume. Once budded (φ >φ 1), the phase of this cell increases

linearly. The duration of the S/G2/M phase τS/G2/M = (1 − φ1)/ω is therefore identical to the

case Vn > Vc described above. Consequently, its division time Tn is :

Tn = τG1 + τS/G2/M =
1

ω
+

1

µ
log(Vc/Vn) (7)

Tn still depends on the initial volume Vn of this cell. However, we can show that the division

time TD
n+1 and size at birth V D

n+1 of the daughter of this cell depend only upon input parameters.

Indeed, the conservation of volumes at division of cell n implies that :

Vce
µφ1/ω + V D

n+1 = Vne
µTn

Using equation (7), we deduce :

V D
n+1 = rVc
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and therefore :

TD
n+1 = TD ≡

1

ω
+

1

µ
log(

1

r
) (8)

Thus, no matter what the size Vn < Vc of a cell is, the size of its daughter V D
n+1 at birth and

its subsequent division time is constant (see blue and red empty squares on Fig. S5). Since the

mother division time is TM = 1/ω, equation (8) can rewrite :

e−µTD + e−µTM (1−φ1) = 1 (9)

which is similar, although not identical, to Hartwell’s relation described above.

Model implications, agreement with experimental data and limits of validity

Growth timings

This model uses two variables to describe the evolution of the growth and division processes.

The volume V of the cell follows simple exponential growth. The clock φ of the cycle is

strongly coupled to size, as small cells literally undergo a clock arrest. From this set of rules

emerge two limit trajectories : big cells (typically mother cells) have a constant division time

TM = 1/ω. Since the mean mother division time is 71 minutes, then ω ≈ 1/71min−1. The

G1 duration of these cells is about 18 minutes (see Fig. S2b), from which we can deduce

φ1 ≈ 0.25. Interestingly, according to the model, these mother cells keep increasing their size

over successive generations (see Fig. S5). This is indeed observed experimentally (see Fig. S3

Upper Left) and is in striking contrast with preceding models of the cell cycle[1, 2].

Cells that are born small (V < Vc) due to asymmetric volume partitioning, undergo a delay

in G1, that makes them bud at a constant size Vceφ1µ/ω. Consequently, their division time

TD = TM + 1
µ log(1

r ) is longer than TM . Using log(2)/µ = 84min (as determined by fitting

the colony growth curve), the model predicts TD = 125 min, whereas experimental data yield

TD = 94 min. This deviation originates from the simplicity of the model which assumes an

ideal size control and a simplistic volume partitioning rule, see below.

Volume partitioning

According to the model, all the mass produced by the cell after budding is transferred to its

bud (future daughter). The consequence of this assumption is that the ratio R of the size of a

8



daughter cell at birth to that of its mother at division is (it does not depend on cell size but upon

model parameters only) :

R = 2
TM
Tµ − 1 = 0.55

Experimentally, we indeed observe a very good correlation of size between a mother and its

daughter at birth, especially when its area is smaller than≈ 1000 pixels (see Fig. S6). However,

the ratio R retrieved from experimental data points yields 0.63 for experienced mothers and

0.69 for first time mothers. In other words, newborn cells receive more mass than the model

assumes. The reason may be that not only the newly created mass is transfered to the bud but

a given fraction of original mother mass is also transfered to the daughter (“mother feeding”

effect, data not shown). A a consequence of it, daughter cells must have a shorter division time

than expected (see above). This phenomenon of mother feeding was not included in the model

for simplicity.

Cell to cell variability

Since the mother/daughter size ratio at division is fixed by model parameters, daughters of

big old mothers inherit an area at birth that is larger than the one of a young mother. Therefore,

interestingly a population of cells generated according to this model has an intrinsic variability

in timings and sizes, independently of any source of noise[3]. It is beyond the scope of this

study to investigate to what extent the observed variability stems from the growth and division

process as in our model or represents true molecular variability or experimental error.

Size control

According to our model, successive daughters are born with a fixed size rVc. However,

daughters arising from aged mothers are born with variable sizes. These daughters should

then experience variable G1 delays, depending on their size at division. This manifestation of

size control in G1 has been previously observed experimentally in a WT background[1, 3] (see

corresponding results in a cln3 background in the Fig. S2c Upper Left), and is qualitatively

well captured by the model. There is a negative correlation between the duration of G1 and

the size of a small cell at division, whereas big cell (V > Vc) don’t display such a correlation

(see Fig. S7) : plotting µτG1 as a function of the log(V ) yields a slope of -1 when V < Vc, as

expected from an ideal size control[3]. Experimentally, this slope has been shown to be closer

to -0.7 in wild-type cells. Here we find that cln3 cells have a slope of -0.3. However, we have

9



measured µ from tracking the volume of a single cell through time, instead of a more reliable

fluorescent marker for size[3]. This procedure may introduce artifacts. In any case, it is likely

that the size control mechanism operating in real cells does not match the case of an ideal size

control. Using m → ∞ therefore limits the quantitative agreement of our model to the data.

A finite value for m would certainly be more appropriate, by loosening the coupling between

growth and division.

Table II in this document provides a summary of the cell cycle indicators associated to the

model described above.

Indicator Unforced cell cycle Forced cell cycle

Daughter (V < Vc)

Division time TD = 1/ω + 1
µ log( 1

r ) τ

G1 duration τG1 = µφ1
ω + 1

µ log( 1
r ) τG1 = τ + 1

µ log(1− e−µτ )

S/G2/M duration τS/G2/M = (1− φ1)/ω τS/G2/M = − 1
µ log(1− e−µτ )

Size at division rVc Vceµ(1−φ1)/ωe−µτ

Size at budding Vceµφ1/ω Veq = Vceµ(1−φ1)/ω (1− e−µτ )

Size control in G1 µτG1 = −log(Vdiv) + log(Vc) + µφ1
ω none

Size control in S/G2/M none µτS/G2/M = −log(Vbud) + log(Vc) + µ(1−φ1)
ω

Mother (V > Vc)

Division time TM = 1/ω TM = 1/ω

G1 duration τG1 = φ1/ω τG1 = φ1/ω

S/G2/M duration τS/G2/M = (1− φ1)/ω τS/G2/M = (1− φ1)/ω

Size at division variable variable

Size at budding variable variable

Size control in G1 none none

Size control in S/G2/M none none

TABLE II: Summary of cell cycle indicators as described by the model. We distinguish the two cases

with or without cell cycle forcing
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RESPONSE OF THE CELL CYCLE TO PERIODIC FORCING

Principles

The framework introduced in the previous section can be used to describe the response of

the cells to periodic forcing. The forcing can be simply modeled by an extra term to the set of

equations (4) and (5) :

dφ

dt
= ω

V m

V m + V m
c

+ g(φ)∆(t) (10)

dV

dt
= µV (11)

where g(φ) = φ1 − φ if 0 < φ < φ1 and 0 otherwise. ∆ is a periodic spike train (each spike

with time integral one) of period τ . Therefore, cells experiencing a G1 cyclin pulse while they

are in G1 instantly reset their phase to φ = φ1. This assumption simplifies the ≈ 30 min time

from pulse initiation to budding observed in the experimental data, and amounts to the idea that

the ’instantaneous’ pulse actually ’occurs’ 30 min after pulse initiation. This change simplifies

the modeling but has no effect on the interpretation; in any case, it is clear that production of a

sufficient level of Cln2 after induction will require more than zero time.

case m =∞

In this limit case, we can derive an analytical solution of the problem, showing that succes-

sive daughters should lock to the external pulse. We can calculate how the locking affects the

various aspects of cell physiology and what is the range of locking.

In the previous section (unforced cell cycle), the n index was used to describe successive

cell cycles. In the following, n refers to the sequence of pulses. Let Vn (resp. Tn) be the volume

(resp. the division time) of a daughter cell when it is hit by the n-th pulse . To test if cells

lock on the external pulse, we calculate the evolution of Vn and Tn as a function of n. We must

distinguish two cases : if the pulse arises when φ > φ1, then it has no effect on the dynamics

of the cycle. In that case, if τ is strictly smaller than the division time of daughter cells TD,

then eventually one of the following pulses will arise during the G1 phase, which constitute the
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second case : 0 < φ < φ1. This latter case can be subdivided in two further cases : Vn > Vc

and Vn < Vc.

Vn > Vc

If Vn > Vc and the pulse arises before φ = φ1, the conservation of volume between succes-

sive cycles gives the relation between Vn+1 and Vn :

Vn+1 = Vne
µτ (1− e−(1−φ1)µ/ω) (12)

For τ < TD, we get : Vn+1 < Vn, so that the volume decreases and ultimately the cells

belong to the case described in the next paragraph.

Vn < Vc

In this case, again the conservation of volume at division between successive cycles gives

the relation between Vn+1 and Vn :

Vn+1 = Vne
µτ (1− e−(1−φ1)µ/ω Vn

Vc
) (13)

This equation indicates that Vn converges to an equilibrium value Veq (see Fig. 4) given by :

Veq = Vc
1− e−µτ

e−µ(1−φ1)/ω
; (14)

The cell division time Tn also converge to τ :

Tn = τ +
1

µ
log(

Vn

Vn+1
) (15)

This implies that successive daughters lock to the external trigger signal of period τ .

Physiological properties of locked cells - Agreement with experimental data

Size control

If the volume of the cell at division is small enough that it is still smaller than Vc when the

cell is hit by the pulse, cell budding is triggered by the external cyclin pulse. In this case, there

is no longer any size control of the duration of G1, and it simply depends on µ and τ only (no

matter what cell volume at division is) :
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τG1 = τ +
1

µ
log(1− e−µτ )

This disruption of G1 size control is indeed observed experimentally (compare Upper Left

and Upper right panels on Fig. S2c).

However, this doesn’t mean that any size control has been abolished. Indeed, the model

predicts that the duration of S/G2/M of triggered cells is now controlled by its size at budding

Vbud :

µτS/G2/M = −log(Vbud) + log(Vc) +
µ(1− φ1)

ω
(16)

In other words, a cell that is submitted to forcing (but which hasn’t necessarily reached the

fixed point Veq) should adjust its S/G2/M duration according to its size at budding . Qualitatively,

such behavior is manifest in the experiments when comparing the locked case to the unlocked

case, where G2 is almost independent on cell size at budding (compare Lower panels in Fig.

S2c). Yet, the observed S/G2/M size control in locked cells is far from being ideal.

Therefore, this shows that cell locking using G1 cyclin forcing displaces the apparent size

control effect from G1 to S/G2/M. It also suggests that a common mechanism, that we model

as the rate of phase increase with volume, that is most apparent during G1 in WT cells, may be

latent during the entire cell cycle and become visible in G2 when it is bypassed in G1. Also,

it is interesting to notice that, if the coupling to growth were restricted to the G1 phase in

equation (10), then no fixed point would appear in equation (13) and the cell would not lock at

all. Indeed, in this case, one can show that equation (12) would then describe the evolution of

size at trigger of successive daughters (in the case Vn < Vc), which would become smaller and

smaller. Therefore, in the frame of this model, an ubiquitous size control mechanism is required

to lock the cells.

Range of locking

The range of locking is defined as follows: τ must be smaller than the daughter natural limit

period : τmax = TD. Otherwise cells tend go faster than the external pulse. On the other hand,

the minimal locking period τmin is obtained when the G1 period is reduced to zero, which yields

(see Table II in this document): τmin = Tµ.

The locking period thus can’t be smaller than the mass doubling time. The case τ = Tµ

corresponds to the ideal case where mother and daughter cells divide symmetrically and have
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the same size, since mother cells do not increase their size (mother cells have zero G1 in that

case).

Experimentally, we indeed see that no locking is observed when τ = 99min > TD = 94min.

On the other hand, the fraction of locked cells is still pretty high at τ = 78 min, which is

slightly smaller than the mass doubling time Tµ = 84 min. However, in this case, looking at

trajectories of chains of daughters reveals that cells eventually skip a pulse every once in a while

(“intermittent-locking”, see main text). Overall, the agreement between the range observed

experimentally and what is predicted by the model is therefore satisfying.

Cell size

According to the model, cell size of successive daughters at trigger Veq depends on the forc-

ing period, see equation (14). Using parameters values of Table I in this document, the model

predicts a 20% variation of size over the whole range of forcing period, in a good agreement

with experimental measurement, see Fig. 3e in main text.
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STRAIN LIST

Strains (all W303) Genotype Origin

GC84-35B MAT a cln3::LEU2 CDC10-YFP::LEU2 WHI5-GFP::KanMx TRP1::MET3-CLN2 this study

GC99-14D MAT a cln3::LEU2 CDC10-YFP::LEU2 ADE2 this study

GC12-12C MAT α CDC10-YFP::LEU2 WHI5-GFP::KanMx TRP1::MET3-CLN2 ADE2 this study

TABLE III: Strain table
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