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Abstract

Bioinformatics is a data driven field, in which a significant number
of problems require statistical modeling. The flood of data emerging
from genome centers uses sequence comparison to delimit and assign
function to genes, and in very limited ways infers gene control from
approximately repeated sequence motifs near to the genes themselves.
Traditional topics in computer science such as coding theory, natural
language processing, and old fashioned cryptography all impinge on
the problem of deducing regulatory information from the genome, but
are not probabalistic enough to cope with the fuzziness of biological
patterns. The means by which living things encode information is a
problem common to both neural biology and the regulation of gene ex-
pression by the genome. Physical analogies are employed to highlight
some of the problems and opportunities in this area.

1 Introduction

Biological sequence data is growing at a faster rate than Moore’s law. Se-
quencing is now an industrial enterprise carried out by robots and venture
capitalists with not a graduate students in sight. Biologists flock to lectures
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with titles such as “Drowing in data, thirsty for knowledge” (S. Brenner
Rockefeller 2001) hoping to learn what the genome teaches us about the
large scale organization of life. While there is no question that an organism’s
genome is of immediate utility to experiments targeting individual genes, and
the comparison of genomes provides glimpses into the evolution of homolo-
gous genes, there is nothing immediately evident in the genome about how
all the genes are coordinated. The various celebratory articles announcing a
new genome give little more than lists of genes in this or that category by way
of exegesis. It is as if those searching for extraterrestrial life obtained a tele-
phone book (or to be charitable the yellow pages) of some remote civilization
and tried to reconstruct the social system.

One route into the problem of how the genome defines the organism is
through development and specifically how the genome dictates the expres-
sion of genes listed therein (E. Davidson) (All steps in the process by which a
segment of a eukaryotic genome is transcribed into nuclear RNA; the introns
spliced out; the mRNA is capped; exported to the cytoplasm; translated;
and the nascent peptide chain chemically modified; are subject to regula-
tion. The details fill several chapters of the major molecular biology texts
and the student needs to become familiar with them). Among the commen-
taries surrounding the publication of the human genome (which will not be
’complete’ in the usual sense of this word for many years), was how few genes
we have (30-35k) roughly twice the number of a model plant, nematode, and
fly (16k). (Single celled organisms such as yeast have 6000 genes and bac-
teria have typically between 1000-4000 genes) Man is not the center of the
genomic universe, anymore than he is the center of the celestial one. The
realization of the commoness of man’s genomic endowment recalls an earlier
’paradox’ that a number of seemingly simpler organisms (salamander, tulips
and water lilies) have larger genome sizes than we do by a factor of ∼ 8.
The resolution of this paradox was the category of ’junk DNA’, that with no
obvious function; they may have more total DNA, but we have more genes.
(Because of their genetic over endowment, the number of tulip genes may
never be known directly, since they are expensive to sequence.)

The next line in defense of man’s uniqueness, is gene control as revealed
most clearly in development. Here at least the numbers mark a big jump in
the fraction of the genome available for regulatory purposes (80% vs 20%)
when comparing model multicellular organisms (plant, nematode, and fly)
with genome sizes in the range of 150 megabases (Mb) compared with 12
Mb for yeast and 1-4 Mb for bacteria (For humans, genes, narrowly defined
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as protein coding regions, make up less than 3% of the 3000Mb genome,
and manifestly repetitive and perhaps parasitic DNA another 50%). Thus
multicellularity, at least, calls for a big increase in regulatory depth. (How
this regulation is achieved is also the subject of many texts and actively
studied, but suffice it to say there is no Cartesian system in the genome giving
coordinates for this or that body part, but rather a seemingly haphazard
medley of space and time dependent signals that define one part relative to
others.)

Everyone realizes but sometimes forgets to say, that cells make cells,
genomes do not. There are no genes coding for lipids per se, but hundreds
of different lipids, specific to particular locations in the cell, are built by a
variety of enzymes. The cell is highly compartmentalized, traffic between
compartments is regulated, and proteins with correlative activities are clus-
tered. Particular subsystems can be reconstituted in vitro from purified
components, but even the biochemists would not call this life.

2 New Technologies

Bioinformatics deals with such issues as efficient archival, retrieval and dis-
semination of information (eg gene ontologies); how to effectively compare
sequence; automatically assign function to stretches of the genome (annota-
tion); how to organize sequencing projects and assemble the ∼ 600 base pair
(bp) fragments that are the immediate output of the sequencing machines
into whole genomes. A snapshot of the field can be found on the web sites
and proceedings of the major meetings (eg ISMB, and RECOMB), however
the tone of these contributions is closer to a technology essential to biology
rather than theoretical biology.

A number of bioinformatic problems such as locating genes in raw se-
quence, have a heavy statistical component [?]. Regulatory sequences pose
different problems, since they occur in 100-500bp clumps of 2-20 sites each
of 5-15bp. In the fly these so called ’modules’ can be up to 100kb from the
genes they control, though under 10kb is typical. Their discovery is akin to
deciphering a language without knowing either the words or the grammar
and in the presence of much variability. The algorithms are again statisti-
cal and involve difficult search problems to which physicists have much to
contribute.

Biology just as physics, progresses through the application of new tech-
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nologies. Sequencing is one such technology whose costs have decreased (to
about $0.10 per finished base) so much that a recent cover of Science pic-
tured a Noah’s ark of organisms at a cocktail party discussing whose genome
would be sequenced next (Cornell is coordinating a canine project, so fido
will be pleased). There is an interesting technical history to be written about
the advances in instrumentation (capillary electrophoresis), chemistry (the
end labeling dyes, and preparation of clones), computer science (the assem-
bly algorithms), and process control (there were over 107 clones amplified
and sequenced for the human project) that made all this possible. Success
depended on engineering in the best sense of the term, since the costs and ac-
curacies of all the technologies that intervened between organism and finished
sequence had to be balanced against each other.

Another technology essential to my lectures is mRNA gene expression.
Currently there are both artesanal small lab approaches and high tech indus-
trial ones competing for acceptance and commercial success. The technology
depends on an enzyme that copies RNA to DNA, used by certain viruses such
as HIV; now productively harnessed to copy in one reaction all the mRNA
produced by a population of cells to chemically labeled DNA.

The problem is then how to assay the level of all 6000 potential tran-
scripts in yeast say, which are mixed in one tube. The key is, of course, to
exploit the base complementarity of DNA. In the laboratory scale spotted
array technology (http://cmgm.stanford.edu/pbrown/) as applied to yeast,
pairs of gene specific primers are used in 6000 separate reactions to amplify
genomic DNA (with the aid of another product of biotechnology, PCR, itself
made possible by another hijacked enzyme, this time from hot spring bacte-
ria). Then ∼ 50−100µ spots of ∼ 500 bp double stranded (ds) DNA for each
gene are arrayed on a specially surfaced glass slide by a robot, and anchored
down. The fluorescently labeled single stranded (ss) cDNA (complementary
to the mRNA) is then allowed to hybridize with the slide and the fluorescent
level of each spot is a measure of that gene’s expression. However the hy-
bridization kinetics of ssDNA with surface bound dsDNA is unknowable, so
the fluorescence is calibrated by processing a reference sample of mRNA iden-
tically to the real sample, but labeling it with another color. The color ratio
is then the mRNA expression ratio. Clearly genes with similar sequences will
cross hybridize and can not be distinguished.

The alternative high tech approach to measuring mRNA levels synthe-
sises about 20 length 26bp tags for each gene directly on the chip by methods
inspired by lithography in the semiconductor industry
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(http://www.affymetrix.com/index.shtml). The redundancy is necessary for
controls and the company supplies black box software (that the mathemati-
cally literate would want to modify, M. Magnasco submitted) to reduce the
multiple oligo readings to a single number. The kinetics of hybridization
again has to be calibrated by color ratios, which now go on separate chips
(each costing hundreds of dollars, so this is a technology aimed at medical
applications). There are still many other technologies vying for attention (eg
http://www.rii.com/home.htm); let a hundred flowers bloom! Because there
is money to be made, lawsuits are common (eg the saga of Ed Southern vs
Affymetrixs).

DNA chips are a versatile genome wide read out device. They have been
utilized (P. Brown and M. Snyder) to measure where certain proteins bind on
regulatory DNA, by crosslinking all proteins attached to DNA, fragmenting
the DNA, extracting the protein (plus DNA) of interest with an antibody;
undoing the crosslinks; and assaying the liberated DNA on an array spotted
with all the intergenic regions of yeast.

3 Sequence Comparison

The comparison between two sequences was probably the first ’killer appli-
cation’ that drew many computer scientists into molecular biology, and as
a measure of their success, it would be impossible to imagine modern biol-
ogy without it. This subject is well described in textbooks [?, ?], so I will
merely state the general ideas which recur in other problems and emphasize
the shortcomings. General expositions have such a preemptory tone that
the student might infer that it is a closed subject, whereas many obvious
questions are not resolved and provide problems for the statistically inclined.
The experts are well aware of these questions, but seldom write about them.

The first ingredient of sequence comparison for proteins is a scoring ’ma-
trix’ which quantifies, for pairs of amino acids, the differing penalities to
be assigned to the replacement of one amino acid by another, (slight for
similar residues and large when a hydrophobic residue is substituted for a
charged one). Values are derived from collections of aligned homologous pro-
tein domains where there are no gaps or deletions. Treat positions in the
alignment as independent and compute Pa,b = 〈ρaρb〉 where the a, b run over
the 20 amino acids and the normalizations are such that

∑
b Pa,b = 〈ρa〉,

the fraction of a residues in the data set. There is an implicit time pa-
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rameter τ induced by grouping with weight one, all sequences with per-
cent identity over some value (this also prevents biases in the protein data
base from overly influencing the scoring matrix). That τ indeed acts as
a time within the correlation function Pa,b, can be seen from two limits;
Pa,b(τ−〉0) = δa,b〈ρa〉 and Pa,b(τ−〉∞) = 〈ρa〉〈ρb〉. One then defines the tran-
sition probability T (a → b) = Pa,b/ρa and the scoring or substitution matrix
sa,b = ln(Pa,b/ρaρb). (Thus for short times there are no transitions, while
for long times the probability for obtaining a given residue is independent
of where it came from.) I have added these few details to make evident
there is nothing very subtle in the construction of the scoring functions (eg
BlosumXX) that everyone uses.

Two sequences (not necessarily of the same length) are brought into cor-
respondence and thus scored, either by making point mutations or creating
gaps (or intervals of deletions) which are penalized by one parameter to
create and another to extend. Global alignment finds the optimal score ac-
counting for the entire sequence. It is constructed in a time of order the
product of the two sequence lengths by a recursive calculation. Place the
two sequences along the x and y axis and map each alignment between them
into a path through the rectangle thus defined. A diagonal bond means
bases (or residues) i,j are paired, a horizontal bond means i (on the x-axis)
is paired with a gap, and a vertical bond means the reverse. Starting from
(0,0), find the best scoring path up to the perimeter of the sub rectangle
defined by (i,j), and then fill in the next row and column from these values
and proceed to the end of either sequence. Local alignment finds the high-
est scoring subsequences in a pair of sequences in comparable time. Various
short cuts to complete pairwise comparison are essential to practical appli-
cations (nb there are over 1010 bases deposited in GENBANK) and go un-
der names such as BLAST (http://www.ncbi.nlm.nih.gov:80/BLAST/) and
FASTA (http://www.people.Virginia.EDU/ wrp/pearson.html).

The first thing a biologist does with a new sequence is compare it with the
huge data base of known sequences. Thus it is important to know the prob-
ability of obtaining a certain score by chance from uncorrelated sequences,
which is best done by first determining the functional form of P (s ≥ s0), the
probabality of a score larger than s0. This is done by a stationary phase ar-
gument (Yu and Hwa) very analogous to the passage from a microcanonical
ensemble to a canonical one. One finds for large s0, P ∼ N1N2e

−λs0 , where
N1,2 are the lengths of the two sequences (or sequence times data base) be-
ing compared and for ungapped alignment λ = 1 because of the definition
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of the scoring function, while for gapped alignment λ has to be computed
numerically as function of the gap penalties. Rapid ways of doing this akin
to importance sampling in Monte Carlo have been developed by T. Hwa
and coworkers. Some theory is necessary here, since a probabality has to be
placed on events that are rare, but become possible when looking through a
sample size of 1010.

Now for the problems. The scoring function is designed for ease of com-
putation, the iterative algorithm ignores history (prior resides on the optimal
path) other than whether a gap is being created or extended. There are no
block rearrangement moves for instance. The most widely used algorithms
return the best local alignment (ie entropy is ignored) rather than the proba-
bility of transforming one sequence into another in all possible ways, which is
more relevant biologically even within the impoverished move set of current
algorithms. The scoring optimizes the contiguous interval with the highest
total score without regard to length, but this does not mean that a shorter
region of greater similarity might not give a more significant probability score
under some other scheme.

The scoring parameters are not contingent on the species being com-
pared and more importantly not optimized for maximum discrimination. To
make this clear by analogy, imagine a substrate with patches of material (the
sequences) with different affinities for water. If the regions are to be distin-
guished based on their ability to adsorb water, what is the optimal point in
the phase diagram at which to work. Clearly the condition where water wets
one substrate and not the other will provide optimal discrimination, ie near
a phase transition point, small inhomogeneities can have large effects. Of
course in reality there are a continuum of substrate affinities and a cost to
be paid for small domains. Nevertheless working at a random point in the
phase diagram is not a recipe for optimal discrimination.

Two other issues are addressed in part by an extension of the BLAST al-
gorithm, PSI-BLAST. The typical scoring function is position independent,
yet certain regions of proteins are more constrained than others and they
should be weighted differently (ie the catalytic region is more constrained
than the loops which tether domains together). BLAST also looses informa-
tion by using only pair scores in matching against a data base. A marginal
match to several unrelated data base entries may be significant even if any
pair is not. However separate data base entries for a human, mouse, and
rat protein do not add much to comparisons against an unknown fly protein.
So its not trivial to put a significance measure on the comparison of several
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species at once.
Given a genome the first question asked is what are the genes. Most

attention has been focused on protein coding genes; those encoding functional
RNA’s (ie not messages) are very interesting but require different algorithms
(S. Eddy). The primary modeling tool is Hidden Markov Models (HMM’s)
[?]. To illustrate just a simple Markov model, imagine one is presented with
a long string σi of 0,1 which is not obviously periodic. One might model it by
letting the ith bit occur with a probability that depends on several previous
ones. So in the simplest case, where only memory of the previous bit matters,
the model is entirely specified by a 2×2 matrix of transition rates T (σ1 → σ2)
where

∑
σ2

T1,2 = 1 ie the sum of all probabilities for leaving a state, must
be 1. The probability of observing 0,1 satisfies

∑
1 p(σ1)T1,2 = p(σ2). Thus

we have given the right and left eigenvectors of the matrix T with eigenvalue
1, which is in fact the largest eigenvalue because all the entries of T are
positive. (Under these definitions, the usual nearest neighbor Ising model in
one dimension would not be Markov since the correlations in spin are not
strictly limited to a finite number of lattice sites).

Hidden Markov models originated in speech recognition where the com-
puter was presented with sounds and needed to infer the phonemes that the
speaker was uttering. So in our context, assume there were two hidden states
coding (C) and non coding (N) with transitions between them as defined for
our Markov model. For each hidden state there are separate probabilities for
‘emitting’ 0,1, and it is only 0,1 that one observes. The inversion problem has
two levels; first of inferring the model parameters from data, and then par-
titioning the data into domains corresponding to hidden states. In the case
of gene finding, one has a large training set where the hidden state is known
and one can fit the emission probabilities and also the transitions between
hidden states. Then real data can be scored and probabilities assigned to
where the coding and non-coding regions lie. A HMM is well suited to gene
finding since the biological structure can be built in. Promoters are followed
by exons, exons by introns, successive exons must maintain a common codon
phasing, and various splice signals must fall in the correct place etc. See C.
Burge and S. Karlin for the current state of the art.

The task of determining parameters directly from data is done by iter-
ation. The basic idea is to note that a transfer matrix like calculation (by
summing over all paths through the hidden states starting from either end)
will supply the total probability for the data given the model. Work from
both the right and left ends and compute the probability for observing a
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certain base and hidden state (or transition between them) at a given point
in the data. A suitable spacial average of this ‘profile’ value gives the next
iterate for the parameters. (When parameters have converged or are directly
fit, a profile calculation will reveal where the hidden states are.)

4 Clustering

Many problems in bioinformatics call for grouping similar things together -
the task of clustering. These may be genes whose behavior is monitored in
a series of chip experiments or a series of samples of cancer tissues for which
the expression of a palette of genes is observed and one wants to group the
cancers into types. Clustering can be effected along one dimension as in these
examples, or in two when for instance one wants to find blocks in the array
of genes samples which isolates subsets of genes that are most indicative of
particular samples.

Algorithms can be categorized by a series of Levi-Straussian binaries; hard
vs soft (is cluster membership binary or probabilistic); one pass or annealed;
agglomerative vs devisive (do clusters grow from the primary elements by
fusion, or do clusters derive by fission from larger sets). Phylogenetic (family
tree) clustering is hard, one pass and agglomerative. The k-means algorithm
is a descent scheme in which each point is assigned to the nearest center, and
the centers repositioned to be the geometric centers of the points assigned
to them. It becomes a divisive algorithm if new centers are added to eccen-
tric clusters. Another scheme assigns a Potts variable to each element, and
the coupling constant between two elements is a monotone function of their
degree of similarity. As the temperature is lowered, groups within which the
Potts degree of freedom is more correlated than some value define clusters
(E. Domany).

There is no clustering algorithm optimal for all problems. Often essential
to success is the choice of metric. For gene expression, frequently only a small
percentage of the genome has a meaningful response. If one measures the
correlation between genes by summing over all experiments (assuming many
are available) the real signal from a few experiments is washed out by the
noise from the others. Thus the metric should weight experimental values by
their significance determined from the noise level.

Given a metric, cluster membership can be based on the average pair
score of the new element with other cluster members, the best score with any
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single cluster member, or some other cluster wide score which is not a sum of
pairs. Clustering is bedeviled, as are many other optimization problems, by
multiple local optima and it is frequently unclear when, if ever, one has hit
upon the best one. Another short coming of most schemes is the absence of a
statistical model from which to assign significance to a particular clustering.
Most algorithms will cluster random variables.

Some of these issues are illustrated by a clustering scheme for sequences
developed at Rockefeller (van Nimwegen) which has an obvious bearing on
motif finding and illustrates aspects of Bayesian statistics (named after an
18th century English cleric http://www-groups.dcs.st-andrews.ac.uk/ his-
tory/Mathematicians/Bayes.html now the object of cultic veneration). As-
sume an alphabet of size A and letter probabilities pa. Then the probability
of a particular string of letters (na of each,

∑A
1 na = N) is P (data|model) ==

P (na|pa) =
∏A

1 pna
a . This is properly normalized since the sum over all pos-

sible strings of data just reduces to (
∑A

1 pa)
N = 1. To compute P (pa|na) =

P (na|pa)P (pa)/P (na) (the definition of conditional probab.lity), we have to
make an assumption about P (pa) namely that it be uniform ie P (pa) =
cst.δ(1 − ∑A

1 pa)
∏A

1 dpa. To compute P (na) we have to evaluate the inte-
gral I(x) =

∫∞
0 δ(x − ∑A

1 pa)
∏A

1 dpa for x = 1 (in which case the upper
limit can be replaced by 1). By homogeneity, I(x) = xN+A−1I(1); mul-
tiply both sides by e−x and integrate from zero to infinity on x, to find,
I(1) =

∏A
1 na!/(N + A − 1)!. From this we can derive P (pa|na) and for

instance show 〈pa〉 = (na + 1)/(N + A), ie the average value of the model
parameter pa given a finite sample drawn from the distribution is not the
most probable value na/N , which for instance can be 0.

To apply this to clustering, consider a large number, S, of sequences,
each of length ` obtained by sampling M unknown frequency matrices, wi

a,
where i = 1, 2..`,

∑A
1 wi

a = 1 (ie the entries in the matrix give for each
column i the frequencies of the letters). The problem is then to group to-
gether the sequences from a common weight matrix and recover, within the
errors imposed by the finite sample size, the set of wi

a. Consider a subset of
N sequences, then the probability P (C) that they were drawn from single
weight matrix is the product of I(1) over all the ` columns. A probability
distribution can be defined over the entire set of S sequences by allowing all
possible partitions into clusters, each with a weight

∏
i P (Ci). Thus there is

a competition between all ways of partitioning S things into subsets and the
‘energy’ which favors, one can show, putting sequences from the same fre-
quency matrix together. This weighting scheme can be used, either in a one
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pass phylogenetic clustering, or more correctly with Monte Carlo sampling
which will generate soft clusters and allow an assignment of significance.

Intuitively for given S, there is a limit to how many frequency matrices
can be resolved (which depends also on their degree of polarization). Dis-
crimination obviously improves if more samples from the same matrix are
supplied. Finally there is a very interesting regime where it possible to clas-
sify most sequences if the set of M frequency matrices is known yet it is
impossible to cluster these sequences knowing nothing about the matrices.
The former problem is the one faced by the cell, since it ‘knows’ the proteins
which do the site recognition, whereas sequence clustering is only a problem
for the bioinformatician.

5 Gene Regulation

The extraction of the sites active in transcription control from the genome
is a more daunting task than gene identification since the individual protein
binding sites are much smaller than typical exons and their arrangement is
not so correographed as the promoter-exon-intron pattern of genes. Three
types of data can be brought to bear on the problem and all appear necessary.
For a single genome, one can search for repetition between the regulatory
regions of different genes. The repeats can be at the level of specific strings
(perhaps with a few spelling errors) or groups of similar strings that occur
in clusters. In all cases it is assumed that improbability under some model
implies function and for the calculations to be tractable there needs to be
some vestige of the signal on scales short enough to be searched exhaustively.
(The hard cases are those where the motif is long and mutated and where
there is no statistically significant signal in just a few copies.) The issue raised
above, that the cell can function by merely classifing sites while there may not
be enough copies to allow clustering, is clearly relevant here. The application
of one genome wide algorithm to yeast was discussed by H. Bussemaker.

The second source of data is comparative genomics, namely we exploit the
fact that what is functional is more constrained and evolves less rapidly than
what is not. The protein coding regions serve as landmarks for the regulatory
regions to compare since they are much larger and evolve more slowly than
the regulatory sites. In reality there are merely degrees of constraint and the
scale in bp on which compensatory mutations (preserving fitness) can occur
is also unknown. The ideal case is individual protein binding sites immersed
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in a sea of random sequence. In bacteria where the total regulatory region
of a gene is a few hundred bases, the conserved domains are typically larger
than a single binding site (N. Rajewsky submitted). The current state of
the art (McCue and C. Lawrence) in this area is to examine the regulatory
regions for one gene from several species. One is then faced with the task of
clustering sites for individual genes into families recognized one hopes by a
single protein.

Finally there remains mRNA expression data. If the question being asked
is how expression follows from sequence, there is little reason to first cluster
genes based on similarity of expression and then look for common sequence
motifs. The clustering should follow from the sequence. Following the idea
that the polymerase which makes mRNA is recruited to the promoter by
equilibrium binding to certain sites (or other proteins attached to these sites),
we have fit the log of the expression ratio, Rg for gene g, to the sum of
contributions Fm for motif m by minimizing

∑
g(Rg − C − ∑

m(FmNg,m))2

with respect to Fm and C, where the integer Ng,m is the number of copies of
motif m upstream of gene g. (H. Bussemaker). This scheme is sensitive to
combinatorial control. Genes which do not respond, but carry a functional
site, are informative about potential compensatory factors. All genes are fit
and when the residuals are Gaussian it is easy to assign significance to the
sequence motifs that correlate with expression.

The intent of this very condensed summary is to stimulate the curiosity
of students in the physical sciences for a nascent field where a medley of
techniques are required for success. Bioinformatics is most fruitfully situated
as a branch of natural science, merely publishing a clever algorithm is not
enough, it has to be used on real data to solve a real problem. The most
significant problems will probably emerge by looking at genome wide data
rather than reading biology texts, though they are essential. Their authors,
are in most cases not quantitatively trained and do not know what can be
done computationally. The flood of quantitative information in the form of
genomic sequences, gene expression, and protein interactions, provides for
the first time in molecular biology a realm where the primary discoveries
could emerge from analysis of public data. It remains to be seen whether
new data available for gene regulation will support a level of interpretation
that would merit the term theoretical biology.

Other than the books cited below, a number of other authors have been
mentioned in the text, their past and future contributions along with ab-
stracts can be found by searching in the medline data base (http://www4.ncbi.nlm.nih.gov/PubMed/)
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which any student must be familiar with. The references are restricted to a
few common texts.
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