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Abstract 

A brief review is given of recent laboratory investigations of high Ra convection and their relation to other turbulent flows. 
For a passive scalar we summarize an emerging body of theory for the one point distribution function and inertial range 
correlation functions which display non-Kolmogorov exponents. 

Low R a  number convection has long been the sys- 
tem of choice for investigating the onset of turbulence 
in both the small and large aspect ratio limits. For 
large systems, where there are a multiplicity of pos- 
sible patterns, experiments might never have gotten 
started if it were not for the very quantitative road map 
furnished by Busse and coworkers and its subsequent 
elaboration and application to large cells via ampli- 
tude expansions [1-3]. Theory, as practiced both by 
physicists and applied mathematicians, truly advanced 
in step with high quality experiments to sort out what 
was a very complex problem. Can we look to convec- 
tion at high R a  as a route out of the quagmire of fully 
developed turbulence? 

Someone remarked that turbulence is too important 
to ignore but too hard to solve; the latter statement 
being self-fulfilling prophecy in our view. Engineers 
concern themselves with the first part of the dichotomy 
and "turbulators" with the second. The sociological 
aspects of "pure" turbulence research are probably of 
more interest to a general audience than the scien- 
tific issues. The early success of Kolmogorov scal- 
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ing (K41) seems to have guaranteed the acceptance of 
its less well-founded successor (K62) [4]. Theory de- 
fined what was to be measured; isotropic turbulence 
was purer than boundary layers, and point measure- 
ments plus lots of signal processing were given pri- 
macy over visualizations. Large numerical simulations 
were run whose only output was a spectra. It hardly 
mattered that fourth-order velocity derivative statistics 
did not all scale the same way within simulations [5] 
(and therefore could not be parameterized by fluctua- 
tions in the energy transfer rate E) and even isotropic 
flows were plagued with structures [6]. Engineers, who 
were not concerned with constructing a general theory 
of everything, have amassed considerable information 
about shear flows which brings us back to the subject 
of convection. 

Much effort has gone into the elucidation of the 
N u ( R a )  relation and potent arguments have been 
given for scaling according to N u  ~ R a  1/3 [7]. Ul- 
timately this relation must fail as Kraichnan long 
ago recognized when bulk Kolmogorov-like turbu- 
lence reached a sufficient Reynolds number so that it 
generated turbulent boundary layers which invaded 
the thermal one [8]. No one anticipated however the 
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scaling N u  ",~ Ra 2/7 which Libchaber and coworkers 

first put on a solid footing [9,10]. In retrospect, ex- 

ponents indistinguishable from 2 had long been seen 

in water but it was always assumed that this was a 

transient on the way to becoming ~ [10]. An essential 

element for this new scaling relation in our view is the 
large scale coherent shear flow first seen by Howard 

and Krishnamurthy [10]. It might seem paradoxical 

that a wind would lower the N u ( R a )  exponent but in 
fact the coefficient accompanying the 2 scaling is suf- 

ficiently greater than that for marginal stability theory 

that it overwhelms small differences in exponent. 
Our own theory for { scaling utilized standard en- 

gineering turbulence ideas; energy balance, nesting of  

the thermal boundary layer within the viscous one, 
and the kinetic energy dissipation rate for turbulent 

boundary layers [11]. As a bonus we got a very good 

fit to the Re(Ra)  relation for the mean flow. However 
2 scaling extends down to nearly Ra ~ 104 in aspect 7 
ratio "-~ 6 cells, and occurs also in 2D convection [10]. 

In neither circumstance would a conventional turbu- 

lent boundary layer occur. 
Many visualizations and now more quantitative 

measurements of  the boundary layers in pressured gas 
cells up to Ra ~ l0 n show that plumes are an impor- 

tant component of  the near wall turbulence [ 12,13]. 1 
There is at least a qualitative analogy here with wall 
bounded shear flow where Willrnarth and Lu long ago 

showed that most of  the Reynolds '  stress is carried by 
the bursts [14]. Further evidence for the importance 

of  shear in turbulent convection comes from experi- 

ments in mercury where the low Pr  should enhance 

the velocities [15]. Here, around Ra ~ 2 x 107 a 

transition to higher N u  was seen which may signal 
the crossing of  the viscous and thermal boundary 
layers. The surprise is always that scaling arguments 
that do not admit structures work so well at the two 

point level. Their success should not blind one to the 
true nature of  the flow. 

1 We do not agree that the maximum cutoff frequency in the 
temporal spectrum of the scalar is a surrogate for the large scale 
velocity, its dependence on Ra may merely track the turbulent 
homogenization of the scalar. 
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If  turbulent convection reduces to a complicated tur- 
bulent boundary layer with local plume forcing, are 

there any statistical fluid mechanics problems where 

analytic progress is possible? One possibility is to drop 

the buoyancy in the Boussinesq equations and look at 

passive scalar advection. 
One small recent success in this area was the predic- 

tion and observation of  tails in the distribution func- 

tion (PDF) for the scalar fluctuations in the presence 

of  a mean gradient g (the total temperature field is 

0 - g .  r)  [16,17], 

OtO + v -  V0 = ~cV20 + g .  v. (1) 

If  the velocity field is stationary and homogeneous, 

g will transmit the same properties to 0. The tails of  
the 0 PDF measure the probability, a parcel of  fluid 

is transported without mixing from a point Ar  Suffi- 

ciently, up/down the gradient such that g Ar  is the 

desired excursion in 0. If  L is the integral scale of  v 
or 0, (0 2} ~" L2g2; so we are looking at transport by 

the large scales of  motion over distances of  several or 
many integral scales. Computation of  the tails of  PDF 

is thus equivalent to asking for the fraction of  veloc- 

ity fields in our ensemble which will transport a par- 

cel the desired distance with no mixing. Logically this 

can occur either for typical mixing rate but an atypi- 
cal path or for a typical (random walk) path for which 

the mixing time is anomalously long. The latter effect 
wins. 

Within an integral scale, the probability that the 

scalar will mix with its environment depends on the 

shear of  the large scales either through its direct action 

or in its role in maintaining the turbulent energy cas- 
cade and through it the eddy diffusivity. The strain is 
~< 1 /T  in magnitude (T >> 1 in units where (v2)/L 2 

1) with probability ~ ( 1 / T )  a. Impose this condition 
T time in succession with a probability e - a  T In :r. I f  

there were no diffusion, the PDF from fluid parcels 

random walking up and down the gradient for a time T 
would be non-stationary and of  the form exp(--O2/2T) 

in suitable units. Therefore: the tails are given by 

P(O) ~ f dTe-°2/2Te -aT In T ,.. e-101 In 10l (2) 
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A proper calculation is very naturally formulated as a 

path  integral over the prior history of the parcel and 
eliminates the ln[0[ in (2) [17]. 

A related question with relevance to the treatment 
of small scale 0 statistics is to examine the PDF of 
V0. Within simulations [18], the distribution is cusped 
around its maximum and has stretched exponential 
tails. However the cusp is centered around - g .  This is 
manifest in snapshots of the total temperature field, as 
plateaus where the temperature is uniform, separated 
by "cliffs". The mean gradient is thus expelled into the 
cliffs. Interestingly enough, the path integral calcula- 
tion of Pumir et al. [17], which had only a single scale 
velocity, did reproduce this feature of the simulations. 

A more ambitious problem is to look within an in- 

tegral scale and study the scaling of 0 fluctuations 
advected by a velocity which itself scales. This is 
an appealing problem since all the Kolmogorov phe- 
nomenology carries over to the scalar. The spectrum 
of 0 often follows a ~- law though with less precision 
than for the velocity [19]. 

The surprising fact is that Kolmogorov theory fails 
badly already for the third-order moment which is fre- 
quently packaged as Sd -~ ( (g .  00)3)/((00)2) 3/2. The 

small scales should be isotropic irrespective of large 
scale gradients so we expect Sd ~ g/((O0)2) 1/2 

Re  -1/2. Instead the experiment very unambiguously 
says Sd is Re independent and ~ 1 [19]. Additional en- 
couragement to tackle this problem analytically came 
from simulations and wind tunnel experiments which 
showed that the anomalous skewness was not unique to 
shear flows but true even for synthetic Gaussian veloc- 
ity fields [19]! The skewness is symptomatic of coher- 
ent structures in the 0 field consisting of gentle ramps 
and abrupt cliffs (noted already above) across which 0 
may fall by a good fraction of its variance over a mi- 
croscale in distance [18,19]. This is qualitatively the 
same property that was noticed for the coherent vor- 
tex tubes seen in isotropic simulations [5]. A velocity 
difference of order the RMS occurs across the vortex 
core which itself scales with the Kolmogorov length. 
Kraichnan has shown by a plausible closure and sim- 
ulations that even powers of A0r ---= (O(r) -- 0(0)) 
exhibit non-Kolmogorov scaling when v is Gaussian 
white noise with a 5/3 spectrum [20]. 

The method of choice for calculating higher-order 
0 correlation functions is the Hopf equation which 
expresses their stationary. This equation is simple only 
for g-correlated velocity fields where it reduces to the 
sum of the Richardson operator acting on all pairs of 
points (a, b are spacial labels). 

L(R ~) F2ij -~ (ga b (d + i -  i f ) -  ( 2 -  ~)Fijri b)O a 0 b. 

(3) 

Lower-order correlators act as source terms for higher- 
order ones, and the inhomogeneous solutions for this 
hierarchy at least formally follow Kolmogorov scaling 
[17]. Several groups realized that new non-trivial ex- 

ponents can arise via homogeneous solutions [21,22]. 
Our own approach has been to eschew a white noise 

model in favor of a more phenomenological treatment 
of a velocity field with proper temporal correlations 
[22]. The Hopf equation we ultimately solve is only 
approximate but in the end more realistic. We summa- 
rize the salient features of our solution. 

The Navier-Stokes equations have no intrinsic 
scales except for viscosity so that the action of 6Vr for 
one Lagrangian correlation time amounts to a change 
in gr by 0(1).  Therefore given a multipoint correla- 
tion function whose points have a radius of gyration 
Rg decompose the velocity into scales >> Rg which 
contribute only through their action on the mean tem- 
perature gradient, g • r; scales ~ Rg whose affect we 
approximate by a volume preserving linear transform 
acting coherently on all points, and scales << Rg (but 
scaling with Rg) which act as an incoherent nearly 
white noise random advection. 

The evolution of the correlation function under the 
coherent part of the velocity is expressed by L0 = L~  ) 
and the incoherent part by some LD (D - for dissipa- 
tion) to be defined below. The stationarity dictates the 
Hopf equation: 

(Lo q- LD)(O(1).  . .O(n q- 1)) =- I, (4) 

where the RHS denotes the inhomogeneous forcing 
term. It can be argued that the inhomogeneous solution 

R(n+l)/3 for of (4) has the regular (K41) scaling e.g.L.g 
(n+3)/3 even moments and Rg for odd, The scaling of the 

homogenous solutions, which of course are needed to 
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satisfy the matching or boundary condition for large 

and small Rg, cannot  be found by dimensional anal- 
ysis. Hence we need to determine the scaling index, 

)~, of  the zero modes of  the L0 + LD operator. The 

anomalous exponents correspond to those ~ less than 

the corresponding K41 exponent. 

Let us start with the zero modes of  L0. For the 

(n + 1) point correlation function of  ri eliminate the 
center of  mass by defining n difference vectors, Pl = 

(rl -- r2)/~cf2, P2 = (rl + r2 -- 2r3)/~/-6, P3 = (rl + 
r2 4- r3 - 3r4)/~/~2, etc. Since the coherent part of  
the velocity field is modeled as a single matrix acting 

on all Pi, one observes that this dynamics and hence 
Lo are invariant under all volume preserving linear 

transformations Pi --+ gij " Pj  acting on the "isospin" 
label of  p 's .  These form the SL (n, R) groups. In ad- 

dition L0, is invariant under spatial rotations, SO(d), 
and a dilation A = paoa. Since L0 is second order 

in derivatives, the above-mentioned invariances im- 

ply that it can be expressed entirely in terms of  their 

Casimir operations (i.e. angular momentum squared 

for SO (d) and an appropriate generalization thereof 
for SL(n) [22]. 

These group theortic considerations allow one to 
immediately determine all the eigenmodes of  L0. In 
the simplest case of  the skewness in two dimensions, 

they can be labeled by an angular momentum quantum 
number l, v related to the SL(n = 2) Casimir, q an 

SL(2) "angular momentum", and finally the dilation 
exponent ~.. Demanding zero eigenvalue and imposing 
boundary conditions leads to )~ = 1, v = 1, l = 1, and 

arbitrary q (plus other less relevant )~'s). Note )~ = 1 

is precisely what is needed to explain the anomalous 

skewness and gives one hope that LD will indeed be 
a small perturbation on L0. 

Before considering LD we note another important 

physical property of  L0 namely its reducibility; acting 
on any function behaving as [rij ix, x > 0; the limit 

rij ~ 0 reduces Lo(n) to Lo(n - 1) acting on the 
remaining variables. This is what one would expect 

for the advection. 
This reducibility must not hold for the dissipa- 

tive operator L D  which is most plausibly taken as 
0t~2/3/- 2/3 ~'g ~R ' where ot will be used as a formal ex- 

~2/3 adjusts the time scale to pansion parameter, .,g 

that assumed for Lo (altematively LD must have the 
r2/3 is just the same scaling dimensions as Lo), and ~R 

operator appropriate to a white noise velocity with 

Kolmogorov spectrum. For technical reasons we use 

a simpler variant with the same scaling properties 
2/3 2 LD = ~Rg /3(p)Vp, where/3 has a scaling dimen- 

.4/3 
sion 4, vanishes as rij when any rij -+ 0 (a "Kol- 

mogorov point"). Near such a point the correlation 

function is isotropic in rij, and behaves like [rij 12/3 . 

The L0 +LD Hopf  operator, which is ultimately phe- 

nomenological, has many intuitively reasonable prop- 
erties in addition to those already noted for L0 and LD 
separately. Exponents are non-universal in that they 

depend on details of  the velocity field in addition to 

its scaling dimension. If  Pl = r12 --+ 0 then 

L~_I)~. (82(1)8(2). . . )  + ~Rg/3O (e(1)8(2) . . . )  = 0. 

(5) 

The new operator E is the local dissipation rate, ex- 
pressible as L~/3)(p)8(p + 1)0(1) in the inertial 

range and matching to x(V0)  2 in the dissipation 

range. Of course (5) is not a closed equation, but 
(E0. . . )  must have a positive scaling dimension, ((1) 

implies SUPrlS(r) ] and (~) are set by the large scales). 
Thus the exponent for (80 . . . )  must exceed 2. 

The dissipative term is a singular perturbation in (4) 

just as it is in  (1). It dominates near the Kolmogorov 

points and also when several points in the correlations 
are parallel. Collinearity is o f  course an invariant con- 

dition under matrix multiplication, functions invariant 

under L0 alone are non smooth there and inclusion of  

the incoherent eddy damping renders them analytic. 

The perturbative calculation in Lo thus requires 
dealing with the non-trival crossover from the L0 dom- 

inated region to the L D  dominated one, which for 
the skewness in two or three dimensions occurs for 
( / R  2 ~ ot 1/2 with the "volume" ( = IPl A P2l (note 
that collinearity corresponds to ( = 0). This calcula- 

tion has been described in [22]. Its result, aside from 

the scaling exponent )~(a) = 1 + 0(o0, is the explicit 
form of the correlator for a general configuration of  
points. Away from collinearity this can be represented 
as a linear superposition of  the L0 zero modes, ~p, 
forming a representation of  SL (n = 2): 
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(000) :- y ~  aq ~v=Z/2,l= 1,q (P)- (6) 
q 

The coefficient aq is related to this correlator with 

points collinear. Thus aq can be input from an 

experimental measurement and the correlation func- 

tion determined for non-collinear points. A more 

compact integral form for (6) is given in [22]. How 

accurate this procedure is, must be decided by exper- 

iment [22]. 

We close with a few remarks about the velocity. Re- 

cently very convincing evidence has been given for the 

small scale isotropy of the two point velocity correla- 

tions [23]. One should not conclude that higher-order 

correlations are isotropic. Motivated by analogy with 

the scalar skewness Pumir and Shraiman [24,25] stud- 

ied homogeneous shear ((v)ot y~) numerically and 

found that both Wz and Oy Vx had a normafized third 

moment  ~ O(1) and Re independent. Kolmogorov 

theory predicts again Re -1/2. Should the trend seen 

only for Rz < 100 numerically persist to much higher 

Re, we will again have a clear violation of K41 at 

the level of a 3-point function. Shear flows may thus 

prove to be a better idealization of turbulence than 

isotropic ones because they explicitly include a steady 

large scale shear which biases the inertial range statis- 

tics all the way down to dissipative scales. 

It is only in the context of a Festschrift that the au- 

thors could pack so many speculations and supposi- 

tions into a volume that carries Fritz Busse's name. 

May his comments and writings keep us on our mettle 

for many years to come. 
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