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Symmetry and Scaling of Turbulent Mixing
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The stationary condition (Hopf equation) for tlie + 1)-point correlation function of a passive
scalar advected by turbulent flow is argued to have an approximate, 8L symmetry which
provides a starting point for our phenomenological theory in which less symmetric terms are treated
perturbatively. The large scale anisotropy is found to be a relevant field, in contradiction with
Kolmogorov phenomenology, but in agreement with the large scalar skewness observed in shear flows.
Exponents are not universal, yet quantitative predictions for experiments to test theREsymmetry
can be formulated in terms of the correlation functions. [S0031-9007(96)01137-4]

PACS numbers: 47.27.—, 02.20.—a, 47.10.+g

Kolmogorov succeeded, by very simple argumentsnteractions between large and inertial range scales. This
(K41), in predicting the scaling for the velocity correla- merely obscures the relevant physics.
tions{v,v_;) at high Reynolds numbeR, for wave num- The prospects for an analytic theory of scalar inter-
bers intermediate between those defined by the geometryittency are much enhanced by the observation that
of the flow and dissipation; the so called inertial range [1].remains~1 and R independent even when the complex
Obukhov and Corrsin soon applied the K41 reasoning taurbulent shear flow is replaced by a Gaussiatield [4].
a passive scalar, i.e., a fietdl obeying “Boring” but scale invariant velocity fields generate inter-

9,0 + v - VO = kV’0 (1) esting scalar statistics; thus one expects that much can be

(x is diffusivity), and experiments subsequently foundlearned from studying a passive scalar advected by Gauss-
scaling behavior for®, although the K41 exponent is ian random velocity—the so called Kraichnan model [5]
approached only at very higR if at all [2]. However, and its extension to more physical nonwhite temporal
an even more glaring inconsistency with K41 appearedorrelations.
with the observation that the derivative skewnegs= In this Letter we argue that the dominant term in the
((8,:0)%)/{(9.0)**/* is of order 1 andR independent evolution equation (the “Hopf equation”) of the scalar
out to the highesR available [3]. This fact motivated multipoint correlator)s generated by a velocity field with
our work. a physical correlation time is highly symmetric and is

Sinces, breaks parity, we follow the experiments andintegrable by Lie algebraic methods. Recently it has
impose a large scale gradiegt so that® = 0 + gr  been realized [6-8] that the leading (anomalous scaling)
where(#) = 0 and(6(r)6(0)) inherits a correlation length terms iny arise as the zero modes of the Hopf operator
or integral scale from the velocity field. The inhomo- Ly with the lowest scaling index. For the dominant,
geneous termg - v which appears in thed equation symmetric part ofLy, we find that the complete set of
then acts as a “force” which maintains tife fluctua- zero modes has an infinite degeneracy (because of the
tions stationary. The conundrum witky is that K41 high symmetry), i.e.A is independent of a subsgf} of
predicts small scale isotropy for large specifically, the quantum numbers. The degeneracy is lifted by the
sqa ~ g/{(0,0))H'/2 ~ R1/2 or for 66, = 6(r) — 0(0), lower symmetry part o5 which dominates when points
S = (86> ~ r°/3 (vs r! in experiments). The K41 ar- are collinear and is treated by singular perturbation theory,
guments have proved so seductive and work so well foor equivalently by diagonalizing within the degenerate
the two-point velocity correlations that problems with thesubspace. The correlator is no more universal than
scalar have been all but forgotten. the velocity field. However, sinces with a general

The observation of, ~ O(1) is particularly intriguing  configuration of points is governed approximately by the
since it suggests thak is arelevantvariable along with symmetric part ofLy, it can be represented as a linear
the “energy” (scalar variance really) dissipation ratg  superposition of the degenerdig modes with the weight
in the sense of parametrizing the effect of the largedefined by with points collinear. The latter can be
geometry specific scales on the inertial range. Averagingneasured directly in experiment or numerical simulations
g away by insisting on isotropic large scales will eliminateand the above relation used as a quantitative check for the
sq but in no way lessen the instantaneous nonlocaéxistence of the Slz, R) symmetry.
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The homogeneous part of the inertial range Hopf equaeperator; andz> = %ZG,-‘;GA,»,», Gij = pf‘aj»’ - %5,3,-/\ is
tion for a white noise velocity field may be written in terms the Casimir of the group Sk,R) diagonal in space,
of the Richardson operator acting on the label (henceforth called pseudospace) via

&) 2¢,cab o b~ b pi — gi;ip$, whereg is a unit-determinant matrix. The
L= "(6%d + 1 = £) = (2 = OFF;j)070; appearazlc{e of the $ R) in (3) is the consequence
(2)  of the underlying evolution step being the multiplication
acting on all pairs of point§, j, #;; = #; — 7;) andwhere of all p; by a common spatial strain-vorticity matrix—
a,b denote spacial indices [9-11]. In this paper wethe linear mapping described earlier—which is invariant
explore the consequences of a complementary class ®fith respect to a general linear transformation acting on
models in which the proper scaling of the Lagrangianp’s. The last three terms in (3) can be rewritten (by
time scaler with r, ~r%3¢~'/3, is made paramount. The rearranging the summations iG> to contractp and 9
price paid is that an exact, temporally local Hopf equatiorfirst on pseudospace and then on space}d® where
does not exist and phenomenological arguments becon¥ is the Casimir of SLd, R) group acting on real (rather
necessary. than pseudo) space. However, the generators ¢f,3t)

Consider a multipoint correlation function whose argu-do not commute withZ.?> so except in special cases it
ments are roughly equally spaced, with radius of gyratiois more convenient to organize the zero modesLgf
R,, which partitions the modes of the velocity field into according to the representations of @Dx SL(n) X A
three bands by scale size. Relative motion ofithis pre-  which will simultaneously diagonalize the three operators
dominantly caused by modes with scale?, which act in (3). Before constructing these representations:fer
like a single coherent strain-vorticity matrix whose effect2,d = 2,3 (n = 3,d = 2 is similar) we note several
over one correlation time is a@(1) volume preserving general properties of the eigenvalues.
linear transformation. For Gaussianthe averaged oper- ~ We will work within the space of homogeneous func-
ator implementing this finite coordinate change is just thdions whose scaling dimensioh diagonalizesA. The
exponential ofLy = L\, so the condition of stationarity Other quantum numbers which label the correlatprare
can be expressed @y = 0. (NoteL, is identical with ~ discrete since the remaining variables are compact. To
the Batchelor-Kraichnan operator [10] for white randomsolve for note that.> — I(d — 2 + 1) andG> — (n —
gradient advection but its meaning here is quite different.}) (1 + A/n)A/2; the later expression comes from the fact
This approximation clearly fails when two points, e.g., (1)that the spectrum ofi* does not depend od and hence
and (2), approach;, < R,. Then7y, is acted on by the can be evaluated by relating’ to /> and settingd = 1
relative velocity from its own scale whose effects exceed’ /> = 0. (An additional discrete quantum numbler
those of the coherent strain vorticity and which is whiteCan enterG* but is not relevant at this stage [6].) Thus
in comparison. This “eddy damping” we will take ac- for the zero modes, (3) reduces to a quadratic equation
count of below by adding a dissipative terhy, to Lo. N A, gnd the most relevant (i.e., smallest non-negative)
Finally, the velocity on scales>R, is an overall transla- [12] eigenvalues for anyn.d) are A = (0,1) for £ =
tion, which generates the inhomogeneous term in the Hogf- 1), respectively. The former pertains to flatnéss=
equation in the presence of a mean gradient, but does ndt and the latter to skewness since it must couple
affect the zero modes. to the external gradient. THe= 0 eigenvalue could have

Our phenomenological description or indeed any Hoppeen anticipated from the Batchelor-Kraichnan interpreta-
equation more elaborate than white noise will containfion of Lo. _ _ o
parameters beyond andd in (2) which originate from It is b_oth convenient computationally and illuminating
the velocity field. In general, one should expect theof the L_|e qlgebralc structure to construct the zero modes
anomalous exponents to depend on all parameters of tfd (3) in integral form, which we will do explicitly
Hopf equation and thus be nonuniversal. For this reasofPr » =2, d = 2,3. First, for n = d = 2 consider a
we concentrate in the remainder of the paper on analyzingomogeneous function of degree:
the consequences fgr of a symmetry, exact fof.¢, and . .
approximaqte for the?ﬂll Hopfyoperatgr. hy w(p) = ] d(ﬁf dipe 1 () pfea ),

The operatorL, is a very attractive starting point for (4)

perturbation theory since it is integrable [6]. For the h . . h .
(n + 1) point correlation function ofr; eliminate the WNer€ integration over thespace ang-space unit vec-

center of mass by defining difference vectorsp; =  t0rS é(¥) and a(¢), respectively, ensures that’ has
(r1 — r)/N2, pr=(r + r— 2r)/\/6, p3 = (r + r-space angular momentuit and p-space angglar mo-
ra + r3 — 3r)/4/12, etc. mentum [eigenvalue 0of(Gj, — Gy)] is q. It is easy

Lo(n) = — (d + 1L? + 2dG? to verify: G*h}, = v(v + Dhg,. It can be shown
5 that h;,, transforms linearly under the action of the
+ d(d — n)(A°/nd + A), () SL(2,R) transformations forming an infinite dimensional

where L? = %lza,b(p,{lé? — pla9)? is the square of representation [13]. Instead we will use similar alge-

the total angular momentunly = p{ d{ is the dilatation braic manipulations to evaluate (4) in terms of the Euler
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parametrization ofp: p; = ij-le,-j(X)ijja(e) where the discrete permutations of the correlator. The most
R(x),R(6) are rotation matrices (which can be obtainedplausible form forL, is aR§/3L§32/3), i.e., just the Hopf
by diagonalization ofpp”). Substituting into (4), we operator for the white velocity model with K41 exponents,
observe that th®k matrix factors can be absorbed into ytiplied by the Lagrangian time scalg’? implicit
a redefinition of the integration variable resulting in aj 7, with ‘a formally small expansion parameter.
expligxy + im6) phase factor. Next rescalgé; to de-  Aternatively L, should have the same scaling dimension
fine a new unit vectoh; = n;&/A/nté3 + naés and its  asLo; they both represent inertial range dynamics.
phase expd(¢,€)] = iy + ifn. All the  dependence  When two points coalescp, = r;; — 0, zero modes of
of (4) is in the form [ ¢™¥ cog”(8 + ¢), so to within a L, behave as‘&l) + fflmpm wheref!? are functions
constant of the other coordinate differences with the indicated

L 2T 46 . degree. The leading balance in the equation,ig' +
ham = elq)(+lm0]() ﬁelm(”%f% + n3é3)” fngp2/3 =0, and gLD is a singularqperturbaﬁon to

niEr — inaks\"? Lo. If L*(p)8(p + 16(1) is identified with the local
< ) dissipation rates, then the same balance readspas> 0,

nigr + inxés (n—1)
= eiq)(+im9(§;l§2)VP;/m(W—l)’ (5) L() <02(1)0(2) .. > + aR§/3<6(1)0(2) > =0 (7)
wherew = 2£,& /(&3 + £3) and the integral defines the Of course (7) is not a closed equation, but it does
Jacobi functionP?. correctly reexpress a consequence of scaling and the

To complete the construction of the eigenfunctionsPehavior of correlators with nearly coincident points,
note that the area of the triangle get= 5, A p, = £,&  hamely thate carries a scaling dimension of 3 relative
is invariant under both SQ@) and SL(2) transformations. t0 6>. Phenomenology suggests afy, which forces

The complete set of eigenfunctions with four quantumthe correct local singularity iny for p < R, should
(A/2+k) A suffice. The Laplacian damping model of Ref. [B], =

numbers isy,, = (detp)*2hgm ~ wherek = v — 3 . A Earib .

is a positive integer to ensure analyticity as det 0 and  2:R¢V?, involved derivatives in alp; symmetrically and

points in the correlator become collinear therefore left correlators analytic when points tended to
To generalize tal = 3, replaceR;;(#) in the expres- coincidence.

sion for p? by a pair of orthogonal unit vectors, , The eigenvalue problem for the skewness zero mpdes,

defining a representation of SO(3) (witty = 7; A ﬁz V3, can b(_e rgd'uced to the. w plane with the symmetries

completing the triad). Let the 3D unit vecta(y) in  ©f antiperiodicity unden — y + /3 (permutation and

(4) be perpendicular to and rotate aroufigl || g1 A g, 'enection hOf r,»)dand e\aen U”dfe'(/\’A’fl) ? _(Xafl)’

which one observes is invariant under SL(2) transformafzﬁ i uan gmg(_e (interc ange Q’Z'b. way ro;nvg o (')h

tions. Repeating the earlier derivation and observitig WNere Lp dominates,ys is a combination of (6) wit

o ) ; > = +3,+9 etc. and = 1.
can be multiplied by an arbitrary function @ A p,, ¢ P .
e.g.,Y,f;(v%) one arrives at the eigenvectors To understand which features of the skewness zero

Iy B A2 pr g iax modes are independent of the details Iof and thus
Uigimm = (E162) Py, (w=)Dy, (m)e',(6)  of experimental interest, several salient aspects of the

which have a “complete” set afd = 6 quantum numbers singular perturbation theory foky must be recounted.

(m' is not summed). A crossover equation has been solved which takes the
For ¢ = 1, D' in (6) reduces to eithefy; or 7, (3  “outer” solution (L, dominant) forw < 1, and y arbi-

is excluded for the skewness by inversion symmetry), antrary, and propagates it inward to the= 0 line where

k = 0 for the relevantA; thus the manifold of degenerate L, dominates. Then a closed eigenvalue equation in

states withA = 1 is labeled by the quantum numbgr y alone is derived, which is solved by shooting from

or the angley. To proceed further we must include w = 0,y = 0to y = 27 /3. The Lp dependent eigen-

the effects of the small scale, incoherent velocity, viafunction a(y) alongw = 0 determines the combination

the operatoiLp and write the Hopf equation asy =  of g modes that are superimposed for> 0 in the so-

(Lo + Lp)y = 0. We first discuss properties @f, that  lution. However, a feature of the crossover equation for

pertain to any(n,d) and then specialize to the skew- our class of models is that to first nontrivial order in per-

ness [14]. turbation theory, the relation af(y) to the amplitudes of
The operatorL, is reducible, that is, acting on any the SlL(n) modes (6) in the outer solution is independent

function behaving adr;;|*, x > 0 the operatorLy(n) of Lp. Hence if one were to measure the skewness with

reduces in the limit;; — 0 smoothly toLy(n — 1) acting  all points parallel (i.e.w = 0), a(x) would be known

on the remaining variables. This is becadgeoriginates and from it the skewness for < O (1) determined using

from the advective part of (1) which evolveg(r) the  only the Sl(n) symmetry ofLj.

same way a9 (r). The operatorLp incorporating the This insight can be most compactly expressed by

dissipation cannot reduce so simply and further mususing the integral form (4) for the $k) modes (5)

lower the continuous pseudospace symmetryLgfto  and replacing the sum og by a convolution integral
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on the pseudospace anglg; = (6,6,6;) becomes with It is not surprising that the intermittency exponents

v =1/2, of passive scalar mixing are no more universal than the
- - . - velocity field itself, even if Gaussian [15] (but ngig, 0

" cosp)é1 7 + sin(e)érinn y LLS] (but note 0.)

Pi(p) = 3 - > _ 5 satisfies an inhomogeneous equation and thus inherits
0 [cog(p)ér + sin(p)&3]/27A/2 the velocity exponent). This may seem a particularity
X f(p — x)do, (8) of passive scalars, if one believes the small scales of

) turbulence universal; we rather believe that the scalar
The modes (5) were summed on’ to impose the apalysis shows how the inertial range velocity can be
symmetry under » mterchan_ge. The crossover equationgirectly imprinted by large scale anisotropy leading to non-
relates the., dependent weight, = sgrig) (4> — 1)a;  universal exponents for correlators as low as 3rd order [16].
to the eigenfunctiom(y). Noteys for p; parallel [, = E.D.S. thanks the NSF for support under Grant
0 and tariy) = p1/p2] is just & a(x) 7, - g towithinan  No. DMR 9121654, and both authors acknowledge the

overall constant. The symmetries #f and K41 imply  Aspen Center for Physics where this work was initiated.
f(¢) should have the same symmetry, singularities as

sin(3¢)/| sin3¢|*3*2*(N.B. 2» ~ 1, the integral exists).
Equation (8) can readily be tested in a wind tunnel with
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