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The stationary condition (Hopf equation) for thesn 1 1d-point correlation function of a passiv
scalar advected by turbulent flow is argued to have an approximate SLsn, Rd symmetry which
provides a starting point for our phenomenological theory in which less symmetric terms are
perturbatively. The large scale anisotropy is found to be a relevant field, in contradiction
Kolmogorov phenomenology, but in agreement with the large scalar skewness observed in shea
Exponents are not universal, yet quantitative predictions for experiments to test the SLsn, Rd symmetry
can be formulated in terms of the correlation functions. [S0031-9007(96)01137-4]
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Kolmogorov succeeded, by very simple argume
(K41), in predicting the scaling for the velocity correl
tions kyky2kl at high Reynolds numberR, for wave num-
bers intermediate between those defined by the geom
of the flow and dissipation; the so called inertial range [
Obukhov and Corrsin soon applied the K41 reasoning
a passive scalar, i.e., a fieldQ obeying

≠tQ 1 $y ? $=Q ­ k=2Q (1)
(k is diffusivity), and experiments subsequently fou
scaling behavior forQ, although the K41 exponent i
approached only at very highR if at all [2]. However,
an even more glaring inconsistency with K41 appea
with the observation that the derivative skewnesssd ­
ks≠xud3lyks≠xud2l3y2 is of order 1 andR independent
out to the highestR available [3]. This fact motivated
our work.

Sincesd breaks parity, we follow the experiments a
impose a large scale gradient$g so that Q ­ u 1 gr
wherekul ­ 0 andkusrdus0dl inherits a correlation length
or integral scale from the velocity field. The inhom
geneous term$g ? $y which appears in theu equation
then acts as a “force” which maintains theu fluctua-
tions stationary. The conundrum withsd is that K41
predicts small scale isotropy for largeR specifically,
sd , gyks≠xud2l1y2 , R21y2 or for dur ­ usrd 2 us0d,
S ­ kdu3

r l , r5y3 (vs r1 in experiments). The K41 ar
guments have proved so seductive and work so well
the two-point velocity correlations that problems with t
scalar have been all but forgotten.

The observation ofsd , Os1d is particularly intriguing
since it suggests that$g is a relevantvariable along with
the “energy” (scalar variance really) dissipation rateeu ,
in the sense of parametrizing the effect of the lar
geometry specific scales on the inertial range. Averag
$g away by insisting on isotropic large scales will elimina
sd but in no way lessen the instantaneous nonlo
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interactions between large and inertial range scales.
merely obscures the relevant physics.

The prospects for an analytic theory of scalar in
mittency are much enhanced by the observation thasd

remains,1 and R independent even when the comp
turbulent shear flow is replaced by a Gaussiany field [4].
“Boring” but scale invariant velocity fields generate int
esting scalar statistics; thus one expects that much ca
learned from studying a passive scalar advected by Ga
ian random velocity—the so called Kraichnan model
and its extension to more physical nonwhite temp
correlations.

In this Letter we argue that the dominant term in
evolution equation (the “Hopf equation”) of the sca
multipoint correlatorc generated by a velocity field wit
a physical correlation time is highly symmetric and
integrable by Lie algebraic methods. Recently it
been realized [6–8] that the leading (anomalous sca
terms inc arise as the zero modes of the Hopf opera
LH with the lowest scaling indexl. For the dominant
symmetric part ofLH , we find that the complete set
zero modes has an infinite degeneracy (because o
high symmetry), i.e.,l is independent of a subsethqj of
the quantum numbers. The degeneracy is lifted by
lower symmetry part ofLH which dominates when poin
are collinear and is treated by singular perturbation the
or equivalently by diagonalizing within the degener
subspace. The correlator is no more universal
the velocity field. However, sincec with a genera
configuration of points is governed approximately by
symmetric part ofLH , it can be represented as a line
superposition of the degeneratehqj modes with the weigh
defined byc with points collinear. The latter can b
measured directly in experiment or numerical simulati
and the above relation used as a quantitative check fo
existence of the SLsn, Rd symmetry.
© 1996 The American Physical Society 2463
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The homogeneous part of the inertial range Hopf eq
tion for a white noise velocity field may be written in term
of the Richardson operator

L
sz d
R ­ r

22z
ij sdabsd 1 1 2 z d 2 s2 2 z dr̂a

ijr̂b
ijd≠a

i ≠b
j

(2)
acting on all pairs of pointssi, j, $rij ­ $ri 2 $rjd and where
a, b denote spacial indices [9–11]. In this paper
explore the consequences of a complementary clas
models in which the proper scaling of the Lagrang
time scalet with r, ,r2y3e21y3, is made paramount. Th
price paid is that an exact, temporally local Hopf equat
does not exist and phenomenological arguments bec
necessary.

Consider a multipoint correlation function whose arg
ments are roughly equally spaced, with radius of gyrat
Rg, which partitions the modes of the velocity field in
three bands by scale size. Relative motion of the$ri is pre-
dominantly caused by modes with scale,Rg which act
like a single coherent strain-vorticity matrix whose effe
over one correlation time is anOs1d volume preserving
linear transformation. For Gaussian$y, the averaged oper
ator implementing this finite coordinate change is just
exponential ofL0 ­ L

s0d
R , so the condition of stationarit

can be expressed asL0c ­ 0. (NoteL0 is identical with
the Batchelor-Kraichnan operator [10] for white rando
gradient advection but its meaning here is quite differe
This approximation clearly fails when two points, e.g.,
and (2), approachr12 ø Rg. Then $r12 is acted on by the
relative velocity from its own scale whose effects exce
those of the coherent strain vorticity and which is wh
in comparison. This “eddy damping” we will take a
count of below by adding a dissipative termLD to L0.
Finally, the velocity on scales¿Rg is an overall transla-
tion, which generates the inhomogeneous term in the H
equation in the presence of a mean gradient, but does
affect the zero modes.

Our phenomenological description or indeed any H
equation more elaborate than white noise will cont
parameters beyondz and d in (2) which originate from
the velocity field. In general, one should expect
anomalous exponents to depend on all parameters o
Hopf equation and thus be nonuniversal. For this rea
we concentrate in the remainder of the paper on analy
the consequences forc of a symmetry, exact forL0, and
approximate for the full Hopf operator.

The operatorL0 is a very attractive starting point fo
perturbation theory since it is integrable [6]. For t
sn 1 1d point correlation function ofri eliminate the
center of mass by definingn difference vectorsr1 ­
sr1 2 r2dy

p
2, r2 ­ sr1 1 r2 2 2r3dy

p
6, r3 ­ sr1 1

r2 1 r3 2 3r4dy
p

12, etc.
L0snd ­ 2 sd 1 1dL2 1 2dG2

1 dsd 2 nd sL2ynd 1 Ld , (3)
where L2 ­

21
2

P
a,bsr

a
i ≠

b
i 2 r

b
i ≠

a
i d2 is the square o

the total angular momentum;L ­ r
a
i ≠

a
i is the dilatation
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operator; andG2 ­
1
2

P
GijGji , Gij ­ r

a
i ≠

a
j 2

1
n dijL is

the Casimir of the group SLsn, Rd diagonal in space
acting on thei label (henceforth called pseudospace)
r

a
i ! gi,jr

a
j , whereg is a unit-determinant matrix. The

appearance of the SLsn, Rd in (3) is the consequenc
of the underlying evolution step being the multiplicatio
of all $ri by a common spatial strain-vorticity matrix—
the linear mapping described earlier—which is invaria
with respect to a general linear transformation acting
r’s. The last three terms in (3) can be rewritten (
rearranging the summations inG2 to contractr and ≠

first on pseudospace and then on space) as2dJ2 where
J2 is the Casimir of SLsd, Rd group acting on real (rathe
than pseudo) space. However, the generators of SLsd, Rd
do not commute withL2 so except in special cases
is more convenient to organize the zero modes ofL0
according to the representations of SOsdd 3 SLsnd 3 ^

which will simultaneously diagonalize the three operat
in (3). Before constructing these representations forn ­
2, d ­ 2, 3 (n ­ 3, d ­ 2 is similar) we note severa
general properties of the eigenvalues.

We will work within the space of homogeneous fun
tions whose scaling dimensionl diagonalizeŝ . The
other quantum numbers which label the correlatorsc are
discrete since the remaining variables are compact.
solve forl note thatL2 ! lsd 2 2 1 ld andG2 ! sn 2

1d s1 1 lyndly2; the later expression comes from the fa
that the spectrum ofG2 does not depend ond and hence
can be evaluated by relatingG2 to J2 and settingd ­ 1
or J2 ­ 0. (An additional discrete quantum numberk
can enterG2 but is not relevant at this stage [6].) Thu
for the zero modes, (3) reduces to a quadratic equa
in l, and the most relevant (i.e., smallest non-negati
[12] eigenvalues for anysn, dd are l ­ s0, 1d for , ­
s0, 1d, respectively. The former pertains to flatnesssn ­
3d and the latter to skewness since it must cou
to the external gradient. The, ­ 0 eigenvalue could have
been anticipated from the Batchelor-Kraichnan interpre
tion of L0.

It is both convenient computationally and illuminatin
of the Lie algebraic structure to construct the zero mo
of (3) in integral form, which we will do explicitly
for n ­ 2, d ­ 2, 3. First, for n ­ d ­ 2 consider a
homogeneous function of degree2n:

hn
q,msrd ­

Z
df

Z
dceiqf1imcfnisfdra

i eascdg2n ,

(4)

where integration over ther-space andp-space unit vec-
tors êscd and n̂sfd, respectively, ensures thathn has
r-space angular momentum, and p-space angular mo
mentum [eigenvalue ofi2 sG12 2 G21d] is q. It is easy
to verify: G2hn

q,m ­ nsn 1 1dhn
q,m. It can be shown

that hn
q,m transforms linearly under the action of th

SLs2, Rd transformations forming an infinite dimension
representation [13]. Instead we will use similar alg
braic manipulations to evaluate (4) in terms of the Eu
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parametrization ofr: r
a
i ­

P2
j­1 RijsxdjjRjasud where

Rsxd, Rsud are rotation matrices (which can be obtain
by diagonalization ofrrT ). Substituting into (4), we
observe that theR matrix factors can be absorbed in
a redefinition of the integration variable resulting in
expsiqx 1 imud phase factor. Next rescaleniji to de-

fine a new unit vector̂ni ­ nijiy
q

n2
1j

2
1 1 n2

2j
2
2 and its

phase expfidsf, jdg ­ n̂1 1 in̂2. All the c dependence
of (4) is in the form

R
eimc cos2nsd 1 cd, so to within a

constant

hn
q,m ­ eiqx1imu

Z 2p

0

du

2p
eiqfsn2

1j2
1 1 n2

2j2
2dn

3

µ
n1j1 2 in2j2

n1j1 1 in2j2

∂my2

; eiqx1imusj1j2dnPn
qmsw21d , (5)

wherew ­ 2j1j2ysj2
1 1 j

2
2 d and the integral defines th

Jacobi functionPn .
To complete the construction of the eigenfunctio

note that the area of the triangle detr ­ $r1 ^ $r2 ­ j1j2

is invariant under both SOs2d and SLs2d transformations.
The complete set of eigenfunctions with four quant
numbers iscl

kqm ­ sdetrdly2h
sly21kd
qm wherek ­ n 2

l

2
is a positive integer to ensure analyticity as detr ! 0 and
points in the correlator become collinear.

To generalize tod ­ 3, replaceRijsud in the expres-
sion for r

n
i by a pair of orthogonal unit vectorŝh1,2

defining a representation of SO(3) (witĥh3 ­ ĥ1 ^ ĥ2

completing the triad). Let the 3D unit vectorêscd in
(4) be perpendicular to and rotate aroundĥ3 k $r1 ^ $r2

which one observes is invariant under SL(2) transform
tions. Repeating the earlier derivation and observinghn

can be multiplied by an arbitrary function of$r1 ^ $r2,
e.g.,Y,

msĥ3d one arrives at the eigenvectors

c
l
n,q,l,m,m0 ­ sj1j2dly2Pn

q,m0 sw21dDl
m,m0shdeiqx , (6)

which have a “complete” set ofnd ­ 6 quantum numbers
(m0 is not summed).

For , ­ 1, D, in (6) reduces to either̂h1 or ĥ2 (h3

is excluded for the skewness by inversion symmetry),
k ­ 0 for the relevantl; thus the manifold of degenera
states withl ­ 1 is labeled by the quantum numberq
or the anglex. To proceed further we must includ
the effects of the small scale, incoherent velocity,
the operatorLD and write the Hopf equation asLHc ­
sL0 1 LDdc ­ 0. We first discuss properties ofLD that
pertain to anysn, dd and then specialize to the skew
ness [14].

The operatorL0 is reducible, that is, acting on an
function behaving asjrij j

x, x . 0 the operatorL0snd
reduces in the limitrij ! 0 smoothly toL0sn 2 1d acting
on the remaining variables. This is becauseL0 originates
from the advective part of (1) which evolvesu2srd the
same way asusrd. The operatorLD incorporating the
dissipation cannot reduce so simply and further m
lower the continuous pseudospace symmetry ofL0 to
d

,

a-

d

a

st

the discrete permutations of the correlator. The m
plausible form forLD is aR

2y3
g L

s2y3d
R , i.e., just the Hopf

operator for the white velocity model with K41 exponen
multiplied by the Lagrangian time scaleR

2y3
g implicit

in L0, with a formally small expansion parametera.
AlternativelyLD should have the same scaling dimens
asL0; they both represent inertial range dynamics.

When two points coalesce,r ­ rij ! 0, zero modes of
LH behave asf

s1d
l 1 f

s2d
l22y3r2y3 wheref1,2 are functions

of the other coordinate differences with the indica
degree. The leading balance in the equations isL0f1 1

f2LDr2y3 ­ 0, and LD is a singular perturbation t
L0. If L

2y3
R srdusr 1 1dus1d is identified with the local

dissipation raté , then the same balance reads, asr ! 0,

L
sn21d
0 ku2s1dus2d . . .l 1 aR2y3

g kes1dus2d . . .l ­ 0 (7)

Of course (7) is not a closed equation, but it do
correctly reexpress a consequence of scaling and
behavior of correlators with nearly coincident poin
namely that́ carries a scaling dimension of2y3 relative
to u2. Phenomenology suggests anyLD which forces
the correct local singularity inc for r ø Rg should
suffice. The Laplacian damping model of Ref. [6],LD ­
a

2n R2
g=2, involved derivatives in allra

i symmetrically and
therefore left correlators analytic when points tended
coincidence.

The eigenvalue problem for the skewness zero mo
c3, can be reduced to thex , w plane with the symmetrie
of antiperiodicity underx ! x 1 py3 (permutation and
reflection of ri) and even undersx , j1d ! 2sx , j1d,
j2, $hi unchanged (interchange ofr1,2. Away fromw ­ 0
where LD dominates,c3 is a combination of (6) with
q ­ 63, 69, etc. andl ­ 1.

To understand which features of the skewness z
modes are independent of the details ofLD and thus
of experimental interest, several salient aspects of
singular perturbation theory forLH must be recounted
A crossover equation has been solved which takes
“outer” solution (L0 dominant) forw & 1, and x arbi-
trary, and propagates it inward to thew ­ 0 line where
LD dominates. Then a closed eigenvalue equation
x alone is derived, which is solved by shooting fro
w ­ 0, x ­ 0 to x ­ 2py3. The LD dependent eigen
function asxd along w ­ 0 determines the combinatio
of q modes that are superimposed forw . 0 in the so-
lution. However, a feature of the crossover equation
our class of models is that to first nontrivial order in p
turbation theory, the relation ofasxd to the amplitudes o
the SLsnd modes (6) in the outer solution is independe
of LD . Hence if one were to measure the skewness w
all points parallel (i.e.,w ­ 0), asxd would be known
and from it the skewness forw & O s1d determined using
only the SLsnd symmetry ofL0.

This insight can be most compactly expressed
using the integral form (4) for the SLsnd modes (5)
and replacing the sum onq by a convolution integra
2465
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on the pseudospace angle;c3 ; ku1u2u3l becomes with
n ­ ly2,

c3srd ­ $g ?
Z p

0

cossfdj1 $h1 1 sinsfdj2 $h2

fcos2sfdj2
1 1 sin2sfdj2

2 g1y22ly2

3 fsf 2 xd df , (8)

The modes (5) were summed onm0 to impose the
symmetry underr1,2 interchange. The crossover equati
relates theLD dependent weightfq ­ sgnsqd sq2 2 1daq

to the eigenfunctionasxd. Notec3 for $ri parallel [j1 ­
0 and tansxd ­ r1yr2] is just j

l
2 asxd $h2 ? $g to within an

overall constant. The symmetries ofc3 and K41 imply
fswd should have the same symmetry, singularities
sins3wdyj sin3wj4y312n(N.B. 2n , 1, the integral exists)

Equation (8) can readily be tested in a wind tunnel w
several probes along the mean gradient iny and time lags
to samplex.

The four-point function is more influenced byLD

than is c3 judging both by inequalities on its expo
nent derived below, and explicit calculations [e.g., c
rections to theLD ­ 0 exponents begin asO sad for
the skewness butO sa1y2d for the flatness]. For decay
ing turbulence the structure functionkfus1d 2 us0dgnl #

s2 supx jujdn22kfus1d 2 us0dg2l since advection diffusion
does not increase the maximum ofu. It is physically
plausible that the small scales would be unaffected
we forced and assumed supx juj2 , ku2l. Thus all posi-
tive anomalous exponents forc4 must exceed

2
3 assum-

ing K41. By starting from the strong coupling lim
L0c4 ­ 0 we foundl ­ 0 which has to be renormalize
up to 2

3 by LD . Our complete Hopf equation “knows
about this exponent inequality via Eq. (7) since by
same majorization, one can show the inertial range ex
nents ofke1u3u4l are positive; however, this has not y
emerged directly by solving the full eigenvalue problem

For the three point function, the 0th order term in o
Hopf equation,L0, gave exponents similar to experime
and a derivative skewness Reynolds’ independent.
smallLD, higher normalized moments of≠u diverge with
R. Thus the large scale gradient$g is “relevant” to the
small scales in the same way as are fluctuations ineu .
Our phenomenological decomposition ofLH into L0 plus
a nonintegrable, nonuniversal termLD lead to a similar
decomposition ofc3, i.e., (8) (details of the crossove
calculation forc4 suggest the analogous relation is mo
LD dependent), and facilitated solution of the singu
perturbation problem posed byLD , to which we could
only allude here [14]. The white noise Hopf equati
expanded aroundz ­ 0 has been solved in this way [14

In contrast to most problems, our symmetry SLsnd is
a property of thesn 1 1d-point correlation function only
and not of theu field being averaged in the correlatio
function. One may hope it is a more robust prope
of the dynamics than the scaling exponents and there
visible at lower Reynolds’ number, but an experiment
check (8) is required to quantify the effects ofLD .
2466
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It is not surprising that the intermittency exponen
of passive scalar mixing are no more universal than
velocity field itself, even if Gaussian [15] (but noteku1u2l
satisfies an inhomogeneous equation and thus inh
the velocity exponent). This may seem a particula
of passive scalars, if one believes the small scales
turbulence universal; we rather believe that the sc
analysis shows how the inertial range velocity can
directly imprinted by large scale anisotropy leading to n
universal exponents for correlators as low as 3rd order [
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