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The problem of development of singular solutions of the 3D Euler equations is considered in the particular case of flows 
with an axis of symmetry. There is a strong analogy between the physics of such flows, and Boussinesq convection in two 
dimensions, the buoyancy being replaced by the centripetal acceleration. A hot bubble, initially at rest in cold fluid, tends 
to rise. During the evolution, strong gradients of temperature develop near the cap of the bubble, while on the sides, 
vortex sheets tend to roll up. When the cap of the bubble starts folding, a rapid growth of the gradients is observed, 
suggesting a singularity of the vorticity in the 3D axisymmetric flows like ItO[m~x- I / ( t*-  t) z. Analytic estimates for the 
rate of stretching, consistent with our numerical observations, are provided. 

Genera t ion  of small scales of motion by a 
turbulent  flow is an important  feature of incom- 
pressible hydrodynamics at high Reynolds num- 
bers. Understanding this important  phenomenon  
has proven  surprisingly difficult, and even very 
simple questions are still unanswered.  As an 
example ,  it has been realized for years that 
vortex lines can be stretched by the flow. Be- 
cause the stretching results f rom a nonlinear 
te rm,  it could conceivably lead to finite t ime 
singularities, at least in the inviscid case. Yet, 
careful numerical  studies have suggested that the 
vorticity grows exponentially,  rather  than algeb- 
raically (i .e. ,  catastrophically).  This is the case 
for the T a y l o r - G r e e n  flow [1], and for antiparal- 
lel vor tex tubes [2,3], as well as for random 
initial conditions [4]. These results show that the 
nonlinear te rm plays a rather  subtle role. Of  
course,  they clearly do not settle the problem of 
existence of finite t ime singularities for the 3D 
fluid equations.  

In this paper  we present some of our recent 
results, strongly suggesting the existence of axi- 
symmetr ic  solutions, blowing up in a finite time. 

This possibility has been suggested by Grauer  

and Sideris [5]. Our  arguments in favor of a 
singularity are mainly numerical.  It is also pos- 
sible to obtain (nonrigorous) bounds for the rate 
of growth of the vorticity, useful to understand 
our  numerical  results. Technically, in the axi- 
symmetr ic  problem,  one has to deal with an 
essentially two dimensional problem, which leads 
to obvious simplifications, and allow us to push 

our calculation much further than in the case of 
general  3D flows. Physically, a strong analogy 
exists be tween the 3D axisymmetric Euler  equa- 
tions and the 2D Boussinesq equations, as we 
will e laborate  below. Although the two systems 
of equations have very similar structures, it has 
proven  easier technically to study numerically 
the 2D Boussinesq equations. Our  evidence for a 
finite t ime singularity comes from our results on 
the Boussinesq problem. We expect them to hold 
also for a localized solution of the axisymmetric 
p rob lem well away from the symmetry axis. 

An axisymmetric flow is defined by a velocity 
field independent  of the azimuthal angle, & 
around the symmetry  axis, Oz .  The velocity 
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field, u(r, z, t) satisfies the 3D Euler equations: 

O,(ru~,) + (ull .Vll)(ru6) = 0 ,  (1) 

1 
Ot(to6/r ) + (Ull .VH)(%/r ) = - q Oz(rU¢~) 2 , (2) 

Y 

1 
- O~(rur) + O~u~ = 0 ,  (3)  
l" 

toeb -~" O zUr -- O rll z ' (4) 

where u n = (/'gr, Uz) and Vit= (0r, 0~). 
Eq. (1) expresses the conservation of circula- 

tion around a loop (r = const, z = const.), and 
eq. (3) is the usual incompressibility condition. 
The mechanism of generation of azimuthal vor- 
ticity, as described in eq. (2), is a consequence of 
the centripetal acceleration. It is very instructive 
to compare the system (1)-(4) with the 2D 
Boussinesq equations with a constant gravity, 
g = - - g ~ y "  

o,o + (u.V)O = o ,  (5) 

Otto + (u 'V)to = gO~0, (6) 

Oxu x + OyUy = 0,  (7) 

to = OxUy - Oyux • (8) 

A comparison of the two systems of equations 
shows that the quantity (ru,)2, which is advected 
by the flow (eq. (1)), plays the same role as the 
temperature as the source of vorticity (see eqs. 
(2) and (5)). The "gravity" in the axisymmetric 
problem is directed radially outwards, and varies 
with the distance to the axis, r, as g = ~,/r 4. The 
velocity field (ux, uy) corresponds to (u z, ur). 
Rigorously, this analogy is valid only when the 
typical length scale of the solution is very much 
smaller than the distance to the axis, E In this 
case, one has the correspondence 

- 1/2 1 /2  (ho~,to,,rtoz),~,(-O~O ,to, OyO ) .  (9) 

The analogy between 2D Boussinesq and the 
3D axisymmetric problem is of no use to under- 

stand the development of singular solutions right 
at r = 0, a possibility we do not consider here. 

We have simulated numerically both systems 
of equations. Since we are primarily interested in 
simulating solutions developing singularities, our 
overriding concern is to properly resolve very 
high gradients. We have used the adaptive mesh 
techniques that were developed for our previous 
3D Euler simulations (ref. [2]). The square 
(0, 1) 2 is mapped onto •: by an analytic change 
of variables. The fields are assumed to vanish at 
infinity. The "singular structures" we observed 
are sharp fronts. At least 20-25 mesh points are 
used to describe a jump. Finite difference tech- 
niques are used. With centered finite differences, 
we occasionally observed unphysical oscillations 
behind sharp fronts. To suppress the problem, 
we sometimes used the total variation diminish- 
ing (TVD) algorithm [6]. The two algorithms 
(centered differences and TVD) were compared 
on a few test problems. Provided the resolution 
is sufficient, the results obtained with the two 
algorithms are found to be in very close agree- 
ment, thus giving us full confidence in our nu- 
merical methods. 

To time step, say the Boussinesq equations, 
the streamfunction 0, defined by u x = Oyg/ and 
uy =-0x~b , was computed at each time step by 
solving the 2D Poisson equations: V2qJ = w. Effi- 
cient cyclic reductions methods [7] have been 
used. The time integration was done by a stan- 
dard Runge-Kutta-Fehlberg algorithm. 

Two extra simplifications are available for 
studying the 2D Boussinesq equation. First, one 
can continuously rescale space, time and vortici- 
ty in the following way: X = x / a ,  ~ = toa 1/2, 
att = O / a  3/2, 0 = / 9  and Oft = a I/2. The equations 
then read 

o(q,, o) 
OrO + a X ' V x O  + O(X, Y~ = O, (10) 

o(q,, a)  
Or~ + a X  "Vx~  + ~a£] + O(X, Y------) = OxO , 

(11) 

with the definitions 
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1 
VZx ~ = 1 2  , a = -  - O r a .  (12) Q 

As is the case for the nonlinear Schrfdinger 
equation, continuously rescaling the solution is a 
very efficient way to maintain appropriate res- 
olution while simulating a solution collapsing 
down to very small scales [8]. 

Also, in the Boussinesq case, it is possible to 
maintain the maximum gradient in the region 
where the resolution is highest by simply sub- 
tracting the velocity of the point where the gra- 
dient is largest. 

In the 3D axisymmetric case, the Galilean 
invariance and the possibility to continuously 
rescale the solution are lost. These properties 
make the numerical study of the Boussinesq 
equations much easier. In the following, we will 
restrict ourselves to the Boussinesq equations. A 
more complete description of our results can be 
found elsewhere [9]. 

Although we have simulated a whole range of 
initial conditions, we will discuss here only the 
problem of a single bubble, initially at rest (to = 
0 everywhere). More specifically, our initial con- 
dition was O(x, y) = (1 + 0.2y)/(1 + x 2 + y2)Z. 

This configuration is symmetric with respect to 
X~-~-0. 

Qualitatively, hot regions tend to rise into 
colder regions. This situation is somewhat re- 
miniscent of the 1D Burgers equation, where a 
similar mechanism leads to shocks in a finite 
time. Here of course, the incompressibility 
makes the problem much more subtle #1. The 

*~The effect of the incompressibility constraint on the 
nonlinear mechanism leading to shock formation in the Bur- 
gers equations can be studied in the 2D convection in porous 
media. The equations of motion are 

u = 0~y + V p ,  

V . u = O ,  

~,o + (u .v)0 = 0. 

These equations lead to the formation of steep interfaces, 
and to finite time singularities. The gradients of O grow like 
1/( t*  - 0 [101. 

initial stages of the evolution lead to a region of 
sharp gradients ahead of the bubble, because of 
the tendency of hot regions to rise in colder 
regions. After a while, a front separating a zone 
of high temperature underneath a zone of low 
temperature develops. In the process, fluid of 
intermediate temperature is expelled, leading to 
a jet on each side of the cap. This leads to the 
formation of arms of warm fluid, that eventually 
tend to roll-up. 

Quantitatively, we found that the temperature 
gradient at the tip of the bubble was growing first 
slower than exponentially. In this (slow) regime, 
the maximum gradient grew by a factor 100 (see 
fig. 1). 

A qualitative change occurs around t--8.5. In 
fig. 1, the temperature gradient starts growing 
much faster than exponentially. Our data shows 
that the gradient grows like 1 / ( t * - t )  z, over 4 
orders of magnitude (see fig. lb). When we 
stopped our calculations, there was no obvious 
impediment to further integration. In physical 
space, this change of regime is characterized by 
the development of an instability on the cap of 
the bubble. Fig. 2 shows the right part of the 
interface shortly after the instability starts. The 
following collapse happens at the tip of the 
bubble, and proceeds by a series of repeated 
foldings while the width of the interface is rapid- 
ly decreasing. Figs. 3 and 4 show details of the 
shape of the bubble, closer to the singular time 
(max IV01 = 1.55 × 103), and at a much smaller 
scale. The foldings keep reducing the radius of 
curvature, re, so as to have always r c ~ or, where 
o- is the width of the interface, as it is in figs. 3, 
4, near the region where the gradients are the 
largest. There is an obvious similarity with the 
physical picture that was found in the study of 
vortex filaments, described by the Biot-Savart 
model [11]. 

After each folding of the interface, a new 
inflection point develops on the front. The ap- 
pearance of an inflection point always seemed to 
trigger a roll-up of the vortex sheet. This mecha- 
nism leads to the development of spirals at all 
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Fig. 1. The maximum of 1Oy01 evaluated on the axis of symmetry (x = 0) (a) and its inverse square root (b) as a function of time. 
Note that time has been shifted by 10. Only the asymptotic regime where 1Oy01 - 1 / ( t * - 0 2  is shown in (b). 
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Fig. 2. The shape of the cap of the bubble at time t = 8.75, 
shortly after the first destabilization of the bubble cap 
([VOlm,x = 137). Iso-0 lines are shown here. The contour lines 
run from 0.1 (ahead of the front) to 1. Only the right half of 
the bubble is shown here. The x-coordinate range is 0 -< x -< 
0.1 and the y-range is a third of the x-range. 

scales, separa t ing  a lmost  hor izonta l  regions 

where  a local m a x i m u m  of the gradient  grows. It 

was found  that  the s t re tching act ing on  one  local 

m a x i m u m  was p r e d o m i n a n t l y  due to ne ighbour -  

ing regions  of the flow. In  the late stages of the 

evo lu t ion ,  the vort ici ty grows approx imate ly  like 

[(o1 ~ 1/( t* - t ) .  The  t empe ra tu r e  j u m p  be tween  

the f ron t  and  the back of the f ront  decreased 

s teadi ly dur ing  the evolu t ion .  W h e n  we s topped 

ou r  s imula t ion  the m a x i m u m  gradient  had grown 

by a factor  106 whereas  the total  j u m p  in 0 

across the in terface  had decreased by a factor 3 

Fig. 3. The shape of the cap of the bubble at time t = 9.74 
( ] ~ 0 [ m a x  = 1.55 x 103). 1SO-0 lines are shown. The contour 
lines run from 0.I to 0.9. The right half of the bubble is 
shown here, and the x-coordinate range is 0 -< x -< 0.029, and 
the y-range is a third of the x-range. 

only.  It  is possible to fit our  solut ions with the 

fol lowing func t iona l  dependenc ies :  

0 = 0 o + ( t* - t ) ' f ( x / ( t *  - t) 2+~, T) ,  (13) 
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3'(A, t) = f a~y(A, t ')  d t .  (16) 
0 

Here ,  % is the completely antisymmetric tensor 
(e~2 = 1, etc.), and x I - x, x 2 - y. The stretching, 
responsible for the growth of the gradients is 
given by 

Fig. 4. The quantity IV0[ at the same time as in fig. 3. The 
scales have been blown up by a factor of 3, compared to fig. 
3. The contour interval is 240. The tick marks along the 
perimeter show our numerical mesh points. A similar resolu- 
tion has been maintained around the region where we de- 
cided to follow the maximum gradient. 

(14) t o  = 1 / ( t *  - t ) g ( x / ( t *  - t) 2+n, ~'), 

where ~ - = - l n ( t * - t )  and a small value of 
"0: r /=  0.2 +-- 0.2. Note that the Boussinesq equa- 
tions are consistent with the scalings of eqs. (13), 
(14). It is much harder to actually find solutions 
for f and g. Our calculations suggest that they 
remain time dependent,  arbitrarily close to the 
singular time. 

Useful  analytic estimates can be obtained by 
ignoring the actual shape of the interface, and 
using a contour dynamics limit. In this approxi- 
mation, one describes the front by a temperature 
discontinuity, located on a curve x(A, t), where A 
is a Lagrangian parameter.  Because of the 
buoyancy term, circulation is generated on the 
curve x(A, t). The velocity u(A, t) and the circu- 
lation 3'( A, t) are related in the contour dynamics 
limit by the following equations: 

dA 
bli(X , t )  : geq  aj l n l ( x -  x ( A , / ) I T ( A )  ~--~, ( 1 5 )  

D,IVOl z = -2170. e .170, (17) 

where D t denotes the Lagrangian derivative and 
ei j= (aiuj + 0ju~)/2 is the rate of strain tensor. 
From eqs. (15)-(17) ,  the following equation for 
the stretching can be derived: 

OilY012 - c f IV012K(t ') d t ' ,  (18) 
0 

where K denotes the curvature of the interface 
(see ref. [9] for details). Eq. (18) is useful to 
understand qualitatively the dynamics in the two 
regimes we found numerically. Before the cap of 
the bubble starts breaking up, K -  const., and 
eq. (18) predicts that V0 grows exponentially. 
When the instability starts, our numerical results 
suggest that K ( t ) -  11701. This has to be under- 
stood in a statistical sense, since we never 
reached a truly self-similar state. In this case, it 
is easy to show that eq. (18) leads to a growth 
asymptotically like: IV01 - 1/(t* - t) 2. 

One of the most crucial mechanisms leading to 
the eventual singularity is the destabilisation of 
the cap of the bubble (see eq. (18)). It is well 
known that a front at rest separating hot fluid, 
underneath cold fluid is intrinsically unstable 
(Rayleigh-Taylor  instability). In the case of a 
curved, rising front, the stretching induced by 
the motion of the fluid tends to strongly restabil- 
ize the instability, as it has been discovered in 
the case of curved flame fronts [12]. The main 
physical consequence is that the interface 
separating hot and cold fluids remains stable for 
surprisingly long times. However,  as the inter- 
face becomes thinner and thinner, it must even- 
tually become unstable. A similar prediction was 
made by Batchelor, in an analogous context [13]. 



A. Pumir, E.D. Siggia / Singular solutions to the 3 D axisymmetric incompressible Euler equations 245 

Because our problem is intrinsically time-depen- 
dent, there is a source of noise at the level of the 
cap of the bubble. A simple analytic treatment of 
the stability problem (see ref. [9]) gave a good 
estimate of the time when the instability de- 
veloped. We are therefore confident that the 
instability is real, and is not a numerical artefact. 

In the case of 3D axisymmetric Euler flows, 
the analogy with 2D Boussinesq convection sug- 
gests a divergence of the magnitude of the 3D 
vorticity, I1"11~, like I t o } - l / ( t * - t )  2 (see eq. 
(9)). The velocity itself remains finite. Because 
of the bounds found by Leray [14], which show 
that the velocity has to diverge if a solution of 
the Navier-Stokes equations is to diverge, we 
expect that our singular solutions will not survive 
in the viscous case. It is also expected that the 
axisymmetric solutions we found are completely 
unstable with respect to non axisymmetric per- 
turbations. Some of the quantitative aspects of 
our solutions may very well apply to more gener- 
al initial conditions. The salient features of our 
simulations are the formation of vortex sheets 
and their repeated destabilisation, leading to the 
roll-up of the interface. Indeed, formation of 
vortex sheets has been observed in all the simu- 
lations of the 3D Euler equations we are aware 
of. The roll-up of vortex sheets will lead to the 
formation of vortex tubes, a structure that has 
been reported many times in the study of 3D 
incompressible turbulence. It would be interest- 
ing to understand whether the physical mecha- 
nisms involved in the case of 3D axisymmetric 
flows have anything to do in the general 3D 
Euler initial value problem. 
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