Collapsing solutions to the 3-D Euler equations
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A three-dimensional adaptive mesh code is used to search for singularities in the
incompressible Euler equations. For the initial conditions examined, the maximum vorticity
eventually grows only exponentially. The small scales are quasi-two-dimensional and the
vorticity has a pronounced tendency to develop sharp jumps in magnitude. The vorticity is
very nearly parallel to the eigenvector of the rate-of-strain matrix whose eigenvalue is the
smallest in magnitude. This eigenvalue is positive and much smaller than the others.

1. INTRODUCTION

The computational experiments reported in this paper
examine a problem that has three distinct aspects: physical,
mathematical, and numerical. Physically, they touch on our
earlier speculations’? as to the root causes of boundary layer
intermittency, which is a well-established phenomenon ex-
perimentally®* but for which a convincing theory is lacking,
The mathematical aspects enter since we suppose that un-
derstanding how singularities could develop in the Euler
equations is equivalent to asking how vorticity and strain
can be most effectively coupled to transfer energy to small
scales. Turbulent boundary layers do this efficiently and in a
very time-dependent manner. Finally, the technical aspects
of this study evolve around ways to quantitatively simulate
the fluid equations over a range of scales far greater than is
possible with a conventional code. To even hope to do this
requires compromises; our methods only apply to the singu-
larity problem, but, otherwise, there is no hope of reaching
asymptotic scales. We elaborate on these three points in
turn.

Turbulent boundary layers appear simple at the level of
one-point statistics such as the mean velocity and Reynolds
stress as a function of distance from the wall.® The von Kar-
mén theory and its elaborations are quite satisfac-
tory.>’ But the time recordings that yield these regular aver-
ages are highly irregular. Very small scales are excited, in
fact, too small to be fully resolved with hot wires.® Higher
derivative statistics and higher moments of the first deriva-
tive are non-Gaussian® and much larger than one would esti-
mate from an average viscous cutoff. Extensive conditional
sampling has shown that these fluctuations occur as orga-
nized bursts extending from several viscous lengths from the
wall to beyond the von Kiarman region.'®!! By a suitable
choice of threshold, bursts can be defined so that they occur
less than 10% of the time yet contribute more than half of the
Reynolds stress.!!1?

Flow visualization experiments have provided an essen-
tial qualitative understanding of the origin of these bursts, by
linking them to a vortical structure in the shape of a hair-
pin.*!* The pictures, probably due to inherent limitations in
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the technique, are less dramatic at high Reynolds numbers
than for low ones and provide no insight into the dynamics of
the small scales responsible for the large derivative statistics.
We also have found no definitive experimental answer to
whether all the vorticity production can be attributed to pas-
sive stretching by the mean flow or whether something more
local and nonlinear is required to explam observations. Also,
nothing is known about the local vorticity—strain correla-
tion. Numerical simulation is thus a useful bridge between
experiment and linearized theories.'*'*

Rigorous, controlled theory has not gone beyond the
stage of a “universal” secondary instability that is rapidly
growing and three dimensional.'® The physics involved,
namely an uplifting and rotation of vorticity out of the span-
wise direction, is not at variance with the idea of a hairpin.
Simulations of turbulent channel flow support this associ-
ation.'*!?

One might hope that some equally universal mechanis-
tic explanation can be given for the smallest scales of motion.
Intermittency often has been attributed to vortex tubes and
sheets since its discovery.!”:'® Always lacking was a means
for stabilizing these structures. We therefore propose the
next simplest alternative, namely, that the “structure”
should be sought in space-time as a collapse. The boundary
layer is a particularly appealing case to study since the flow
configuration that seemed most likely on theoretical
grounds to yield a singularity resembled a hairpin vortex.’

Hunting for singularities in the Euler equations is by
now a developed sport. Two general approaches have been
followed, loosely speaking, Fourier modes' and vorticity
dynamics,’®*! which clearly must agree if done quantita-
tively but imply a differing intuition about what causes the
singularity. The Fourier calculations imagine that beating
modes together by a nonlinear term will lead to a finite time
singularity, (e.g., infinite @ or enstrophy). The flow in real
space is irrelevant and could be fractal in some sense.?? Vor-
ticity dynamics operates in real space and tries to arrange for
the flow to generate a strain rate that diverges with the maxi-
mum vorticity and is oriented so as to make the vorticity
blow up in a finite time. From this vantage point it is not
evident why a fractal vorticity distribution is an advantage,
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since the folds will tend to cancel out of the integral that
relates strain to vorticity. The simplest possibility would be
just a self-similar pointwise collapse and its elaborations.”

The technical requirements of our program require a
real space-vorticity approach since to simulate a large range
‘of scales we are constrained to use the same number of modes
independent of scale size, redistributed, of course, to resolve
the smallest scales. The algorithm is straightforward when
the solution is reasonably comipact or confined and a number
of one-dimensional problems (either one linear or a radial
direction) have been treated with great accuracy in this
way.?>?* In two dimensions there exist sophisticated multi-
grid algorithms that are capable of adaptively putting down
coordinate patches of varying resolution where needed to
resolve the flow.?*

To build such an elaborate code in three dimensions was
beyond our capabilities and perhaps unwarranted in view of
the absence of any real understanding of how the singulari-
ties look. Instead we used separable coordinates in three di-
mensions; unfortunately the collapse was probably not self-
similar nor very compact. Ultimately our algorithm broke
down, but only after we reached scales far smaller than any
plausible viscous cutoff and a factor of nearly 100 smaller
than a fixed mesh code could do with comparable resolution
on the large scales initially and on the small scales finally.2¢
We were also able to understand the fluid dynamical pro-
cesses that led to the dispersal of the vorticity and develop
some intuition as to the probable asymptotic dynamics. We
did not find a singularity for any of the initial conditions
examined. '

We organize our presentation as follows. Section II con-
tains a summary of mathematical results that place con-
straints on singularities if they exist. We discuss our numeri-
cal algorithm ‘in Sec. III and give an order of magnitude
estimate of all sources of errors. A more precise statement of
errors for the principal run at specific times is left for the
Appendix. ‘

The initial conditions that we ran furthest in time were a
pair of antiparallel vortex tubes. This was suggested by an
earlier study of vortex filaments interacting through the
Biot-Savart law, which gave a singularity for reasons that
could be readily understood.! A number of simulations with
fixed meshes followed that showed considerable core defor-
mation but were unclear as to what happened asymptotically
and why.”’"*! In Sec. IV we demonstrate that the initial dis-
tortion of the core can be understood from the Biot-Savart
model and then follow the distortion down to very small
scales. No singularity is found, but instead the flow evolves
toward a two-dimensional form and the strain component
parallel to the vorticity ceases to grow.

In Sec. V we look at other initial conditions with both
higher and lower symmetry in an effort to keep the large
component of the strain parallel to the vorticity. In various
ways the strain always manages to become passive. Purely
for its relevance to the dynamics of the tip of a hairpin, we
include a simulation of a parabolic vortex tube and show
how the core distorts around the point of greatest curvature.

In the conclusion, Sec. VI, we discuss parallels between
our simulations and others which concentrate on small
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scales. Similarities in vorticity—strain correlations are appar-
ent, which for our geometries are accompanied by “vortex
steps.” We attempt to quantify and explain in what sense the
flow becomes locally two dimensional on small scales. Final-
ly, we emphasize the possibly nongeneric features of our ini-
tial conditions and speculate on what type of singularities
could have escaped detection.

il. MATHEMATICAL PRELIMINARIES

Rigorous analysis has provided several important con-
straints on the nature of singularities in the three-dimension-
al Navier-Stokes and Euler equations without either dis-
proving or proving their existence. What is known, provides
essential guidance to any numerical study, so we briefly sum-
marize what we need. The question posed can be simply stat-
ed: Assume that the initial conditions are infinitely differen-
tiable in space, how do they loose smoothness as a function of
time?

For the Euler equations it has been shown®? that the
growth of the L*> norm of any velocity derivative is bounded
by the supremum over space of the vorticity, sup |w|, specifi-
cally

f(c?"v)z(th(c? %)2(0)

Xexp(cstf sup|e|(t')dt '), (1)
0

where cst is a fixed constant. It is therefore possible for a
singularity to occur with the enstrophy finite. Such a singu-
larity might be of limited physical interest since it would not
entail the transfer of much energy to small scales; neverthe-
less, it would stop any numerical integration unless some
regularization was employed. To conceive of numerically
simulating an Euler singularity, however, requires a stronger
result such as would be obtained by replacing the L normin
(1) by sup|J*v|. If a high derivative could become infinite
before the lower ones, then it would be invisible to most
numerical schemes. Simply counting gradients suggests that
if sup|w| is replaced by sup |dv|, then the desired result is
obtained. It is then quite practical to ensure that the first
derivatives are always well resolved. In fact, we always find
the antisymmetric piece of d;v; to be at least as large and to
vary at least as rapidly as the symmetric part. Thus control-
ling o (x,?) is sufficient to ensure numerical accuracy.

Results for the Navier-Stokes equations are also
phrased indirectly, namely, if a singularity exists then conse-
quences are derived. The most interesting of these, for our
purposes, is that of Leray,® namely if there is singularity of
t* then

sup|v|>estv/(¢* — )12, (2)
where v is the viscosity. Again we find that the singularity
cannot hide in high derivatives.> For the vorticity, omitting
some technicalities, the analog of (2) is3*

sup|w|>cst/(¢* —1).

A stronger singularity must occur, if any does, when viscos-
ity is present since the velocity itself must diverge.

The third direction in which one might hope for guid-
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ance are comparison theorems between Navier—Stokes and
Euler solutions. The one that we are aware of states that if in
three-space with no boundaries the Euler solutions have not
yet developed singularities, then a sufficiently small viscosity
v will make an O(v) change in the solution.*

We will assume in the following for the Euler equations
that unless the velocity shows signs of diverging as

1//t* — ¢, the addition of viscosity will cut off the singular-
ity provided the topology of the flow does not change. First,
it may be objected that (2) is irrelevant for the Euler equa-
tions since there is no viscosity to set the dimensions. But
circulation has the same units as viscosity and in a model we
studied earlier,’ it serves to dimensionalize a formula analo-
gous to (2). Further dimensional estimates for that model
indeed suggest a singularity for Navier-Stokes is possible
since the straining is just large enough to balance viscous
diffusion. The caveat about changes in topology is necessary
since viscosity breaks the circulation invariants and can
qualitatively alter the flow. There are well-known examples
where viscosity plus rigid boundaries completely change the
linear stability properties of a flow.*'® We are unaware of
any such examples for free flows. Changes in topology, how-
ever, can cause surprises. For instance, in Sec. IV we suggest
how viscosity can alter the growth of sup|w| from e‘ for
Euler to exp(e’) by this mechanism. Thus the assumption
with which we begin this paragraph is merely an abstraction
from several examples.

lIl. NUMERICAL METHODS
A. Algorithm

In contrast to a standard large eddy simulation, a tech-
nically viable code designed to study singularities unavoida-
bly reflects the authors’ assumptions about the dynamical
processes leading to these singularities. We begin by making
these explicit and physically plausible.

Singularities, as argued in Sec. II, involve infinite gradi-
ents and arbitrarily small scales. The overriding concern of
this study will be to examine as large a range of scales as
possible in an effort to reach some asymptotic limit if one
exists. A code employing a fixed basis or grid is hopeless for
this task. The most efficient of these, a spectral code, cannot
handle significantly more than 256 modes. At least eight
grid points are needed to quantitatively resolve the smallest
scales (our finite difference code uses upward of 16), while a
factor of 2 to 4 in scale size is needed to insulate the large
scales from the periodic boundary conditions. Adequate res-
olution is essential since the small scales must be allowed to
interact among themselves without aliasing. Furthermore,
these small scales may carry negligible energy and enstrophy
since infinite vorticity can occur with the enstrophy finite. A
reasonable energy spectrum is not an adequate measure of
resolution for these problems. Under our criterion, a spectral
simulation can access less than a factor of 10 in scale size®’
while we have simulated nearly a factor of 10°.

Clearly some way is needed of readapting the computa-
tional modes to the solution as it evolves. Hopefully, the
number of relevant modes does not increase significantly in
time, which would be true if the dynamics are sufficiently
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local or the large (nonlocal) scales can be simply parame-
trized. A self-similar solution with the characteristic spatial
scale as a function of time is the simplest case of what we
have in mind.

The Euler equations in vorticity form are spatially non-
local in that the strain depends on a weighted integral of the
vorticity. The important component of strain is that along
the vorticity which therefore diverges as the logarithmic de-
rivative of the maximum vorticity. Our algorithm presumes
that in some sense this singular strain is determined by the
same region and range of scales that define the singular vorti-
city. The problem becomes hopeless if the fine-scale folding
of the vorticity in a region well removed from the one under
consideration changes the local strain rate. These assump-
tions can clearly be checked internally as the singularity de-
velops, both numerically by zeroing certain modes and also
by a multipole expansion of the strain. They are most plausi-
ble when a strong, i.e., power law singularity, is observed.

The tasks of adapting the mesh and controlling the er-
rors were responsible for most of the time expended in devel-
oping and utilizing our code. Otherwise, consideration of
singularities allows several simplifications. Boundary condi-
tions and the specifics of large scales should be unimportant
asymptotically if a singularity exists. (They add a constant
strain to a diverging one.) Also, since we are always resolv-
ing well the smallest scales on a greatly stretched time axis,
the flow looks laminar. This is virtually a tautology, but
means that it is trivial and unambiguous to assess what con-
stitutes adequate resolution. Any study that purports to
solve the Euler equations quantitatively near the first singu-
larity cannot afford to employ less resolution than we do.

In this paper we will be almost exclusively concerned
with the Euler equations so the question of numerical versus
physical instabilities may seem acute. Actually this problem
is more ostensible than real. By linearizing we know that the
smallest scales are the most prone to numerical instabilities
that are easy to detect by Fourier spectra on the logical mesh
or graphically. When weight on small scales (a few mesh

. spacings) is negligible and not increasing, we assume that

the large scales are evolving physically. An example is given
at the end of this section to illustrate the appearance of nu-
merical noise. In a sense we are always resolving the fastest
growing physical instability. This self-stretching, which is a
feature of all our solutions, helps to suppress unwanted nu-
merical effects.

Another notion of stability should also be mentioned
here, namely, does the singularity attract all solutions in its
neighborhood (a stable instability)? Is the asymptotic solu-
tion, to within scale factors, the same for an open set of initial
conditions? The methods employed in this paper permit us
to detect only attracting singularities. We return to this ques-
tion in Sec. VI.

To allow for spatially varying resolution as simply as
possible and facilitate its subsequent readjustments, we
chose to use finite differences on separable rectangular co-
ordinates. More elaborate schemes that put local coordinate
patches where needed have been implemented in lower di-
mensions®>° but are not essential for our initial conditions
for the times over which they have been followed. Vortex
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methods are also well suited to adaptive algorithms but ap-
pear to be rather noisy and expensive in three dimensions
when some accuracy is desired.?%!

On the scale set by the singularity, the boundaries tend
to infinity. We therefore recognize this fact immediately and
map the real line denoted by x onto the interval e[ — 1,1].
A uniform grid is layed down in £ and all quantities vanish at
&= £ 1. The following function proved adequate for our
purposes:

X ={a—Bsin[(7/2)§] — y cos(n£)}

Xtan[(7/2)£ 1, (3)

where a, B, and y are constants chosen to keep dx/dé > 0.
One then finds

x(E~0) = (1/2) (@ — )&,
x(£R —1)=(2/m)(a+B+yV/(E+ 1), 4)

x(£s) = (Q2/m)(@a—B+y)/(1=§).

Equation (3) increases the spacing between mesh points
as x? near infinity which smoothly terminates the sohition
without “wasting” too many points. A more rapid dilation of
the mesh near infinity would lead to increased errors in the
velocity and its integrals (the velocity variesas x ~ ' or x — 2
depending on direction and distance). The constants in (4)
define the “inner” and “outer” length scales.

The Euler equations were time stepped for the velocity
and the nonlinear term was written as velocity cross vorti-
city. All derivatives were approximated as

d¢(§i) =(dx)‘fl [#(€is 1) — (i 1)]

dx dE; (2A8)

+ O(A&)?,

(5)
where a single dummy function ¢ is used irrespective of ar-
gument. In order for the finite difference equations to con-
serve energy and momentum it is necessary to define the
integral,

RS A;Z (Eper. ©

To ensure that v Aw — Vp is incompressible on the lat-
tice, the Laplace operator for the pressure has to be defined
as two centered differences, Eq. (5), and therefore couples
the points i/ — 2,i,/ + 2. The pressure equation therefore de-
couples on the odd and even sublattices, and the number of
mesh points (including + <o ), must be even. If we number
points from 1, (£ = — 1) to2n (£ = + 1), then the bound-
ary conditions on the even mesh read (with dx/dé factors
suppressed),

(V’p); =ps — P2s
(Vzp)zn;z = — 20,2 + P4

The first line of (7) follows by defining a fictitious point O,
writing the usual three-point formula for the second deriva-
tive, and then insisting that the pressure has zero derivative
at infinity, viz.,

o))

d
0=Ep(§___ - =(p, —po),

whereas in the second line we have simply used p,, = 0. On
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the odd mesh we use boundary conditionsp = 0at — « and
dp/dx =0at + o.*®

It may now be verified that the finite difference expres-
sion for Vp integrates to zero on the lattice and so energy is
conserved. To demonstrate momentum conservation, the
pressure trivially disappears but some care is needed to rear-
range v A . For the special case of a vortex ring, the velocity
decreases as 7 > for large 7 and so the momentum integral is
ill-defined and the finite difference form will not appear con-
served unless suitable symmetry planes are present.

Since upward of 90% of the computational effort went
into solving the pressure equation it is important that sym-
metries be easy to exploit. When reflection planes coincide
with x = 0 it suffices to find p on the even sublattice only

‘since the symmetry will fill in the odd sublattice. The Pois-

son inversion was done with the algorithm of Ref. 39 and
involved order log (V) operations per point.

The time stepping was by leapfrog with an occasional
second-order Runge-Kutta step to initialize and mix the
even and odd times. If applied to the one-dimensional advec-
tion equation, the leapfrog is neutrally stable while the
Runge-Kutta is wunstable in fourth order, i.e,
[(Atv/Ax)sin(k)]*, where k is the wave vector of the per-
turbation. We do not believe that this one-dimensional mod-
el is a realistic representation of our equations, though clear-
ly we always have to respect a Courant condition.

Numerical errors are most likely to occur for large k and
can be easily monitored by taking a Fourier transform with
respect to & every time statistics are extracted. The boundary
conditions are not a problem since all fields vanish smoothly
at§ = + 1. When the largest gradients were in the x-y plane,
we required the total spectral weight of ((dv/dx)?) and
{(3v/dy)?) in the last few bands to be of the order of a few
percent, and not significantly increasing with time. The ac-
curacy with which the conservation laws are obeyed between
remesh operations (which typically involved 100-150 time
steps) is also a check on instabilities. For the data of Sec. IV,
the energy was conserved to relative order 10~ 3, the mo-
mentum to O(1072), and the circulation in a symmetry
plane [actually just § S v, (0,p,0)dy], to order 10~ 4 [The
Poisson equation was not converged to machine accuracy to
save computer time, max(V+v)/max(w) $1073.]

It will be apparent in the runs to follow that solutions
which are self-stretching are immune to small scale numeri-
cal instabilities. This is not implausible since a dilatation will
change the effective wavenumber of any numerical instabil-
ity and also mix the sublattices. This stretching, even if only
passive, is a characteristic feature of our problem and there is
no reason not to anticipate and exploit it in the numerical
algorithm. We never observed any mesh scale instabilities
while time stepping the initial conditions in Secs. IV and V as
long as adequate spatial resolution was maintained.

The one stability problem we did encounter seemed as-
sociated with repeated remeshes and could easily be con-
trolled through the Poisson operator as we now describe.
For obvious reasons (elaborated in Sec. III B), to change
meshes we interpolated the vorticity and then found the ve-
locity by solving

[V?],0= —VAs, (8)
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where [ ], denotes the Laplacian written on the “fine”
mesh, i.e., using points i/ — 1,i,i + 1. The right-hand side of
(8) (and w) are calculated as.a centered difference, Eq. (5),
so (8) would not be a tautology even if the grids did not
change. We adopted this representation of V* for the remesh
only, in order to mix the odd and even sublattices and elimi-
nate the instability just noted.

This should also suppress any other sublattice oscilla-
tions that may have developed during the integration. Quan-
titative measures of the dissipation thereby introduced,
which is minimal, is discussed in Sec. III B.

Occasionally we wanted to treat a physical viscosity
which we then included explicitly in the time stepping. The
actual values of viscosity we employed were never large
enough for this to be a significant source of instability, and
the step size was always limited by the Courant condition.

One additional detail will complete the specification of
our algorithm. It is clearly inefficient to adjust the coordi-
nates if the solution merely translates without changing in
shape. We therefore added a time-dependent, spatially uni-
form velocity to the code v_ so as to keep some predeter-
mined point (e.g., a vorticity weighted center of interest) at
the origin. We devised an equation for v_ that has
v, =const as a homogeneous solution, could be time-
stepped explicitly, and had a source term proportional to the
distance that was to be zeroed.

We tested our code on a constant shape but propagating
solution (“Batchelor dipole,” Ref. 40) to the Euler equa-
tions in two dimensions (Fig. 1). The resolution is half what
we average in our three-dimensional runs (8 points from

L BAtY MR B B S S B SR B S N e M F LA AL I R N D BN A S AR BN DN BN B

IlllIIlllllllllll'lllllllllllll1|ll
llllIlllllllll]lllllllllllllllIllLIJ

PV SR TN TN TS ST TN W WU YO U S T U 0 W OO0 U W 1O O 0 PO A T A T N A S Y |

FIG. 1. The Batchelor dipole at T= 0 (left) and T = 4.5 (right) showing
the appearance of numerical instability for the 2-D Euler equations. Only
half the dipole is shown at each time and the interior solid line is the symme-
try plane. The maximum velocity of 2.3 and the total length of the horizon-
tal side 2.5 set the scales. The energy, momentum, and circulation are at
T=0: 8.763 216, 0.937, and 3.57, and at T'=4.5, 8.763 218, 0.939, and
3.59. The enstrophy changes from 19.92 to 19.95. The noise in the last few
spectral bands for ((d,v)*) as defined in the text is 5%.
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symmetry plane to maximum vorticity versus 16) and the
noise at the last time is greater than anything to be seen in
what follows. Nevertheless, the conservation laws are accu-
rately obeyed (see the caption, Fig. 1) and even though there
is no stretching or remeshes to stabilize the integration, the
noise grows very slowly; the dipole is kept stationary at the
origin by v, . With resolution 50% higher, the noise would
be barely discernible in the figure.

B. Remesh

This section contains the definition and motivation of
how we adjust coordinates. We enumerate the statistics used
to control errors and an indication of their general values in
sufficient detail to convince the reader that the flow is being
quantitatively simulated. A more specific tabulation of er-
rors at several key times is left for the Appendix.

When a singularity assumes a self-similar form with
characteristic length and time scales definable by various
norms, it is most natural to adjust scales continuously to
keep the relevant norms equal to one. For Euler this would
mean simulating a scaled velocity V' defined as

v(x,t) = a()V [ X=b()x,T(1)],
for which the scaled equations read (overdot=d /dt)

b
o V=-"v_L xv v
T aT bT ¥
+"—;(V-va—vxP>, 9

where T should be defined as ab.

Several problems arose when we implemented and ran
this scheme. Our solution scaled very differently in the x, y,
and z directions and in addition both the inner and outer
scales [cf. Eq. (4)] had to be separately adjusted. The new
linear terms in (9) destroy the explicit conservation of § V2,
and multiplying by X near infinity might cause numerical
problems. Also, since the enstrophy and other norms could
remain finite while the vorticity diverges®* it could be dan-
gerous to use them to fix scales.

Since nothing was known about how the singularity
would develop, better numerical control could be obtained
at the expense of considerable tedium by remeshing at dis-
crete times before the resolution became inadequate. In
practice, we examined contour plots of the vorticity vector
and demanded that it vary slowly on the mesh in all direc-
tions, particularly around the maximum. For the paired vor-
tex solution of Sec. 1V this meant that we maintained 12-20
grid points between the symmetry plane and the point of
maximum vorticity. In addition, contour plots on the nu-
merical mesh, i.e., as a function of £, made it very simple to
see how the solution was spread over the mesh (cf. the Ap-
pendix). Numerical instabilities could be sensitively moni-
tored by taking a Fourier transform with respect to &, as
noted above.

We were generally able to keep the total number of mesh
points fixed and merely redistribute them in order to main-
tain resolution. The separability facilitated the interpolation,
which was done on the vorticity rather than the velocity. The
former is concentrated around the origin where the resolu-
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tion is best and is related to the other field by an integral
rather than a derivative as would be the case if the velocity
were interpolated. Cubic splines were used for the interpola-
tion and a tension parameter was tried but not necessary.

Two additional operations were applied at each remesh
near the end of the run in Sec. IV to maintain numerical
control, a “cutoff’” and a “smoothing.” Both might have
been avoided at some computational cost and nonseparable
coordinates, but the methods we adopted, while clumsy, are
controlled and errors can be estimated a priori, which we do
after presenting the algorithm.

The cutoff consisted of multiplying the vorticity by a
function, 1 —exp(— |§ 1 1)/(|é, £ 1| — |+ 1]) for
|€ + 1|<|én + 1] and one otherwise, so as to reduce it
smoothly to zero at infinity and at the same time match
smoothly onto 1 for all points closer to the origin than £,
that are not affected by the cutoff. If this were not done,
vorticity would be pushed to within a few mesh points of
infinity by the repeated scale amplifications and the Laplace
equation would become impossible to invert accurately.

The “smoothing” was an artificial viscosity applied only
to the vorticity well away from the maximum that formed a
thin sheet and was advected into a poorly resolved region of
space. Obvious instabilities developed when the sheet began
to roll up. The diffusion thickened the sheet but maintained
the net circulation.

Since the remesh is done at discrete times it is rather
simple to assess errors by comparing statistics before and
after. Interpolation errors and the sublattice averaging intro-
duced by solving (8) could be evaluated by taking the new
velocity and vorticity on the new mesh and interpolating
back to the old mesh. Interpolation errors alone were small
under all circumstances, and for the vorticity amounted to
0.1% in the vicinity of its maximum. This constituted a sup-
plementary check that the resolution remained adequate. A
poorly resolved function is impossible to interpolate accu-
rately. The errors in the velocity in the absence of a cutoff
were slightly larger ~0.1%-0.3% since the comparison was
made after interpolation and inversion of the “fine mesh”
Laplacian in (8) that acted as a numerical viscosity. In addi-

tion, we recomputed all derivative statistics from the new-

velocity to understand how significant the diffusive effects of
(8) are by this measure. The maximum over all lattice points
of the vorticity invariably decreased by 19%-2% and the
maximum mean square strain rate tr;(e; )2 = tr,; (3,
+ d;v;)* by 2%~3%. These relative errors again really just
reflect the resolution in that they indicate that the ratio of the
Laplacian computed from points (i 4 2,7) to its value using
points (i + 1,7) is just 0.98-0.99. Errors in the vorticity-
strain correlations were in line with the above. Still with no
cutoff, integrals such as energy and enstrophy could change
as little as a fraction of a percent up to 5%-10% for the
energy depending on how compact the vortical structure is.
We infer that the errors are mostly attributable to the dis-
crete approximation (6) for the integral and the slow de-
crease in the velocity as » tends to infinity.

Particular attention must be paid to errors when the
cutoff and smoothing operations are applied at the end of the
run with two filaments (Sec. IV). We begin with derivative
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statistics. The errors in the maximum vorticity and strain
were no larger than just noted and therefore entirely attrib-
utable to (8). A particularly useful statistic is the local en-
strophy production, w*e- . Its maximum decreased by up to
4%-5%, which is in line with the errors in the individual
fields. In the Appendix we also display a contour plot of
w-e'w/w* before and after the remesh and cutoff. In what
we consider to be the region of space important for the subse-
quent evolution, the errors are uniformly small. Finally, to
verify that more distant regions do not contaminate the in-
cipient singularity, we repeated a portion of our run with and
without a cutoff. The vorticity contour plots at the end are
indistinguishable except in the region directly affected by the
cutoff.

The cutoff, however, did remove a substantial amount
of vorticity and energy due precisely to the large scales of
motion that do not participate in the singularity (i.e., con-
tribute negligible strain rate), but which do contribute a
mean velocity of translation. Symmetries minimized the in-
fluence of large scales since the vorticity removed always had
dipolar symmetry. With a cutoff the maximum velocity typi-
cally decreased by 10%, the enstrophy by 25%, and the en-
ergy by a factor of 2. The substantial decrease in energy is
physically interesting, and discussed in Sec. IV, since it im-
plies that the singular region contains negligible energy.

IV. ANTIPARALLEL FILAMENTS
A. Initial conditions

Our previous study of the Biot—-Savart model for a vor-
tex filament' showed that significant vortex stretching lead-
ing to a finite time singularity followed most readily for
paired antiparallel vortex tubes. Indeed, any initial condi-
tions we tried would invariably assume this configuration in
some region, so we infer that the singularity is globally at-
tracting and, in fact, universal because the dynamical equa-
tions for the paired filaments are local. The collapse was
sufficiently rapid that the velocity diverged as (¢ * — ¢) —'/?
and it was only because of logarithmic terms that the viscos-
ity would eventually halt the collapse. These model results
plus the possible association with hairpins in the boundary
layer make this the obvious first choice of initial conditions.

Our most extensive runs were made with two discrete
symmetries imposed, since intuitively this should not hinder
the instability, and a factor of 3 is gained in computation
time. More general initial conditions are considered at the
end of this section. We therefore took the large component of
vorticity to be parallel to zand imposed two reflection planes
x = 0 and z = O with the properties

X— —X, U= —V,, @,— + Wy,

byems + Uy (10)
and similarly for z— — z. Furthermore, we will take w, >0
for x > 0so that the mean velocity of the pair is toward nega-
tive y. These symmetries in no way inhibit reconnection*!
though of course in the absence of viscosity, since the plane
x = 0 is left invariant by the flow, no new vorticity can be
introduced there from elsewhere in the domain. For |z|
large, there is a small component of @, for x = O that is too

WDy, — Wyz,
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small to show up in the graphics and is dynamically passive,
but is responsible for closing the majority of vortex lines.

Somewhat -arbitrarily we defined our vortex tubes to
have a Gaussian core @ (7,z) ~e~ "’/ centered on two hy-
perbolas, '

x= + [acos(OW1 + (2/6)% + ¢/2],
y=asin(8) [V1 + (z/8)* — 1].

Our long runs were made with a =0.3, 6= 0.6, ¢ =0.75,
o=0.5, 8= 1.35, and a circulation of 7/2. The vorticity
was reduced to zero for large (z) by expanding the core size
as a power of |z| so that the two cores eventually overlap and
the vorticity cancels.

The general shape adopted in (11) was suggested by the
Biot—Savart model. The vortex stretching and mutual induc-
tion velocity are both maximal for z = 0, where we expect
the singularity to appear. Thus the vortex pair advances
more rapidly in this plane than for |z] > 0. The curvature of
each filament is then such that the self-induction velocity
pushes them together. The general appearance of the vortex
tubes for the standard parameters is shown in Fig. 2.

We filled the tubes with vorticity in two different ways.
The ﬁ/r\st, which we ran longest, consisted in taking o paral-
lel to z everywhere and imposing incompressibility by solv-
ing (8) for v and proceeding to integrate. We then observed
that certain essential aspects of this flow at later times could
be understood qualitatively simply from the Biot-Savart
law. To verify these suppositions we reinitialized the Euler
code still using (11) but took the vorticity parallel to the
hyperbolas. The correspondence with the Biot-Savart law
was then semiquantitative at early times and at later times
the flow was similar to the previous run, see Sec. IV C. These
runs, together with some experimentation with different val-
ues of a and bin Eq. (11), have given us a reasonable idea of

(11)

FIG. 2. Isovorticity surfaces bounding the region where |w| is greater than
30% of its maximum obtained from Eq. (11) with o parallel to the hyper-
bola. The coordinate range is — 2<x,»,2<2 and the origin is centered
between the tubes. The axes indicate direction only. The vorticity in the left
(right) tube is pointed toward positive (negative) z so that the tubes move
toward — y.
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how general initial conditions evolve. We begin by explain-
ing the initial states of the flow with the Biot-Savart law and
then discuss the asymptotics.

Since our initial conditions can be reasonably approxi-
mated as vortex tubes, one would expect that the Biot-Sa-
vart formula would give an approximate account of the ve-
locity field they induce and hence their initial evolution.
Nevertheless, it would be incorrect to assume that the vorti-
city remains tubelike forever, i.e., adapt a Biot-Savart mod-
el, since the cores are known to flatten when they evolve.?”3!
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T
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(b)

I S A A R TR T NTSTR R A T

FIG. 3. Contour plots of (a). | w, | and (b) d,v, in the plane z = O for the same
data as in Fig. 2. The range of coordinates is — 2<x,p<2 with x horizontal. At
the end of this run, the distance between the vorticity maxima will fit within the
thickness of the lines. The small tic marks indicate the computational mesh and
the large tic is zero. Dashed lines indicate negative values; and when, and only
when, they are present, the lowest solid line is zero. The contour interval is 0.5,
(0.1), for (a), (b). Note that the centersof the vortex tubesatx = + ¢/2,y =0,
cf. (11), fall in the region d,v, > 0.
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We will explain the initial core distortion as essentially a
result of the nonuniformity in the vortex stretching that for
z=0is just d,v, by symmetry. The other components of
strain are of course present and have been examined but they
are dominated by purely two-dimensional effects that for
early times will slightly distort the cores but basically pro-
duce a stable propagating dipole similar to Fig. 1. The exis-
tence of many stable vortex dipole solutions in two dimen-
sions also argues against low pressure in the center of the pair
per se as the cause of the flattening, since it is predominantly
of 2-D origin, too. The axial flow at early times was exam-
ined in Ref. 1.

It will be instructive to display explicitly the expression
for d,v, for a single vortex tube lying in the plane x =0,

L3 FrITT Ty Ty rTrrrrrTrr T T T eI Ty T rrrrTrrryrrrey L}

TITTT iy TTI YT T T o I T e rrrrrr Ty I r T rrryYrIrTrervres

b1 it vl i gty iiartrptitrergty

(a)

L4 L1 0t i 01111t 1 a4t BN TR RN NN

TTrTrrrr Ty T T T e r T e TP i rr T e TP rrerT irTy

TTIIT T T T T PR T T T T P TP FE T PRI TR T T RITT VT T ITIT I T Y

T
-

o
-~
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-llllllllllllllllllllllll Ll Lt 0 1403301 411 3111384

FIG. 4. The stretching d,v, computed from the Biot-Savart law-for (a) two and
(b) one hyperbolic vortex filaments (11). The coordinates are the same asin Fig.
3. The diagonal line in (b) is the plane of the hyperbola.
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symmetric about 2=0, and given parametrically by
y =pé&(9), z = p1(0), where p is the radius of curvature at
z=0and f¢[ — 1,1], viz,,

3,v, (x,9,0)
_ —3F(1)
 4mp? \p
% Jl n(d€ /d6)d@

H[x/p) + 0lp — ) + 7 + (a/p)’IS/(ziz

where I' is the circulation and o the core size. Therefore d,v,
as a function of x,y acquires the spatial scale of the curve, p,
in the z direction, which will be important in what follows.
More generally, d,v, (x,y,0) depends only on @, and w, and
therefore knows about @, only implicitly through V- = 0.

In Figs. 3(a) and 3(b) we show the actual vorticity
profile and strain rate in the plane z =0 for the standard
initial conditions, given below Eq. (11), and vorticity paral-
lel to the tube. Evidently the vorticity will grow most rapidly
for |x| <c/2, i.e., where d,v, > 0.

The maximum will increase only slightly and the vorti-
city will actually decrease for |x| R ¢/2, where d,v, is nega-
tive. Hence there will be a buildup of , in the center without
much change in the y extent of the tubes. When  is parallel
to z initially, d,v, is essentially zero everywhere, therefore
the effects seen in Fig. 3(b) become prominent only at later
times, and the initial flattening of the vortex cores is more
owing to the other components of strain.

Figure 3(b) can be understood intuitively by comparing
it with d,v, in Fig. 4(a) computed from the Biot-Savart
formula for the two hyperbolas (11). A core size of 0.5 was
used but, in principle, this could be adjusted to improve the
fit. In Fig. 4(b) we show d,v, for a single hyperbola, which
makes it evident [cf. Eq. (12)] that the sign change in d,v,
and therefore the principal core distortion is due to the
stretching action of each tube on itself. A second tube placed
at x~ — ¢/2 in Fig. 4(b) would experience a net amplifica-
tion. Only this second effect, the interfilament strain, was
included in the Biot—Savart model solved in Ref. 1. There it
was interpreted as the result of the difference in radial (i.e.,
normal to the pair of tubes, in the direction j + €2) veloc-
ities, which leads to an increase in arclength of the filament
pair and hence vortex stretching.

The self-generated strain of a vortex tube will be reexa-
mined in Sec. V when we simulate a single parabola as a
crude model for the tip of a hairpin.

B. Asymptotic evolution

An overview of the run with m||; initially is given in
Figs. 5-8. The maximum vorticity decreases from its initial
value of 3.3 t0 2.1 around T = 1.8. It was always located in
the plane z =0 except when a parasitic effect occurred
around T~4 and beyond T = 8.4, which we discuss more
fully below. The vorticity began to grow faster than expo-
nential around T'~6.5 and became exponential for 72 7.8.
This is perhaps clearer in Fig. 6 where we plot what is ap-
proximately the growth rate of maximum vorticity. It satu-
rates slightly after 7= 8, which does not quite correspond to
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FIG. 5. The evolution of the maximum vorticity on a log scale for the two
hyperbolas, and «-initially along z. The initial value of w,,,, was 3.3 and it
decreased to 2.1 before it began to increase monotonically. The small steps
occur at each remesh and are due to the smoothing effect of (8).

Fig. 5 because there is a secular change in shape occurring as
will become apparent from the contour plots. The crossover
to passive stretching will be explained dynamically below.

It was relatively unambiguous to define a characteristic
interior scale in the x direction x,,;, as the distance of the
point of maximum vorticity from the symmetry plane x = 0
(Fig. 7). Since we sampled the vorticity only at lattice points
and did not interpolate, x;, has a sampling error of 5%.
The initial x,,;, is 0.5, which together with the maximum of
the initial velocity field, 1.0, defines a time scale. A second
larger “exterior” x scale enters the problem at a later time as
will be obvious from the figures.

Length scales in y and z are less well defined. There is
definitely structure in the y direction on a scale of several
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FIG. 6. A qualitative measure of the maximum growth rate of & for the
same data as Fig. 5. The maximum of numerator and denominator is taken
separately and occurs at different locations in the z = 0 plane. The decrease
in the ratio after T = 8 is largely due to an increasing separation between
where the maxima occur.
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FIG. 7. The distance between the point of maximum vorticity and the sym-
metry plane x = O for the data of Fig. 5. The initial value is 0.5 and it de-
creases monotonically. The irregular appearance of the curve is due to the
discrete mesh (no interpolation is done in locating @, )-

times Xx,,,;, yet the vortex sheets that evolve from the tubes
have an extent in y that is ultimately limited by the coordi-
nates to roughly 50 x,;, for later times (7% 7.2). There
seems to be a single z scale that varies from O(1) to 0(0.1) at
the end. It is apparent that *“sheet” is a very apt term for the
vortical structures we find since the y and z dimensions are
comparable.
The maximum mean square strain rate, tr efj,e,-j
= §(d,v; + d;v;) is shown in Fig. 8. Its location is typically
near that of the maximum vorticity in the plane z = 0 and its
ratio with @w?,, is 1/2, which is just what one would expect
for a velocity varying as (0,x,0). It is also apparent by com-
paring Figs. 6 and 8 that the maximum strain in the x-y plane
is 20 times greater than d,v, for TR 8.
Another interesting quantity is the maximum pointwise

~velocity. It always occurs along the line x =z =0 as one
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FIG. 8. The mean square strain rate tr, (¢} ), on a log scale for the data in
Fig. 5. The initial value is 10.

A. Pumir and E. Siggia 228

Downloaded 14 Sep 2009 to 128.84.158.108. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



would expect for a vortex dipole. After we correct for the
effects of the cutoff (cf. Sec. III B), it grows from 0.5 to 1.2
at T'= 8, hence much less rapidly than the vorticity. In view
of the Leray bound (2) it is implausible that the stretching is
rapid enough to counteract the effects of viscosity.

The energy in the small scales is clearly an important
quantity and is crudely measured by the energy contained on
the computational mesh. This is constant until we begin to
apply the cutoff (cf. Sec. III B) at T = 7.0 which removes
vorticity around “infinity.” This has a minimal effect on the
growth rate of @, (cf. the Appendix) (N.B., there is no
break in Fig. 5 at T~7.0), even though the energy and circu-
lation change substantially.

The cutoff allowed us to decrease the exterior scale of
the x (y) mesh [cf. Eq. (3)] by a factor of about 100 (8)
from start to finish while the interior scale decreased by a
factor of 300 (100). The energy changed from 3.5 to
5 10~ 3; the total circulation in either sheet decreased from
2.8 t0 0.085, while the maximum velocity (not corrected for
the remesh), decreased from 1.0 to 0.5. These numbers can
be understood crudely by recalling that for paired sheets in
two dimensions the energy is of order I'?d /L, where d is the
spacing, L the length, and T the total circulation. From
T = Ttotheend, d decreases by 25, hence the above formula
accounts for a factor 3 X 10 ~* in the energy change; some of
the balance comes from the decrease in the vertical scale. Itis
surprising but true that the circulation eliminated by the
cutoff has a very minimal effect on the growth of w,,, (see
the Appendix).

The evolution in the growth rate of w,,,,, apparent from
Figs. 5 and 6 can be understood physically from a series of
pictures for the vorticity, strain, and circulation at times cor-
responding to the beginning, end, and middle of Figs. 5-8.
We show only the z = 0 plane since the resolution require-
ments are most stringent here. The vortex tubes are less flat-
tened and farther apart for |z| > 0. The resolution was also
monitored on planes x = cst and y = cst.

InFigs. 9(a) and 9(b) we show the vorticity and 3, v, at
T = 6.3 for x>0. The x axis has been uniformly stretched by
a factor of 5 relative to the y axis to make the internal struc-
ture of the sheet more apparent. Virtually the entire extent in
y of the sheet is visible, which will not be the case at later
times since we will retain the same dilatation ratio of 5 to
make shape changes more obvious. On dynamical grounds it
is apparent that the “tail” of the sheet, y 0.5, will not evolve
rapidly while the “head” gets pulled into a fine point. The x
coordinate of the maximum vorticity will decrease by a
further factor of 60 at the final time which corresponds to
one-half the spacing between the finest marks in Fig. 9. The
stretching is concentrated toward the middle of the sheet
and the vorticity that gets amplified is advected forward un-
til it eventually is “shed” and no longer stretched. This
“tongue” of shed vorticity will progressively flatten and be-
gin to roll up at later times. :

At the next time, 7.2 [Fig. 10(a)], the vortex sheet is
more pronounced but there is also more vorticity spread out
for x % 2x,,;,, . The stretching, Fig. 10(b), does not look terri-
bly different from Fig. 9(b) except that the magnitude has
doubled. Note that d,v, varies more gradually with x than
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FIG. 9. Contour plots of (a) @,, (b) d,v,, in the plane z = O for the data of

Fig. 5 at T = 6.3. The coordinate ranges are 0 < x < 0.48 (the other sheet for
x < Ois obtained by reflection), and — 0.8<y<1.60. A uniform dilatation of
5 was applied to x, but otherwise conventions follow Fig. 3. The intrinsic
velocity of the two sheets is downward. At the end of the run, the maximum
vorticity will lie within half a tic spacing of x = 0. The contour interval is 1.0
(a) and 0.2 (b).

does w, . It will be important in explaining the crossover to
passive stretching for T2 7.8 to quantify how the circulation
is distributed in the plane. This we do in Fig. 10(c) by plot-
ting @, (x',y,0)dx’. Vertical parallel contour lines imply a
vortex sheet with constant circulation per length. Compari-
son of Figs. 10(a) and 10(c) shows that about 30% of the
circulation is contained in the sheet surrounding the high
vorticity region, x £ 0.035.

Some impression of the three-dimensional structures is
given in Figs. 11(a) and 11(b), again using unequal scales.
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The contour level displayed in Fig. 11(a), 40% of the maxi-
mum, corresponds exactly to what we identified as the
“sheet” in Fig. 10(a). If continued to larger positive y, the
sheet in Fig. 10(a) would terminate at y ~ 1.4 (and without
the cutoff perhaps a factor of 2 further). Note that the extent
in z is real and not limited by the graphics. Figure 11(b)
shows that the vorticity is very well aligned.

At the final time the trends evident at 7.2 have become
more extreme [Figs. 12(a)-12(c) }. The maximum vorticity
occurs in a thin sheet that contains less than 15% of the
circulation. It is thus plausible that its stretching is passive
and generated from the regions of the flow containing most
of the circulation. The strain continues to vary more slowly
in x than the vorticity, hence virtually the whole of Fig.
12(a) is being amplified except for the “tongue.” It is now
more apparent that the sheet is stretched rapidly for y 2 0
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FIG. 10. Contour plots of (a) w,, (b) d,v,, and (c) the circulation per

length (i, (x',3,0)dx’, at T= 7.2 and z = 0 following the conventions of
Fig. 9. The data are shown just before a remesh and illustrate what we con-
sider marginal resolution. The coordinate ranges are 0<x<0.12 and
— 0.2<y<0.4. The contour intervals are 2.0, 0.3, and 0.1.

and then advected around the center of the picture and into
the tongue by the preponderance of the circulation. Note
that because of the different scalings the *“tongue,” though
thinner proportionally than in Fig. 11(a), is still four times
thicker than the sheet.

The “tongue” in three dimensions, Fig. 13(a), gives the
vortex sheet more of a shell-like appearance. The vorticity
vector [Fig. 13(b)] evidently lies in the plane of the sheet.
The forward tilt, which was not evident in Fig. 11(b), is not
understood, but is not associated with the cutoff. Since only
the intense regions of vorticity are shown it is not clear where
the vortex lines end. To determine this, we integrated the
equation

Y

— =

at
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(b)

FIG. 11. Isovorticity surfaces (a), and vorticity vectors (b), at 7= 7.2. Only the
region 0<x<0.15, — 0.15<y<0.90, and 0<z<0.45 is shown and the coordinates
have been stretched uniformly in the ratio of 1:7:3. The threshold on |w| for
inclusion in the figure was set to 40% of the maximum in (a) and 30% in (b).
The actual grid points are used in (b) while a coarser and uniform mesh was
interpolated to draw (a). The axes are drawn at the lower limits of the coordi-
nates.

tofind the vortex lines. On the scale of zshown in Figs. 13(a)
and 13(b) there was no reconnection between the sheets.

Although the initial tendency for tubes to become sheets
was explained as an effect of nonuniform stretching, this
seems less plausible at 7= 8.3 since the sheet is spread overa
thin region in comparison with the stretching. In addition,
the interior (right-hand) boundary of the sheet (x ~0.003)
is too sharp to be explained this way. In Figs. 14(a) and
14(b) we show d, v, and d,v, whose sum must be ~ 3,v,.
Uniform gradients in x,y will change the overall scale size
but not the relative placement of contour lines. But note that
d, v, itself has an adverse linear gradient and can be crudely
fit as « :

2
Byv,~ — 54 SFOOD” \ h0p
1+ (x/0.01)
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Such a flow in one dimension will concentrate density
around x = 0 and the numbers are semiquantitatively in ac-
cord with what is seen. The nonuniformities in d;v; all act to
produce sharp boundaries in the vorticity distribution that
we will term vortex jumps.

The integration was continued through several re-
meshes beyond 8.3 (i.e., x,,,;, decreased another factor of 10
and @, increased by 40% ), though the data are not shown
in Figs. 5-8. The trends noted at 8.3 all continue but a new
numerical instability occurs which effectively terminates the
computation. From Fig. 7 it is apparent that the magnitude
of the maximum eigenvalues of e;, which are in the x-y
plane, continue to grow exponentially while the z component
is constant. Hence any stray vorticity in the x direction,
which could be generated when incompressibility is imposed
on the initial conditions, when placed in front of the sheets
will rapidly amplify in magnitude and compress its support
in y. This vorticity has negligible circulation so the stretch-
ing is passive but its magnitude can eventually exceed that of
w, forz=0.

A similar effect was seen for early times in this run
T~ 34 because the initial conditions made d,v, = 0, while
enforcing incompressibility on @ = wz causes the vorticity
to reconnect in front of the two tubes. This has been seen by
other authors, too (“bridging” in Refs. 29, 30, 42), but is of
no relevance for singularities since the strain is not generated
by the vorticity being strained (see also Sec. V A).

It is plausible but by no means certain that the growth of
@,..x (assumed parallel to z and in the z = 0 plane) remains
exponential for T= 8.4. Arguing in favor is the tendency of
the solution to leave behind (for + y) most of its circula-
tion, i.e., the circulation contained in a slab, say, Ay

= 10x,,;, around w,,,,, continually decreases. The pro-

nounced break in Fig. 6 is an artifact of how the ratio is
defined. For T8, the formation of a thin passively
stretched sheet has occurred and it begins to be advected out
of the region of greatest stretching. Hence the y position of
max(w-e'®) vs max(|w|) increases secularly and destroys
the utility of the ratio. However, max(d,v,) measured di-
rectly never becomes larger than 2.6 and does not diverge.

Two more general points of physics should be stressed
before considering briefly other related initial conditions. It
is quite surprising that the two sheets of antiparallel vorticity
we have painstakingly simulated do not exhibit instabilities
with a y wave vector k, ~ 1/x,,;,, . Two sheets are similar to a
two-dimensional wake (width d), and many calculations
have shown that a varicoselike mode, symmetric under
x— —x, is unstable for 0 <k, SO(2/d) and compatible
with our symmetry assumptions.*> There is also abundant
time for the instability to develop since the characteristic
velocity is always O(1) and from Fig. 6 the spacing between
the sheets, ~2x,,;,,is $0.02 for a AT > 1. The explanation
must lie in the superimposed stretching which is comparable
iny [cf. Fig. 14(b)] and z [Fig. 12(b) ], but is still only of
order w,,,, /30. We are not aware of any analytic calcula-
tions that precisely address this situation.*

Another point worthy of emphasis is the evolution of the
vorticity-strain correlations with time or equally well with
increase in maximum mean square strain. The eigenvalues of
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the rate-of-strain matrix are proportional to (1,6, — 1 — €)
with € a decreasing function of time and the vorticity parallel
to the corresponding eigendirection. The flow thus becomes
locally two dimensional. A similar tendency has been found
in other simulations and will be discussed further in Sec. V1.

C. Related initial conditions

The long run just discussed was initialized with w paral

lel to z so that initially there was no stretching along 7. The
alternative, whose subsequent evolution we now summarize,
consisted of taking e parallel to the tubes [cf. Figs. 3(a) and
3(b) ]. The initial growth of @ was more rapid but w-e- w/w?
saturated at a lower value than in Fig. 6. It was never neces-
sary to use the cutoff to control the Poisson inversion (cf.
Sec. I1I B). The vorticity profiles looked more nearly self-
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Lid 101t

FIG. 12. Contour plots of (a) w,, (b) 8,v,,and (c) the circulation per length at
T=28.3 as in Figs. 10(a)-10(c). The coordinate ranges are 0<x<0.02 and
— 0.03<y<0.07. The contour intervals are 10, 0.6, and O.1.

similar for a longer time than before, and roughly intermedi-
ate between Figs. 9(a) and 10(a). The saturation in
w-e'w/w* was again associated with sweeping the maxi-
mum vorticity out of the region between the sheets and into a
“tail” as in Fig. 13(a). o

Within the basic geometry of two antiparallel tubes
three additional configurations were tried. First, we relaxed
the symmetry x — — x and made the circulations of the two
tubes 20% different. The initial flattening was unaffected
but the pair rotated in the x-y plane around the tube with
larger circulation.

The second experiment consisted of adding a large heli-
city to the flow by putting an axial velocity along the hyper-
bola antiparallel but proportional to the local vorticity in
magnitude. Its maximum value was max(v,)~0.5 com-
pared with max(v, ) ~ 1.0. The subsequent evolution was ut-
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FIG. 13. Isovorticity surfaces (a) and vorticity vectors (b) at T = 8.3, as in Figs.
11(a) and 11(b). Only the region 0<x<0.025, — 0.03<y<0.07, and 0<z<0.175
is shown. The thresholds are the same as before.

terly different than before and unexpected. The tubes flat-
tened on their outer edges rather than around x =0 and
never approached each other. They then proceeded to rotate
around the y axis. There was no significant growth in @, .

Finally we added viscosity to our long run by restarting
the data at T = 6.75 with a viscosity so small (310~ 5)as
to be negligible, and then waiting for the collapse to reduce
the scale size to where viscous effects enter. Once the viscos-
ity induced a small x component of vorticity, the large com-
ponents of strain amplified it and squeezed it down to a very
fine “film” just in front (y more negative) and perpendicular
to the principal sheets. Since the x-y strain is growing expon-
entially, Fig. 8, the vorticity in the “film” grows as exp(e’).
Separable coordinates were a great handicap and instabili-
ties of the sort which terminated the inviscid run prevented
us from integrating far enough for the “film” to acquire sig-
nificant circulation.

V.OTHER INITIAL CONDITIONS

The paired vortex tubes in the previous section evolved
in such a way as to make the vorticity perpendicular to the
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FIG. 14. Contour plots of (2) d,v, and (b) d,v,, at T= 8.3. The coordinate

ey
ranges are identical to Fig. 12(a). The contour intervals are 1.0 and 0.9, respec-
tively, in the y>»0 portion of each figure, and 6 in the y<0 panel of each figure. The
solid horizontal line denotes y = 0.

largest components of the strain and thus avoid a singularity.
In this section we devise several initial conditions with high-
er symmetry and thereby attempt to force vorticity into the
plane of greatest stretching. We can conceive of no scenario
that would generate these flows “naturally” through succes-
sive instabilities, our goal being merely to provoke a singu-
larity. But again, as before, we fail for rather similar reasons.
The most intense vorticity is inevitably squeezed into a re-
gion where the stretching is passive and where it is rapidly
flattened into a sheet. Some experimentation with various
parameter values suggests to us that this behavior is typical
for these geometries.
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FIG. 15. Isovorticity surfaces for two pairs of hyperbolas initialized accord-
ingto (11) (with the y<0 pair rotated), for b = 0.3. The vorticity is direct-
ed along the hyperbolas and arranged so as to make the pairs collide in the
center.
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A. Colliding filament pairs

We were ultimately forced to terminate the integration
in Sec. IV because an infinitesimal amount of vorticity in the
x direction was amplified and flattened by the exponentially
diverging strain rate and caused numerical instabilities. To
exploit this effect and make it nonlinear we placed a second
pair of hyperbolas perpendicular to the first, i.e., symmetric
with respect to the plane z = O rather than x = 0, with vorti-
city predominantly in the x direction (versus z) and ar-
ranged so that the new pair had a positive y velocity. Under
the transformation

y=—=x
the vorticity of the four filaments obeys

x—2z, zZ— — X,

W, — @, 0,50, O, —0,.
We used the same parameters asin (11) todescribe each
pair but varied b from 0.3 to 1.2. The smaller values of b

decreased the radius of curvature at the tip and enhanced the

®) ]

Loaa b vaainan

e

FIG. 16. Contour plots of || for a plane z = 0 (a), |e| foraplane z> 0 (b), and
d,v, for z=0 (c¢) all at T'= 2.0 for the initial conditions in Fig. 15. The cog\rdi-
nate ranges are 0<x<0.75 and — 1.5 <y < 1.5. The vorticity in (b) is along zfor
>0 and along x for y <0. The contour interval is 1.0 in all cases.
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tendency of each pair to squeeze together by virtue of the
self-induction velocity. In this way we attempted, to no avail,
to counteract the tendency for the vorticity to be expelled
from the region around the origin. Only the data for b = 0.3
will be shown.

The initial conditions are displayed in Fig. 15 in three
dimensions. Significant interaction between the pairs occurs
by T = 2 [see Figs. 16(a)-16(c)]. The collision is first felt
in the tip whose propagation is impeded by the jet coming
from the center of the other pair. As a result, some wrapar-
ound begins to be noticeable.

The strain pictures are the most revealing. While the
tubes remain roughly circular, the strain field in front of each
resembles that of two point vortices. The strong positive
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stretching in Fig. 16(c) comes from the other pair of tubes
with ©||% and y $0. Unfortunately it does not project far
enough forward in y to overlap the cores of the upper pair of
tubes. This scale is roughly determined by the separation in z
of the lower pair of tubes for x = 0 or by symmetry, the x
separation of the upper pair for z = 0. The very same com-
pression that was designed to counteract the vortex ejection
to follow, thus initially limits the stretching. The more ex-
tended but equally intense negative 3, v, also originates from
the lower pair and is responsible for squeezing them togeth-
er. (By symmetry it is identical to d, v, in the plane x = O for
y>0)

The final phase of this flow is shown in Figs. 17(a)-
17(d). The region of maximum vorticity is rapidly ejected
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FIG. 17. Contour plots of (a) |w|, (b) 8,v,, (¢) d,v,, and (d) J,v,, all for 2 = 0 and ¢ = 2.75 for the initial conditions of Fig. 15. The coordinate ranges are
0<x<0.2 and — 0.1<y<0.3. The contour intervals are 2.0, 1.0, 1.0, and 2.0, respectively.
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away from the origin. The parallel strain rate d,v, is positive
but growing very slowly at these times. We infer from the
overall geometry of the flow that the strain acting for x>0
has no reason to diverge in a finite time. It is derived essen-
tially from the dynamics of the lower pair alone since the
sheet that is smeared across its upper surface does not carry a
lot of circulation. These remarks are rather conjectural since
numerical difficulties, more apparent in the |z| >0 slices,
made it difficult to integrate much beyond 2.75 in a separable
coordinate system. Up to that time, however, and with no
cutoff, the maximum vorticity grew by a factor of 6, the
maximum of w-e*w by 200, and the enstrophy by only 45%.

The numerical problems originate from the rapid dilata-
tion in x and compression in y visible in Figs. 17(c) and
17(d). The former has its counterpart by symmetry in Fig.
17(b), where d,v, is now positive for y <0 [in contrast to
Fig. 16(c) ]. For reasons identical to what we saw in Sec. IV

[e.g., d,v,, Fig. 17(c), large and negative], the vorticity

jumps almost discontinuously from 0 to its maximum value
and decays more gradually for y increasing in a manner sug-
gestive of a shocklike mechanism although the vorticity field
is divergence free. Away from the symmetry planes, x =0
and z = 0, these strain fields produce two opposing jumps
with perpendicular vorticity. More sophisticated adaptive
mesh algorithms are required to proceed further.

For larger values of bin Eq. (11) the same sort of vortex
ejection was produced but earlier, before the two pairs were
as close as here. There is no suggestion of a qualitative
change in the evolution of the flow with & that could lead to
singularity. We infer that the impossibility of keeping each
pair of tubes together is, in part, a consequence of the wra-
paround effect produced at the origin. This straightens and
ultimately reverses (makes negative) an effective curvature
of each pair. It was precisely this curvature being large and
positive initially (b /a small) that pushed them together in
accordance with the Biot-Savart law.

B. Parabolic tubes

If the vorticity in Fig. 15 is projected onto the x-z plane,
it would be pointing toward the origin along the + x axis
and away from the origin on the + z axis. Another configu-
ration with four tubes is also conceivable with a different
sense of vorticity. Imagine a vortex ring in the x-z plane but
stretch the pieces of tube that intersect the coordinate axis
out to infinity. The sections of tube nearest the origin on the
lines x = + z will be advected forward most rapidly and we
hoped that the strain field of each pair would stretch the
vorticity of the other pair. To minimize the possibilities of
reconnection along the coordinates axis, we replaced the de-
formed circle by four parabolas, reflection symmetric about
x = + z, with the ensemble still retaining a fourfold rota-
tional symmetry. (In retrospect, hyperbolas would have
served as well as parabolas. )

The subsequent evolution was a disappointment in that
the desired stretching was never seen. It was impossible to
get the strain yield to extend far enough from opposite pairs
of parabolas to be useful. Instead, the dominant interaction
was for each tube to distort itself with only minor amplifica-
tion of vorticity. Nevertheless, we were amused to find that a
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FIG. 18. Contour plots of (a) |w| and (b) for x =0, T = 3.6, and for initial
conditions consisting of just a single parabola in the x-p plane symmetric under
x— — x (see the text). The coordinate range is — 2<x, y<2 and the contour
interval is 0.3 and 0.1, respectively.

similar vortex configuration evolved naturally from the Tay-
lor—Green initial conditions [cf. Figs. 17(c) and 19(b) of
Ref. 19]. We comment more on this coincidence in the con-
clusion.

We have pursued a bit further the evolution of a single
parabola since it is of some relevance to the tip of a hairpin
vortex. When modeled as a vortex filament, the evolution of
a parabola is well understood.*®> We comment only on the
deformation of the tip, which gives rise to the same sort of
vortex “jump” noted in previous sections.

The initial parabola was planar and obeyed z=0,
y = 1.5x*. The core was Gaussian with o = 0.5 and a circu-
lation of 77/2 as in Sec. IV. The vorticity was parallel to the
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parabola. The vorticity normal to the symmetry plane,
x = 0, of the parabola, which is all the vorticity, as well as the
stretching, is shown in Fig. 18 at T = 3. Based on the time
evolution and examination of the other velocity derivatives,
we conclude that the large vorticity gradients result from
nonuniform stretching along e rather than from two-dimen-
sional effects perpendicular to o.

C. Model of Vieillefosse

The way in which the vorticity produced its own
stretching in the previous examples could be understood at
least qualitatively from the Biot-Savart equations. A
simpler, and in our view less well founded, starting point is
what one might term a one-point Lagrangian closure model
for the strain and vorticity.*® The model generates a solution
to the Euler equations only if the velocity is proportional to
position everywhere, which is unphysical. Nevertheless, the
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237 Phys. Fluids A, Vol. 2, No. 2, February 1990

model asymptotically has strain eigenvalues proportional to
(L,a, — 1 — a) with 0 <a < 1 and the vorticity along the a
direction as was noted in Sec. IV. But the strain and vorticity
diverge as 1/(¢* — t). We therefore initialized our velocity
field with this asymptotic form (w is a free parameter) and
inserted a spatial cutoff of O(1);

Vo9+aw?—1 —w 0\ /x

1
V=— ® —Vo+or—1 of|¥}
1 l.22
(1+7r%) 0 0 ) \z
(13)

In Figs. 19(a)-19(c), we show the solution at an inter-
mediate time. The vorticity is along + zin the vicinity of the
origin and in the thick parts of the two rings for z = 0. Vortex
lines circulate around the rings and thus are along — zin the
thin parts of the rings where they intersect z = 0. They also
must close in some diffuse halo around the two rings that is
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FIG. 19. Isovorticity surfaces (a), @, forz=0 (b), and d,v, forz =0 (¢),
all at T = 1.6 for the initial conditions in Eq. (13). The coordinate range is
— 2<x, y<2 and the contour interval 0.6 and 0.1 in (b) and (¢}, respective-
ly.
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not visible in Fig. 19(a). The sheet surrounding the origin
with el|z originates from the antisymmetric term in (13).
The rings are due to the symmetric terms plus the fact that
the velocity decreases to zero at infinity. The shape and dis-
tribution of circulation in the tubes suggests that.the x and z
velocities are positive and increasing at the origin and that
d, v, is negative, giving rise to the flattening.

Figure 19(c) shows that the maximum strain is squarely
on top of the vorticity for the first time. Unfortunately the
strain rate is monotonically decreasing. This is to be expect-
ed since the rings evolve radially outward and simultaneous-
ly press together. Both effects tend to minimize their contri-
butions to the velocity gradients at the origin. Other choices
for the signs of d;v; at the origin do not seem any more auspi-
cious for producing a singularity.

VI. CONCLUSIONS

While numerical methods can, under favorable circum-
stances, make the existence of finite time singularities highly
plausible, they are typically much less useful in demonstrat-
ing their absence. We therefore first recapitulate what we
find and then attempt to make it plausible analytically. We
consider whether our failure to find a singularity is a result of
limitations of technique or inappropriate initial conditions
and review the arguments in favor of singularities.

There are good mathematical reasons for using the
growth rate of vorticity to signal a singularity and the expo-
nential growth we found means no finite time singularity.
More revealing of the asymptotic dynamics of the flow is
w'e'w/w* in the vicinity of the maximum of vorticity. We
find that this quantity saturates to a constant value, preclud-
ing growth in o faster than exponential. This saturation is
unambiguous numerically and its interpretation immediate;
and it would be interesting to see the same statistic displayed
for the Taylor—Green initial conditions. Another statistic
that is rather poorly defined for us, but which nevertheless is
in accord with the above, is the energy as a function of scale
size. For wavenumbers of order x.;!(¢), the energy falls

more rapidly than any reasonable power of wavenumber,

suggesting that little energy is reaching the small scales.
However, we have no direct measure of the energy as a func-
tion of time for a fixed k<x, ..

One encouraging aspect of our simulations, as regards
their relevance to real flows, is the similarity of the vorticity—
strain correlations to those observed in the high dissipation
regions in other simulations of developed and quasistation-
ary turbulent flows. More precisely, the vorticity is parallel
to the eigenvector of the rate-of-strain matrix corresponding
to the intermediate eigenvalue in magnitude which is posi-
tive and considerably smaller than the others. (In our case
the ratio tends to zero.) This was first seen in Ref. 47, where
{w-e-e ) was no larger than its Gaussian value while (* )
and (e*) were considerably larger than their respective
Gaussian values. The physical meaning of the first correla-
tion is clearer if we write it as ((Dw/Dt)?), where D /Dt
denotes the Lagrangian derivative. It therefore measures the
average vortex stretching, i.e., the rate of strain parallel to
vorticity. The same effect was noted more neatly and directly
in Ref. 48 for a turbulent shear flow, and in Refs. 48 and 49
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for homogeneous isotropic turbulence where the eigenvec-
tors of e; were computed and correlated with o at the same
point.

Several inferences about the flow can be made directly
from this property. Essentially the flow is becoming quasi-
two-dimensional with the rate of vortex stretching small
compared to the strain rates in the plane perpendicular to the
vorticity. As one would expect in two dimensions [think of
two point vortices or compare Figs. 12(a) and 12(b) with
Figs. 14(a) and 14(b) ], the maximum mean square strain
and vorticity do not occur in the same place. Also, since the
strain is an integral over the vorticity, it is less concentrated
in space. The energy cascade becomes less efficient and prob-
ably less local when the dominant straining directions are
perpendicular to the vorticity, but this does not imply that
the nonlinearity is small,*®

Thus the essential property to explain is why the strain is
predominantly perpendicular to vorticity. The vorticity at a
point does not generate parallel strain, as is apparent from
the integral (p=p/|p|),

(0 V)v(r)

_ [d oM Ae(r+p) —PpAalr+p)pe(r)
47 p3

In the vicinity of p = 0 and after doing an angular aver-
age, the numerator vanishes as p*>. Hence with no additional
assumptions better estimates should be possible for
- e w/ @* than in Ref. 32.

The above equation is purely kinematical. The evolution in
time also tends to reduce the parallel components of strain. The
essential dynamical ingredient appears to be the property of in-
viscid hydrodynamics, which makes vortex amplification equiv-
alent to elongation of the parallel line element. Thus stretching
reduces the curvature of a vortex line and pushes the perpendicu-
lar components of vorticity farther away, thereby reducing the
parallel strain. Some additional instability is essential to continu-
ously fold the vortex lines and keep the characteristic length
measured parallel to o the same order as the perpendicular
length scales. This instability has to be intrinsic, since asymptoti-
cally, extrinsic vorticity has a negligible effect on the collapsed
filament pair. Parallel stretching is, however, stabilizing. Hence
one can imagine a rather bursty dynamics in which regions
stretch, the curvature decreases, till eventually new instabilities
occur on the smoothed out vortex field, engendering a new phase
of rapid self-stretching. These steps were clearly evident in the
simulations of Ref. 1.

If our vortex tubes did not continuously flatten, and the
cores remained self-similar, there is little doubt that a finite
time singularity would ensue. What happens instead can be
rephrased as a decrease in the circulation that is effective in
producing strain on the scale of x_;, (#). The circulation be-
ing most strongly stretched is not responsible for its own
stretching. Since the lateral dimensions of the vortex sheets
are much greater than their spacing, viewed from the scale of
the tip, the contributions of the two sheets tend to cancel.

Is there any core shape, perhaps quite elongated, which
evolves without change in shape, but merely changes in
scale? We suspect not, but have only a very crude argument
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to offer. Energy conservation is not a significant constraint if
the characteristic scale of the solution along » decreases
along with the others. Of more interest is the possibility of
using circulation integrals in the plane x = 0 to show that
vortex stretching is accompanied by an increase in a suitably
defined integral scale in y. While the vortex pair flow in real
space with the symmetry planes we have assumed appears a
more tractable problem analytically than that of Taylor and
Green, we have not found any general argument other than
the symmetry argument of Eq. (12) that necessitates the
continual vortex flattening.

By the same token, we are unable to extract a scaling ansatz
that leads to a tractable asymptotic expansion for our solutions.
The first term is clearly two dimensional as in Ref. 1 but beyond
that we have not been able to surmise a choice of scales that
would lead to scaled equations that are time independent.

We believe that our simulations have made implausible sin-
gular attracting solutions with the assumed discrete symmetries
and with well-defined and roughly equal scales in x, y, and z. One
could imagine a variety of weaker singularities. For instance, a
fixed increment of parallel strain could come from each decade
of wavenumber, which could require more care in preserving the
large scales than we have exercised. If the singularity is not at-
tracting, additional parameters would have to be adjusted to
make the asymptotic solution singular, which we have clearly
not done. To pursue this line of reasoning further, we can only
mention that we have been unable to construct examples of poly-
nomial systems of ordmary differential equations that are non-
singular for all but exceptional initial conditions. We tend to
believe that if a singularity exists it will be attracting but, how-
ever, a proof is lacking. We see no hope in excluding singularities
for flows other than those we have explicitly examined until we
have some analytic understanding of why our flows behave as
they do.

The Kolmogorov spectrum for statistically steady-state tur-
bulence implies that the characteristic time necessary to transfer
energy from large scales to small ones is finite independent of the
range of scales involved. This depends crucially on the spectrum
being less steep than k ~3, and the conclusion does not carry
over to initial value problems for the Euler equations. For any
physically reasonable parameters, an exponentially decreasing
length, e.g., x,;,, will hit the viscous scales in a finite time, and
one could imagine that the spectrum fills up from high k toward
lower k.

The one aspect of turbulence phenomenology that our col-
lapsing solutions do violate is the common assumption that all
fields with the same dimensions scale in the same way.* This is
assumed partially out of ignorance, and also because turbulence
is felt to be somehow sufficiently random. This strong scaling
assumption clearly leads to finite time singularities since it im-
plies w*e*w ~ |w|*. However, when one is precise, isotropy itself
yields no relations among (w-e‘e'w) and {w*), (w?¢*), and
(e*).>! It would be very interesting to know how the maximum
of w-e*w/w* grows as a function of decreasing viscosity in a
statistically steady flow with the large scales prescribed.

The collapsing solutions we have found are of little use in
building a coherent structure picture of the energy transfer pro-
cess. They are simply too inefficient in contrast to the cavitons
for the nonlinear Schrodinger equation.”> We find it encourag-
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FIG. 20. Contour plots of d,v, before a remesh (a) and after (b),at T= 7.0

and z = 0 for the run in Sec. IV. The coordinate limits are 0<x<0.12 and
Ay = 0.6 (the y origin has been shifted). The contour interval is 0.9 in both
figures.

ing that similar vorticity—strain correlations are seen in simula-
tions of steady-state flows. The mechanism for their generation is
apt to be more general than our particular initial conditions, but
we hope that the availability of real space data over a large range
of scales will facilitate the elucidation of these mechanisms.

ACKNOWLEDGMENTS

We gratefully acknowledge the Cornell Supercomputer
Center, the “Service de Physique Theonque” (Saclay), and the
“Centre de Calcul Vectoriel pour la Recherche” (Palaiseau) for
generous grants of computer time.
Financial support was provided by the National Science

A. Pumir and E. Siggia 239

Downloaded 14 Sep 2009 to 128.84.158.108. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



Foundation (NSF) under Grant No. DMR8314625, the U.S.
Department of Energy under Grant No. DEAC0283ER 13044,
and the Guggenheim foundation (E.D.S.).

APPENDIX: NUMERICAL ERRORS

The most suspect step in our algorithm, but also the one that
allowed us to attain such small scales, was the remesh. In addi-
tion, at later times, it was necessary to discard the vorticity left
far behind the singularity which substantially changes integral
properties of the flow but not the growth rate of @,,,, (cf. Sec.
III B). These changes were by far the largest 7= 7.0 when we
applied the cutoff for the first time. This was intentional since it is
easier to recognize an error if it happens all at once rather than
being spread over several remeshes. We therefore dwell on this
time.

The energy, enstrophy, maximum velocity, and circulation
change by factors of 30, 3.8, 1.5, and 2.68, respectively, but the
maximum of @-e- @ changes by only 4.7%. This is partially ac-
counted for by the 0.8% decrease in @,,,,, caused by the smooth-
ing effect of Eq. (8), (which decreases e by a comparable
amount).

In the region around the singularity comparable to Fig.
10(a), we show in Figs. 20(a) and 20(b) J,v, before and after
the remesh. The differences between the vorticity contour plots
are much smaller since Eq. (8) acts as a diffusion, i.e., is local
whereas d,v, is an integral over all the vorticity. Thus Figs.
20(a) and 20(b) represent the change in @-e*w. We believe this
is the most sensitive predictor as to how errors in the initial
conditions affect the subsequent development of the singular
region. At this time, the cutoff had its greatest effect at
y = — . Itis the nature of our algorithm that if the separation
between the sheets is sufficiently small, “infinity” is O(1).

Our final check was simply to remesh the data at 7.0 with-
out a cutoff and evolve it to compare with what was found pre-
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FIG. 21. Contour plot of d,v, at T= 8.3 and z = O before the remesh. It
should be compared with Fig. 12(b), which is after the remesh and is in
identical units.
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FIG. 22. Contour plots of |w| at T= 8.3 and z=0 on the numerical, £,
mesh showing how the vorticity is distributed. The boundaries correspond
to + .

viously at 7.2, at which time a new remesh was necessary to
maintain resolution. The maximum of w-e- was reduced 1.7%
by the cutoff above [hence the remaining 3% change comes
from the smoothing effects of (8) as surmised in the previous
paragraph]. At T = 7.2 the maxima of w and w e were 15.6 vs
15.8 and 237 vs 246. Their values at 7= 7.0 were 12.8 and 140,
respectively. Vorticity contour plots at 7.2 were indistinguish-
able on the scale of Fig. 10(a) from those previously obtained.

A more typical remesh with cutoff (and in this case also a
“smoothing”) is at 7= 8.3 and we show d,v, before in Fig. 21
and after in Fig. 12(b). The correspondence is better than at
T = 7.0 and the energy only decreases by 40%.

The resolution is conveniently assessed by displaying all the
data on the £ mesh in Fig. 22. The resolution is marginal in the
“tongues” that are thrown off the front of the two sheets but this
does not affect the central region where the maximum vorticity
is. A better choice of the £ function mapping in (4) would im-
prove this situation.
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