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Perturbation theory for the d-correlated model of passive scalar advection
near the Batchelor limit
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The third-order correlation function of the scalar field advected by a Gaussian random velocity, with a
spatial scaling exponent 22e, and in the presence of a mean gradient, is calculated perturbatively ine!1. This
expansion corresponds to the regime close to Batchelor’s advection by linear diffeomorphisms. The scaling
exponent is found to be equal to 1 in dimensions 2 and 3, up to corrections smaller thanO~e!, implying an
anomalous scaling of the third-order correlation function and the persistence of small scale anisotropy.
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The investigation of the statistics of the passive sca
field advected by random flow is interesting for the insigh
offers into the origin of intermittency and anomalous scal
of turbulent fluctuations. The problem studied in this pape
stated simply by

] tQ1~vW •¹W !Q5k¹2Q ~1!

with the scalar fieldQ forced by the externally imposed gra
dient g. It is convenient to subtract out the gradient a
study the fluctuating field,u(r )5Q(r )2gr. It turns out that
even a Gaussian random, but scale invariant, velocity fi
results in nontrivial anomalous scaling of the passive sc
structure function,̂@Q(r )2Q(0)#n& for n.2. This has been
suggested by Kraichnan@1#, on the basis of a closur
scheme, for ad-correlated velocity model where

^va~r ,t !vb~r 8,t8!&5d~ t2t8!Cab~r2r 8!, ~2a!

with

Dab~r !5Cab~0!2Cab~r !

5D0S ~d211zv!dab2zv
r ar b

ur u2 D ur uzv ~2b!

~where zv is the scaling exponent andd the space dimen
sion!, which he has introduced some 30 years ago@2#. The
existence of the anomalous scaling has been demonst
explicitly by Gawȩdski and Kupiainen@3#, and Chertkov
et al. @4# for certain limits of thisd-correlated model and by
Shraiman and Siggia@5# for a generalized phenomenologic
model where temporal correlation of the advecting field is
by eddy turnover. These calculations are based on the
called Hopf equations—the stationarity conditions of t
equal-time multipoint correlators. For the white velocity ca
551063-651X/97/55~2!/1263~4!/$10.00
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these can be derived exactly@6–8# extending the original
analysis of the two-point function by Kraichnan@2#. They
have the form

(
iÞ j

N

@Dab~r i2r j !1kdab#] r i
a ] r j

b ^u~r 1!•••u~r N!&

5(
iÞ j

N

gagbCab~r i2r j !^u •••& i j
N22

22(
iÞ j

N

gaDab~r i2r j !] j
b^u •••& i

N21 ~2c!

~with implicit summation over repeating indices!. We restrict
ourselves to the inertial range of scales, wherer is large
enough that the molecular diffusivity can be neglectedr
@h[(k/D0)

1/zv.
The analysis of Ref.@3# is based on the expansion of E

~2! in zv!1 about the diffusion limitzv50, while we con-
sider the complementary limit ofzv522e, e!1. Reality for
the white velocity model,zv54/3, lies in between. The ex
pansion in smalle is more involved than what was require
in Refs. @3,4# for two reasons. There are an infinite numb
of degenerate modes fore50, which are all mixed by the
perturbation, which itself is singular@5,9#. That is, the per-
turbation is formally small because ofe, but in certain re-
stricted regions of configuration space it is the biggest te
in the equation. It must be treated by the method of matc
asymptotic expansions. The exponent we find for the th
order correlator@10,11# l3'1 implies that the anisotropy
introduced by the mean gradient,g on the large scales, de
cays more slowly as one descends in scale than that pred
by Kolmogorov 1941 ~K41! theory @12,13# ~which for
zv522e predicts an exponent 11e!. Since the experimenta
exponent is also approximately one@14#, it will be of interest
to compare also the full coordinate dependence of the th
R1263 © 1997 The American Physical Society
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point correlation function when the latter becomes availa
from experiment or simulations. One way of expressing
results for this correlation function is as an expansion in
degenerate modes of thee50 problem. Our matching deter
mines all the coefficients explicitly.

Determination of the anomalous exponents reduces
finding the zero modes of the linear operator entering
Hopf equation @3–5#, i.e., the left-hand side of Eq.~2!,
which in the present model~and k→0 limit! is the
generalized Richardson diffusion operator:L(d,zv)
[( iÞ j

3 Dab(r i2r j )] r i
a ] r j

b . The zv52 case is the Batchelo

limit @15#, which is constrained by an overall SL~2!3SO~d!
symmetry so that the spectrum ofL0[L(d,2), also referred
to here as the Batchelor-Kraichnan operator, can be c
pletely constructed with the help of Lie algebraic metho
@5,16#. Here it will serve as a starting point for the perturb
tion for zv522e:

L~d,22e!5L0~d!2eL1~d! ~3!

to the leading order ine!1. ~Note that we are ultimately
interested in the physical case ofzv54/3.! The perturbation
expansion aroundzv52 is a singular problem, which, how
ever, can be addressed by the method introduced in Ref.@9#,
as we explain now.

Let us start withL0 . It is convenient to introduce the
variablesrW 15(rW12rW2)/A2 andrW 25(rW11rW222rW3)/A6. ~On
occasion we shall refer toi51,2 index labeling ther vectors
as the ‘‘pseudospace’’ index to distinguish it from th
d-dimensional real space.! Next we ‘‘factorize’’: r i

a

5( i 8Rii 8(x)j i 8h i 8
a , whereR represents pseudospace ro

tions byx, andĥ1,2 are two orthogonal unit vectors spannin
the space ofrW 1,rW 2 . This factorization is just the singula
value decomposition of ther i

a matrix. In d53, we also de-
fine ĥ3[ĥ13ĥ25rW 13rW 2 /urW 13rW 2u each component o
which is invariant under the action of SL~2! @9#. Another
important invariant is the area of therW1 ,rW2 ,rW3 triangle:
z[urW 13rW 2u5j1j2 .

The zero modes ofL0(d) for d52,3 have been con
structed in Refs.@5,9#; e.g., in d53, the complete set o
eigenfunctions has the form

cn,q,l ,m,m8
l

5eiqxzl /2Pn
q,m8~j!Dm,m8

l
~ ĥ !, ~4!

wherej[(j1
21j2

2)/2j1j2 , Dm,m8
l ~ĥ! is the matrix element

of the representation of the SO~3! group@17# of order l , and

Pn
q,m8(j) is the Legendre-Jacobi function@18#. ~Note that

quantum numberm8 corresponds to rotations of theĥ i triad
about ĥ3 in pseudospace.! To ensure analyticity in the
z5urW 13rW 2u→0 limit ~which corresponds to all three poin
of the correlator being on one line!, l/22max~n,2n21!
must be a positive integer. This is because asz→0,
j;z21→`, andPn

q,m(j);jmax~n,2n21!.
The third-order structure function, or the skewness, wh

is the physical object of our interest, has odd spatial pa
and hence is only nonzero in as much as the mean sc
gradientg introduces a particular direction. Hence the r
evant eigenfunctions are thep waves,l51. The zero mode
le
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of L0(d) corresponds to the smallest exponentl is obtained
@5# for l/25n yielding, in thel51 sector,l51 independent
of d.

We shall need the explicit form of theL0 operator:

1

2d
L0c l51

l ~w,x,ĥ !

5]j@~j221!]jc#1
]x
22I 3

222i jI 3]x

4~j221!
c2n~n11!c,

~5!

where n~n11![@(d22)/2d#(l2/2d1l)2@(d11)/2d# l ( l
1d22) andI 3[(1/i )(ĥ1•]

W
h2

2ĥ2•]
W

h1
). In agreement with

Eq. ~5!, the ]x and I 3
2 are diagonalized by exp(iqx) and

ĥ16 i ĥ2 , the latter corresponding to thel51, m8561 sec-
tor. Requiring the left-hand side of Eq.~5! to vanish would
make it into a Legendre equation@18# with n and hencel
entering as an eigenvalue.

Next we define the perturbation operator in Eq.~3!:

L1~d!5L1
d21

2d S l ~ l1d22!1l22dl2
1

d21
L0D ,

~6a!

with

L[(
S3

2 ln~ ur1u!@~d11!r1
2~]1

a]1
a2 1

3 ]2
a]2

a!

22r1
ar1

b~]1
a]1

b2 1
3 ]2

a]2
b!#. ~6b!

In Eq. ~6b!, the summation extends over all the cyclic pe
mutations of (rW1 ,rW2 ,rW3), resulting in the following symmetry
for r: rW 1→2rW 1/26(A3/2)rW 2 and rW 2→7(A3/2)rW 12rW 2/2.
The expansion breaks down for2 lnur1u!e21. Whenj→`,
i.e., when the three pointsrW1 , rW2 , andrW3 are almost aligned,
the operatoreL becomes much larger than the Batchelo
Kraichnan operatorL0 . This can be seen by expanding th
full operator in the limitj→`. Defining for d53 and the
l51 sectorcW l51

l [zl/2wW (j,ĥ,x) ~where vector notation re
flects the triplet nature ofl51 state! one finds

LwW 52 ln@12~12j22!cos~2x!#@j2L2wW 1jL1w1L0wW

1O~1 / j!#1S x→x1
2p

3 D1S x→x2
2p

3 D , ~7a!

The operatorsLi are

L2wW 5 4
3 ~cos2x21!~4 cos2x21!@2~2j]j2l!2

14ĥ1•]
W

h1
#wW w, ~7b!

L1wW 5 32
3 cosx sinx~cos2x21!@~2j]j21!

3~ ĥ2•]
W

h1
2ĥ1•]

W
h2

!22ĥ2•]
W

h1
#wW , ~7c!

and
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L0wW 52 2
3 ~cos2x21!~4 cos2x21!~]x215!wW

1 64
3 sin

3x cosx]xwW 1 4
3 ~114 cos2x

28 cos4x!ĥ1•]
W

h1
wW . ~7d!

In Eq. ~7d!, l has been set equal to 1—its unperturb
value—since the corrections would be higher order ine. The
singular nature of the perturbation follows from the fact th
the L2 term enters the prefactorj2 so that when
j@(1/e)1/2, eL@L0 . This situation calls for the ‘‘boundary
layer’’ type matched asymptotic analysis, which we outli
below.

Let us assumel511ed, define the rescaled ‘‘inner’’ vari-
able z5e1/2j, and introduce the functionwW (z,x,h)
5zl/2@f1(z,x)ĥ11 if2(z,x)ĥ2#. The prefactor is chosen t
offset the scaling factorzl/2 @see Eq.~4!#, which vanishes for
collinear points. Physics requires thatf i is bounded when
z→`. With this change of variable and functions, the pro
lem can be written, providedx*j21, as

@„~z2]z
213z]z!1 4

9z
2U~x!

3@~z]z!
22ĥ1•]

W
h1

#…1e1 /2L̂11eL̂21•••#

3~f1ĥ11 if2ĥ2!50, ~8a!

with

U~x!5$~cos2x21!~4 cos2x21!ln@12cos~2x!#

1~x→x12p /3!1~x→x22p /3!%. ~8b!

The operatorsL̂1 and L̂2 can be deduced from a systema
expansion of the operator in powers ofe starting from Eqs.
~7a!–~7d!.

Physically interesting solutions must be bounded~but
nonzero! in the limit when the points in the correlator ap
proach collinearity, which implies that whenz→`, the solu-
tion is a function ofx only. By direct substitution, one find
thatf150 andf25a(x), wherea~x! is an unknown func-
tion, decomposed for convenience as a Fourier series ix:
a(x)(qâqe

iqx. Whenz→0, the problem reduces to the un
perturbed Batchelor-Kraichnan operator, up to small corr
tions. In the matching region, defined byz→0 but j→`, or
equivalently, 1!j!e21/2, the j dependence of each Fourie
mode inx, q, must match with the asymptotic behavior
the eigenmodes ofL0 @Eqs.~4! and~5!#, which is best found
via their integral representation given in Refs.@5,9,17#. One
finds that the functionsf i ,q must behave asf1,qe

1/2uqu/2z
1e(12q2)/4z21••• and f2,q5(12eq2/8z21•••)sgn(q).
The crossover equation, Eq.~8!, can be solved analytically
to the leading order ine, determining the smallz asymptotics
of f1,2 in terms of the, so far, free functiona~x! controlling
the z→` behavior. The imposition of the matching cond
tions determinesa~x! via an eigenvalue equation ford:

U~x!~]x
211!a~x!16da50. ~9!

The analysis ind52 can be carried out in an identica
way. As in the three-dimensional case, the behavior forj→`
is of the formf5a2d(x)j

l/21O(jl/221), and the function
a2d is determined by a matching condition. Surprisingly, t
t

-

c-

equation determininga2d(x), and the correction to the sca
ing exponentd5~l21!/ e is identical to Eq.~9!.

Before solving Eq.~9!, one needs to determine the appr
priate boundary conditions. Because the three-point corr
tion function must be odd underrW i→2rW i , it is implied that
a~x1p!52a~x!. This, together with the periodicitya~x
12p/3!5a~x!, resulting from the invariance under cycli
permutation ofrW1 , rW2 , and rW3 , implies thata~x1p/3!5
2a~x!. The limit x→0 corresponds to the case whererW1 and
rW2 come close together:urW22rW1u!urW32rW1u,urW22rW1u. In this
limit, the correlation function must be invariant whenrW1 and
rW2 are permuted, implying thata~x! must be even. Sincea is
even nearx50 anda is antiperiodic with periodp/3, a~p/
6!50.

At small, but finitee, Eq. ~9! reduces forx→0, to

2x2ln~x!a9~x!1da~x!50. ~10a!

Introducing the change of variablesy[2ln~x! and
f (y)[a(x), Eq. ~10a! reduces to the following~Kummer!
equation:

y~ f 91 f 8!1d f50. ~10b!

The behavior of the solution whenx→0 is

f ~y!;y2d when y→`. ~10c!

This function diverges~goes to zero! whend,0 ~d.0!.
Sincex→0 ~for j2150! corresponds tor1→0, the per-

turbation expansion leading to Eq.~9! is valid only for y
52lnx!1/e. Hence, to determine the correct boundary co
dition asy→` the solution of Eq.~9! must be matched with
the ‘‘inner’’ solution describing the correlator with two
points near coincidence. The latter is governed by the eq
tion derived directly from Eq. ~3! by expanding in
r1 /r2!1 instead ofe and is written conveniently in the pola
coordinatesur1 /r2u25j22x2/4 andu5arctan~2/jx! ~restrict-
ing here tod52 for simplicity!. The natural radial variable in
this ‘‘inner’’ equation turns out to beY5ur1ue. The region of
matching with Eq.~10a! corresponds to 12Y!1 andu50.
Quite generally the solution nearY51 behaves as
A1B(12Y)a with a.0 required to keep the solution from
diverging. In the matching regionY'11e ln~x/2! so that
only the constant termA must be kept when computing t
the leading order ine. Comparing with Eq.~10c! one con-
cludes that matching the ‘‘inner’’ solution is only possib
for d50.

For d50 the solution of Eq.~9! is a~x!5sin~p/62x!/
sin~p/6! for 0,x,p/3, which is continued over the ful
range ofx using reflection symmetry and periodicity define
above. One observes thata~x! has an apparentuxu singularity
nearx50 ~and other points related by symmetry! which is
regularized only forx,e21/e via the crossover to the ‘‘in-
ner’’ solution for nearly coincident pointsr1 /r2,e21/e as
discussed above. Note that although toO~e! there is no cor-
rection to thel51 eigenvalue, the computed eigenfunction
nontrivial: it is a superposition of manyc1,q modes since
aq;1/q for largeq. Also note that the calculations in tw
and three dimensions are identical and give the same re
d50. Of course one does not expectd50 to persist beyond
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the leading order considered here. The next order correc
according to Eq.~7!, is expected to maked;O(e1/2).

Thus, the main result of this paper is as follows: the sc
ing exponent of then53 structure function behaves asl51,
up to corrections of ordere3/2. The exponent of the three
point correlation function is therefore smaller than the ‘‘n
ive’’ scaling exponent, equal to 11e, therefore demonstrat
ing that the behavior of the skewness near the Batchelor l
of the Kraichnan’sd-correlated model is anomalous. Dispe
sion in the presence of a mean gradient has been sh
experimentally@19,20# and numerically@21,22# to give rise
to strong intermittency effects, resulting in a skewness t
remains of order 1, independent of the Reynolds number
is the case in real flows, it is interesting to notice that ev
n,

l-

-

it

wn

at
s
n

for a white noise velocity field, the anisotropy induced
large scales decays more slowly than predicted by stan
phenomenological arguments@12,13,23#. We conclude by
mentioning numerical results demonstrating that a large s
anisotropy, such as a large scale shear, imposed on a tu
lent velocity field, may also result in a large anisotropy
small scale@24#, suggesting also the existence of an anom
lous exponent for then53 structure function of the velocity
field.
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