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A variety of initially smooth axisymmetric flows with swirl are simulated with a variable 
mesh, &rite-difference code with particular attention paid to the production of large 
(divergent) vorticity. Away from the symmetry axis, the evolution is entirely consistent with 
expectations based on the isomorphism with two-dimensional convection. Vortex sheets 
form on the leading face of “plumes” and their trailing edges roll up. When a “plume” begins 
to fission, a cusp develops at the cleavage point via a Rayleigh-Taylor-like instability 
and the maximum (three-dimensional) vorticity diverges, approximately, as inverse time 
squared. For technical reasons, the .Boussinesq approximation was employed for this 
part of the simulation which observed, overall, a lo6 increase in vorticity. The diverging strain 
was generated progressively more locally, justifying the approximation. Analytic 
estimates are provided which significantly constrain the singular solutions. 

I. lNTRODUCTlON in vorticity which is naturally fit by a finite time power law 
divergence. 

Axisymmetric flows with swirl are one of the simplest Of more interest than the yes or no answer of whether 
physically realizable configurations, where genuine and po- a singularity exists is the mechanism for its formation. 
tentially divergent vortex stretching can occur even though One’s intuition for axisymmetric vortex dynamics is 
the velocity field is independent of (p in the cylindrical greatly enhanced by the analogy that exists with two- 
coordinate system (Y&Z). This reduction in the effective dimensional Boussinesq convection. Indeed, our candidate 
dimension of the space renders more tractable the investi- singularity occurs on or near the symmetry axis when the 
gation of numerical problems requiring high resolution, in cap of a rising plume becomes unstable and begins to 
particular, as suggested by Grauer and Sideris,’ the ques- cleave in two. The convection analogy improves as the 
tion of whether infinite vorticity can be created in a finite singularity grows, since the dynamics becomes more local- 
time when the viscosity is zero. ized. 

Our motivation for studying the initial value problem 
for the Euler equations is to learn how vorticity and strain 
couple to produce energy transfer to small scales.’ One 
may also gain some insight into the underlying causes of 
the intermittency seen in three-dimensional turbulent shear 
flow~.~ Finite time blowup rather than exponential growth 
is merely a way of demanding that the stretching process 
be truly nonlinear. The imposition of axisymmetry replaces 
certain spatial gradients by l/r (see below), and so renders 
the equations less singular when r>ra > 0. Since the full 
Euler equations have not yielded an acceptable singularity, 
and not for lack of resolution,27” why investigate this spe- 
cial case? 

The following two sections (Sets. II and III) detail the 
equations, including their relation to Boussinesq convec- 
tion, and the numerical methods used to solve them. They 
are somewhat involved since this problem cannot be 
touched without adaptive mesh techniques. 

There is the real possibility that singular solutions exist 
but are unstable, so that to observe them would require 
tuning the initial conditions. Axisymmetry is one form of 
tuning. It is enough of a simplification that one can derive 
stringent bounds which exclude certain processes, such as 
roll-up, as likely precursors to a finite time singularity. The 
opportunity to compute in two dimensions is also essential 
since to reach the asymptotic regime requires passing 
through a %ansient” during which the vorticity grew by a 
factor of 100 but only exponentially. We were able, how- 
ever, to go further and observe an additional - lo4 growth 
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The numerical results in Sec. IV begin with simula- 
tions of the true axisymmetric equations pursued to mod- 
erate resolution for initial conditions whose extent in r is 
comparable to their distance from the symmetry axis. The 
analogy with convection is then of only qualitative rele- 
vance, but nevertheless, empirically furnishes a reliable 
guide to what happens. Nothing very novel occurs, but we 
show the data because we are unaware of any comparable 
work. The relevance here is to support our contention that 
general initial conditions evolve toward a regime where the 
Boussinesq equations apply quantitatively. The bulk of this 
section (Sec. IV C) details the Boussinesq results. The 
graphical output we present begins where the axisymmetric 
runs ended, namely with a well-developed (i.e., maximum 
temperature gradient scurvature of cap) thermal plume. 
Since we run over such a large range of scales, - lo6 , and 
the singularity is approached so rapidly [length 
5 (t* -t)2], the outer scales are effectively frozen as the 
innermost collapse. But the collapse is never steady (shape 
invariant), so it leaves behind an elaborate chain of partial 
roll-ups and incipient Rayleigh-Taylor “fingers” that our 
graphics record. 

Section V contains a number of analytic bounds that 
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corroborate and enhance the plausibility of our numerical 
findings. We show that the curvature of the cap must di- 
verge if there is to be a finite time singularity, and that 
roll-up is not dangerous in this regard contrary to the re- 
sults for a vortex sheet. We also include a stability calcu- 
lation which shows that the bubble cap first becomes un- 
stable where expected. 

Section VI concludes by recapitulating our methodol- 
ogy, the evidence in favor of a finite time singularity, and 
its properties. Comparison is made with several other 
blowup problems. The Appendix demonstrates the conver- 
gence of our algorithms with mesh refinement. 

II. GOVERNING EQUATION 

For a #-independent velocity, the Euler equations read 

4bJg) +q*V(rq) =Q (la) 

a;vl,+u,l’Vvl,=(l/rJ)(rum)~~-Vp, (lb) 

(w9~,c~,) +4?z=o, (lc) 

where 

vp=(wzA V=(&,&), 

and pr points radially outward in a right-handed coordinate 
system (r&z). Equation ( lb) can be rewritten in terms of 
ti+=a~~,-+~, as 

d,(qh-) +q’V(w$h) = - ( l/r4)a,(ru,)2, (2) 

and in analogy with two dimensions, UII is calculated from 
w$ via a streamfunction 

vr= - ( l/r)&& v,== (l/r)i@, (3) 

and a Poisson equation, 

rd,[ (l/r)&$] t-L&= -rw+. (4) 

The other components of vorticity are i~t== ( l/r)a,(ru$) 
and wr= --ap+. The advection may be replaced every- 
where by a Jacobian 

1 awe) 
q*ve-tI; a(r,j-2 , (5) 

which makes the invariance of the integral, .%r dr dz man- 
ifest . 

The conservation of circulation, computed for loops 
defined by +(0,27r) at fixed (r,z), is expressed by (la). 
When ug=O, the vortex lines are closed and labeled by Ok, 
so their material transport by the flow is expressed by the 
conservation of m+/r in (2). The regularity of w+ then 
follows nearly as in two dimensions. Note by analyticity 
vd-r, and ~~-3 as r-0. The source term for wdr in (2) 
may be understood by imagining initial conditions with 
u+=O and ug(r)#O, i.e., a bundle of vortex lines in (7,~). 
The differential rotation implied by vg(r) leads to the gen- 
eration of w+: 

In the absence of symmetry, the production of vorticity 
is expressed as vorticity times strain and so possesses one 
more derivative than the right-hand side of (2). The pro- 

duction of the r and z components of vorticity from ( la) is, 
at least at the level of counting gradients, unchanged. 

There is a very informative analogy between the axi- 
symmetric flow equations (la)-( lc) and two-dimensional 
Boussinesq convection with the centripetal force replacing 
buoyancy and “gravity” radially outward. The correspon- 
dence is exact when the axisymmetric flow is confined to 
narrow annulus; rl<r<r,,(r2-rl)/rI(l. To make this ap- 
parent we rewrite (la) and (2) as 

(6a) 

1 awm 
&Cl+----=- 

r d(r,z) f w+, (6b) 

where V=rv+, fI=o+ ,., 
f 

and 4 is still obtained from (4). 
NOW set f?-+ f o-y, z-+x/r,,, t-t/ro, Ir2-+0, and 

CR-+ --or). Equations (4), (6a), and (6b) become 

a(&@ =. V+------ 
a&Y) ’ 

%fj,@> 1 
ap+~=(&2y)zaxe. (7) 

Clearly for 1 y [ &$ we obtain Boussinesq convection, and 
in addition this limit is not singular: 2y/d is always com- 
pared with one. (The effective gravitational acceleration is 
g-rg4.) As solutions collapse, the relevant range of (x,y) 
decreases so the approximation improves. Even when there 
is no collapse we expect to see ( rus)’ organize into plumes 
and mushrooms. (The possibility of solutions centered on 
r=O merits attention, but is not considered here.) 

III. NUMERICAL METHODS 

We have implemented an adaptive mesh, finite- 
difference code, to treat axisymmetric flow which follows 
in many respects our simulations in three dimensions2 The 
mesh is separable and defined by analytic functions that 
map the intervals O<ro<r < CO,-- CO <z < + CO onto the 
unit interval O<x,y<l. In practice it was convenient to use 

r=rofc,{cot(c2)--cot[7rx+c2(1-xj]}, (84 

z= [++c4 cos(fly) +cs cos(237-y) Icot( (8b) 

where the ci are adjusted to put the maximum resolution 
where desired. Extending the outer boundaries to infinity 
makes the boundary conditions trivial and can be done at 
minimal cost with the mappings (8a) and (8b). We typi- 
cally used a 2562 grid. 

The equations were time stepped as in (6a) and (6b) 
since the conservation laws are explicit. Centered differ- 
ences were employed throughout on a uniform mesh in 
(x,y) until sharp interfaces formed. Thereafter the TVD 
(total variation decreasing) scheme of Osher and Chakra- 
varty was used in r and z separately for the advective terms 
to eliminate spurious oscillations.5*6 Although these algo- 
rithms were designed for shock problems, we document 
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below (Fig. 10) that they perform equally well for our 
incompressible tlow and eliminate the oscillatory instability 
of centered differences when used for a steplike profile. The 
Poisson equation (4)) with $=O on all boundaries, was 
inverted with the cyclic reduction method of 
Swartzrauber.7 Time stepping was done with a Runge- 
Kutta-Fehlberg code that automatically adjusted step size. 

At ‘=‘a one-sided differences are used and the term 
involving &,U~Z is omitted from the Jacobian in order to 
ensure that r=ro acts as a streamline, i.e., we assume a 
free-slip boundary. When r. = 0, we sidestep any complica- 
tions involved at the origin by imposing initially 
w,(r=O) =n(r=O) =O. At infinity all quantities vanish. 

With centered differences, it is possible to write the 
Jacobian in (6a) and (6b) so that the volume integral 
(defined by a trapezoid formula), of both the field and its 
square are conserved. Only the first power of the field 
could be conserved within the TVD scheme. Neither en- 
ergy nor helicity (which reduces to 2s Var dr dz) is explic- 
itly conserved by our finite-difference schemes, so their ao 
tual errors are a useful measure of the adequacy of the 
mesh. 

It is well known that centered difference algorithms 
decouple the odd and even sublattices and are therefore 
susceptible to a slow buildup in grid scale oscillations; 
(N.B. the Osher-Chakravarty algorithm reduces to cen- 
tered differences except where the gradient is large). This 
noise is confined to regions remote from the singularity, 
but to prevent it from growing, we have filtered Vand fI on 
the mesh separately in (x,y) according to the formula 
u(i) -+0.%(i) +0.25[u(i+ 1) +u(i- l)]. This filtering has 
minimal effect on derivatives which we quantitatively doc- 
ument when discussing our data. This smoothing has the 
additional benefit of providing an explicit measure of the 
adequacy of our resolution. Clearly with an arbitrary fine 
mesh, nothing would change if we averaged every point 
with its neighbors. 

The smoothing was applied, with one exception, only 
when it became necessary to adjust coordinates which we 
did by cubic splines. There was always more than adequate 
resolution in the large gradient regions to prevent any os- 
cillations in the spline interpolations. 

In order to maintain the region of interest where the 
mesh is optimal, we occasionally added a “wind” from 
infinity defined by the streamfunction 

1cI”=(12-~)(u~/2--v,mz/ro). (9) 

The velocity field defined by $” is irrotational, but does 
produce a constant stretching when v,“#O because of the 
cylindrical geometry. 

(w,wpo,w,)ct- (axe1/2,m,aye1/2), (11) 

where r. is some mean radius. The Boussinesq approxima- 
tion allows us to add an arbitrary constant to 8 to keep it 
positive. Physically the variation of 0 [or V* in (7b)] 
should be lumped with g to nondimensionalize the equa- 
tions. 

The Boussinesq equations for - CO <xy < CO and grav- 
itational acceleration/temperature = - 2Y were discretized 

An impression as to the capabilities of our scheme for 
(6a) and (6b) is conveyed by Figs. 1 (a) and 1 (b) which 

and time stepped by the algorithms just described. The compare the evolution of a vortex ring under our two dif- 
“wind” from infinity that we added to maintain the center ferencing schemes. The initial ratio of radius to core size 
fixed simplifies because of the translational symmetry and was sufficiently large so that locally the equations approx- 
does not add any stretching. A second more significant imate 2-D Euler and the strain acting on the core is min- 
technical simplification in the Boussinesq limit is the ease imized so as to not generate any obvious instabilities. Nev- 
of making a uniform dilation of coordinates. ertheless, the core shape does evolve since solutions 

Denote the unscaled vorticity, streamfunction, and 
temperature by w, r+!~, and 8, respectively, and their scaled 
versions by capitals. Then a 

ck(x/a,T) =co(x,t)/b, 

Y(x/a,T) =$(x,t)/(ba2), 

@(X/&T) =e(x,t), ( 1W 

where T is a resealed time to be defined, and a --* 0,6 + UJ as 
a function of time as a singularity is approached. To keep 
the gravitational acceleration constant we set ab2= 1. The 
equations then read 

1 avm -= a~n+aX*V~~~+~an+,(~,,, a+, (lob) 

with the definitions 

V$Y=a, o= -drlna, dTt=C2. (1Oc) 

The one free parameter in ( lOa)-( 10~) is a(T) > 0 which 
was piecewise constant and adjusted by hand to maintain 
the resolution of the coordinate mesh around the singular- 
ity fixed as the solution in unscaled variables collapsed. 
The length scale a and real time tare integrated along with 
(lob) and then used to recover the physical fields w and 0 
via (10a). For example, if 

lim + 
s 

T 
a=ii>O 

T-0 0 

exists and @,a remain smooth order one functions of X 
and T, then 1 V,e 1 blows up in a finite time t* as (t* - t) -*. 
Similar methodology was used in Ref. 8. [Actually (lOa)- 
( 10~) is not the most general resealing possible, but was 
the one we implemented, see Sec. VI.] 

For future reference, we note how to recover from a 
Boussinesq simulation [i.e., (7) or (lo)], the vorticity 
(o,.,u~,w,), in the axisymmetric problem when (T,z) in the 
latter can reasonably be approximated by rectangular co- 
ordinates (y,x), respectively. From the correspondence 
used to obtain (7) we have an effective g=rc4 and 
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(b) 

FIG. 1. Comparison of a vortex ring run with finite differences (a) and 
the TVD scheme of Ref. 6 (b). The mesh is shown by tics, and there is a 
negative velocity in z [cf. Eq. (9)] which maintains the ring approxi- 
mately stationary in the vertical. The time of evolution times the ring 
velocity is approximately 3.5 core diameters. The energy, JTfin,n= 1,2,3 
and max q are (1.1313, 1.508, 0.754, 0.503, 3.012) initially and (1.1324, 
1.510, 0.747, 0.495, 3.090) in (a) and (1.1315, 1.510, 0.724,0.487, 2.995) 
in (b). In (a), the change in the first two moments of fl is entirely due to 
remeshing the coordinates twice prior to the time shown. 

stationary up to a translation are not easy to guess. The 
performance of the resealing procedure is discussed in Sec. 
IV c. 

We conclude this section with a remark on methodol- 
ogy. To achieve a lo6 amplification in gradient required 
many remeshes. These tended to be quite minor when we 
used the continuous resealing (lob) and ( 10~) but at the 
very least we had to verify graphically that the resolution 
remained adequate and adjust the exponent a. It is difficult 
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to completely automate this procedure since the singular 
solution was by no means self-similar. An incidental benefit 
of this intervention was that it was easy to run with the old 
mesh past the remesh time. The two meshes were then 
compared, giving us confidence in our accuracy. Another 
mesh comparison is left for the Appendix. 

IV. NUMERICAL RESULTS 

This section has a twofold purpose. First, subsections 
A and B illustrate, for a variety of initial conditions, that 
axisymmetric flows evolve toward certain characteristic 
patterns: vortex sheets that roll up, or sharp fronts sepa- 
rating regions of different V2. Both structures could have 
been anticipated from the Boussinesq analogy. The 
“fronts” are the central cap of a thermal plume or bubble 
on the edges of which vortex sheets form by virtue of the 
shear. Since our analytic estimates imply singularities are 
unlikely for roll-up, in the balance of this section (subsec- 
tion C) we examine in detail the tip of a plume within the 
Boussinesq approximation and find a singularity. 

A. Initial evolution and roll-up 

We have restricted our attention to flows that can sen- 
sibly be delined for r. > 0 and in that class, the vortex ring 
is trivial because Vr 0. Although we have run a whole 
spectrum of initial conditions with increasing V, the essen- 
tial mechanism for the generation of n is most clearly 
understood by starting with an “axisymmetric jet,” a=O, 
and Va Gaussian centered at a nonzero radius. 

Shortly after t=O in Figs. 2(a) and 2(b), we see the 
formation of the characteristic dipole pattern in fl driven 
by aZV2 that clearly is antisymmetric around z=O. This 
vortex dipole translates radially outward. The signs appear 
reversed since the proper right-handed coordinate system 
is defined by (r&z) not (r,z,4). At later times, the region 
of maximum V pushes forward (Fig. 3) as one expects 
from the Boussinesq analogy, and a shell or cap is formed 
[Figs. 4(a) and 4(b)]. In Fig. 4(b), the loci of a=0 for 
z > 0 closely follows the curve of a,V, fi itself is predomi- 
nately negative but can evidently reverse sign. The same 
advection which concentrates Vinto a sheet acts on Sz and 
Fig. 4(b) shows the roll-up of that sheet together with 
overall rotation in the patch of negative vorticity formed 
earlier. 

The maximum total vorticity, which includes the Y and 
z derivatives of V, is located along z=O. In the present run 
we have deliberately kept the resolution in r uniform over 
the region displayed to better treat the roll-up and sacri- 
ficed resolution in the cap that we will reexamine below. At 
its maximum along z= 0, w is along 3 and the largest com- 
ponent of the rate of strain tensor is in (r,d) since it in- 
volves the r derivative of V which is becoming discontinu- 
ous. By symmetry for z=O, the directions of maximum 
stretching and compression are perpendicular to z^ while 
the relative stretching along z^or w tends to zero. We there- 
fore find precisely the same tendency toward two- 
dimensionality as was seen in our 3-D Euler simulations2 
and elsewhere. 
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FIG. 2. Contour plots of V (a) and 0 (b) for the axisymmetric jet at f=4 
that began as a Gaussian in V centered at r= 1.2 and z=O with a lowest 
contour level of radius=0.53, and a=0 [cf. Eqs. (6a) and (6b) for the 
definition of V. a]. The contour interval is 0.1 in (a) and (b). Strictly 
positive values are solid, and the solid horizontal contour in (b) is zero. 

To minimize the roll-up that developed for the “de- 
tached” bubble in Figs. 2-4 we initialized with Rayleigh- 
Taylor-like initial conditions consisting of a slowly taper- 
ing cylinder of V> 0 which begins at the inner radius 
ra=lO and extends out to r- 12.5 where it decreases 
smoothly to zero. A slight bulge around z=O replaces the 
step in Fig. 5(a) to encourage the formation of a circular 
cap. The initial evolution is shown in Figs. 7(a) and 7(b). 

When Cl is nonzero initially, the same phenomena are To control gradients that developed near r. we moved 
seen: formation of a bubble and roll-up of its edges with r. outward when we remeshed the coordinates. To verify 
some superimposed net rotation and translation. We there- that the growth of d,V is minimally affected, we show in 
fore idealized our initial conditions somewhat further to Figs. 8(a) and 8 (b) the most sensitive component of the 
focus either on the cap of a bubble or the roll-up and strain before and after the first remesh where the errors are 
suppose that any 0 added initially is not essential to the largest. The remeshing errors in !J and the derivatives of V 
formation of a singularity which has to involve large gra- are conveniently controlled by monitoring I o I and appear 
dients in small regions. in Fig. 9 as small steps. 

To produce roll-up without creating a bubble, we took 
T/constant from the inner boundary r=ro out to some F+ 
for za 0 and Fe for z 50 with F.+ > F- and then de- 
creased V to zero smoothly in the r and z directions and in 

The presence of an inner wall, removal of some circu- 
lation near r. with the coordinates changes, and the re4 
factor multiplying the buoyancy term in (6b) all contrib- 
ute to making the velocity of the tip approximately con- 

r 

FIG. 3. Continuation of Fig. 2(a) at f=6. Only O<z needs to be shown 
by symmetry. The spatial differencing is done by the TVD scheme of Ref. 
6. 

particular along the step z=O, To=a&+. For 1 ZJ + CO, 
both F+ --+r, and V-O so as to satisfy the boundary con- 
ditions. The initial vorticity was zero. Figures 5(a) and 
5(b) show that the step generates vorticity which acts to 
accentuate the overhang. At later times [Figs. 6(a) and 
6(b)], we see the roll-up develop without there yet being 
substantial enough regions of d,V ~0 to make a ~0 any- 
where. Not much vortex amplification has occurred, 1 o ) (t 
=24)/]w](t=O)=6,anditismostlyduetooZorw,since 
lw$] (t=24)/]ol (t=24)=0.28. We have not followed 
this roll-up any further since the analytic arguments in Sec. 
V A convince us that no singularity is to be found. 

B. Evolution of the bubble cap 
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KG. 4. Continuation of Fig. 3 showing contour plots of V(a) and a (b) 
at f= 10.5. The maximum of 1 w+I is 5.6 vs 0 at f=O. 

stant at long times in contrast to the constant acceleration 
observed for Rayleigh-Taylor between two semi-intinite 
spaces. We nevertheless believe the thickness and stability 
of the tip are correctly simulated because we have con- 
trolled the strain. The conservation properties of our nu- 
merical scheme are important here since both the advec- 
tion and production of Q are explicitly in conservative 
form so no spurious circulation can be produced even 
where the CI responsible for the strain is far away and 
poorly resolved. Finally, just the cylindrical geometry will 
asymptotically make the tip velocity constant since the ef- 
fective gravitational acceleration for Cl in (6b) is -r-’ 
and I (F+ vt) -’ dt converges. 

Figures 10(a) and 10(b) show the profile of Vfor the 
bubble at the time when exponential growth takes over 

12.0 
(a) 

r 15.0 

1.5 
m 
Z/’ 

3 

12.0 r 
15.0 

(b) 

FIG. 5. Early evolution of step in Vdesigned to stimulate a roll-up for V 
(a) and 61 (b) at f=lO. The maxima of ([w+~,~o~) are (0,1.5) at r=O 
and (0.84,2.3) here. 

(Fig. 9). As the interface between V=cst and V=O thins, 
a TVD scheme is essential to avoid oscillations as shown in 
Fig. 10. The surprising feature of Figs. 1 I (a) and 11 (b) is 
the complete lack of any instability near the tip that could 
decrease the radius of curvature. If the curvature remained 
uniformly bounded in time, a finite time singularity is im- 
plausible, because as we show in the next subsection, the 
strain acting on the tip is bounded, implying exponential 
growth. 

Nevertheless, a flat interface is Rayleigh-Taylor unsta- 
ble as already remarked, and the relevant measure of “flat- 
ness” is interface thickness times curvature which is evi- 
dently quite small in Fig. 11 (a). The instability calculation 
pertinent here is not completely trivial even for a flat in- 
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FIG. 6. Continuation of the data shown in Fig. 5 to t=24 showing V (a) 
and 0 (b). At this time, maxlwbj =3 and maxlwl=9.9. A contour plot 
of 101 would look more rolled up than (b) in the center. 

terface because there is a superimposed strain which has a 
stabilizing tendency (cf. Sec. V B) . In an effort to provoke 
an instability, we restarted the code at t= 17.0 and zeroed 
the accumulated C& thereby leaving Vsimilar to Fig. 11 (a) 
but with no initial strain. Still, no instability was found out 
to t=30.0, where the effective Rayleigh-Taylor growth 
rate ( @8, where S is the interface thickness and g the 
gravitational acceleration), is 2 1. 

C. Singular solutions for 2-D Boussinesq 

To push the simulation of the bubble cap significantly 
further, we rewrote our axisymmetric code to handle the 
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r 14.2 

FIG. 7. Contour plots of V (a) and Q (b) for t=lO and initial data 
chosen to favor a bubble (cf. Sec. IV B). The spacing between two con- 
tour lines is 1.0 (a) and 0.009 (b). A slight asymmetry between &z was 
introduced to encourage any nonsymmetric instabilities. 

Boussinesq equations on the plane. This eliminates all 
boundaries, allows us to introduce a “wind” from infinity 
to center the solution without adding strain, and simplifies 
the task of continuously stretching coordinates. While a 
more flexible axisymmetric code could have been written, 
there was no assurance that interesting physics would 
emerge so we adopted the expedient of working in the 
Boussinesq limit. Since we will document that the dynam- 
ics of the collapse is local and robust we do not regard this 
as a significant approximation. More to the point, in Sec. 
V B we do the stability calculation semiquantitatively and 
show for our values that instability is not expected for the 
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(b) 

FIG. 8. Contour plots of L’JI= before (a) and after (b) the remesh for the 
same data as in Fig. 7. The contour interval is 0.02, and C?,ZJ, varies from 
-0.1 to 0.22 in (a). The innermost contour near the tip has been lost 
after the remesh. The comparison of ap, is very similar. 

times shown in Fig. 9, while it appears where expected in 
the Boussinesq simulations. 

i 
I 

Our initial data was an isolated “hot” bubble with tem- 
perature distribution 

\ 

1 

e= ( 1+0.2y)/( 1 +x2+y2)2. (12) 

The gravitational acceleration, g= 1 [cf. Eq. (lob)] sets the 
time scale. The coordinates were adjusted by hand for the 
earlier runs since the solution was not self-similar enough 
to allow a uniform dilation. In the subsequent figures, 
OSII, (Boussinesq) should be compared with tie or Cl. 
The other vorticity components in the axisymmetric geom- 

FIG. 10. Profile of V near the bubble tip [cf. Fig. 11 (a)] for the data in 
Fig. 9 comparing centered differences (dashed line j and the TVD scheme 
(solid line). The data in the left panel at t- 15, the last time for which 
centered differences were used, was restarted to give at t=16 the right 
panel. The two curves at the later time were offset for clarity. 
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time 

FIG. 9. Evolution of the maximum of the total three-dimensional vortic- 
ity for the bubble shown in Figs. 7 (a) and 11 (a). The small steps indicate 
the errors caused by the remeshing. The dotted line shows data obtained 
with an inward wind from Y= $ w [cf. Eq. (S)] added to maintain the 
bubble stationary. Because of the cylindrical symmetry this produces a 
fixed strain which adds a constant to the slope. 

etry, which in fact will diverge approximately as c.?, are 
calculated from the gradients of 8 via Eq. ( 11) . 

The development of the singularity is most readily 
monitored by the maximum of lVf3l (Fig. 12), whose lo- 
cation defines the center of collapse. It is generally located 
on the symmetry line x=0 [except for 7.9 5 tS9.3 and 
t 2 10.06), where the resolution is highest and where 
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FIG. Il. Contour plot of V (a) and n (b) at t= 19 for the run in Fig. 7. 
The symmetry line near the tip has drifted upward to z=O.l. The sepa- 
ration between contour levels is 1.0 (a) and 0.01 (b). 

1 VB 1 = -a,& The maximum of w, as will be apparent in 
the following figures, occurs well away from x=0 for 
t 5 9.5 in a region that is less well resolved and affected by 
the large-scale cutoff (see below) and mesh changes. If the 
maximum vorticity near x=0 were plotted backward from 
t- 10, it would fall on a smooth curve below the one 
shown. Figure 12 is a convenient overview of what follows. 

1000 
I----- ’ ’ ’ ’ ’ ’ 

, -IO” 
‘II 

0 5 
time 

IO 

FIG. 12. The max,,(o), left scale; and max IV@], max,,a,,B (x=0), 
right scale as a functron of time. The discontinuities in the curves indicate 
coordinate changes as in Fig. 9. The max [VBl is shown as dotted and 
only deviates significantly from max $19 along x=0 around tS 9.4 where 
it drifts into a poorly resolved region and then jumps back. The ragged 
appearance of max o for early times has a similar explanation (see the 
text). 

(a) 
-0.4 -0.2 

time-10 

0.0 ’ ’ ’ ’ ’ ’ ’ ~1--L-,~I t I I II 

(b) 
-0.4 -0.2 0.0 

time-10 

FIG. 13. Replot of the most singular portion of Fig. 12 (w is solid, 
max 1 Vel dotted) (a); and the inverse of the rate of strain along V0 at 
the point where max I VB 1 is maximum, 1 VB I ‘/Z,(&9 a,vj a,0) (b) . The 
time is shifted by 10 for clarity. The “glitch” at t-O.04 in (b) is real and 
associated with a jump in the location of the maximum. 

For 0 < t 5 8 a shell forms as in Fig. 11 (a) with curva- 
ture - 1, set by the initial conditions, across which 8 jumps 
from nearly its maximum to 0. This follows closely what 
we saw previously and the growth in 1 V0 1 is exponential 
(compare Fig. 9). 

An instability of the shell is just discernible around 
t-7.8 and is associated with the rapid increase in 1 Vol. 
Figure 13 shows that the growth plausibly terminates in a 
finite time singularity with crudely I Vf3 I - l/( t* - t)’ and 
the strain along V8 evaluated where 1 VB I is maximum; 

~3~0 a,Uja,8 1 

5 WI2 
N- (f”-t)’ 
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The coordinate dilation algorithm [Eqs. (lOa) and (lob)] 
was applied for t 2 9.947 by which time a well-defined ap- 
proximately self-similar solution appeared around x = 0. 

The small jumps in the 1 V8 1 data show where the run 
was restarted, the coordinates adjusted, and some smooth- 
ing was done [cf. above Eq. (9)], to mix the odd-even 
sublattices. The smoothing was somewhat superfluous with 
the TVD algorithm that was used throughout but the de- 
crease in max 1 V8 I it causes, 5 5%, is an immediate check 
on the spatial resolution. The jumps in maxXg (w ) are typ- 
ically smaller provided it falls in a well-resolved region. 

The discontinuities in the maximum strain [Fig. 13 (b)] 
are more pronounced and have a different origin. To ac- 
commodate the - 10” change in scale size we observe ne- 
cessitates vastly expanding the mesh near the origin and 
pushing most of the temperature and circulation out to- 
ward infinity. For technical reasons we have to truncate 
the solution on the outer - 5% of the lattice points so that 
it tapers smoothly down to zero at infinity. This is done 
each remesh with the result that SO decreases from - 1 at 
t=o to - lo-’ at the end. Of more concern is the loss of 
vorticity and hence strain, which as we have defined it is 
just d,ln (max pel). 

Because the singularity is reached in a finite time, the 
vorticity produced at earlier times on the larger scales is 
effectively frozen with respect to the inner scales and has 
dipolar symmetry around x=0. Since the ratio of the in- 
nermost scale touched by the cutoff to l/max( I VB 1) was 
2 10’ when significant strain was lost, it is very reasonable 
to replace the truncated modes by a constant strain. We 
have confirmed this analysis by comparing contour plots of 
the strain, before and after applying the cutoff, which are 
identical up to an additive constant. Note that the loss of 
strain with cutoff is a quantitative measure of the locality 
of the dynamics. Near the final time, the cutoff hits modes 
with ]xl,]y] 22~10~~ in the units of Eq. (12); so, the 
Boussinesq approximation is indeed reasonable. 

We chose not to compensate for the truncated vorticity 
so as to err toward damping the singularity. The complex- 
ity of the figures that follow make it evident that a simple 
straight line is not to be expected in Figs. 13 (a) and 13 (b) . 
In particular the cusp around t- 10.04 is real. Neverthe- 
less, Fig. 13(a) is persuasive evidence that the growth in 
I V6 I is faster than exponential and most likely power law. 
It is instructive to compare the scale ranges in Figs. 12 and 
13 with Figs. 5 and 6 of Ref. 2 which represent the most 
extensive data available in an unrestricted three- 
dimensional simulation. 

The ostensible simplicity of Fig. 13 conceals an elabo- 
rate series of roll-ups that originate with the first instability 
of the shell (Fig. 14). On the largest scale, Fig. 14(a), the 
right half of the entire plume is shown. The differences 
with Fig. 11 (a) are due to the initial conditions and axi- 
symmetry; the plume in the earlier figure is attached to the 
inner radius of the computational domain. Also, the TVD 
algorithm is very diffusive where the resolution is poor, as 
in the outer regions of Fig. 14(a) (cf. the Appendix). On 
a finer scale in Figs. 14(b) and 14(c), the physics causing 
the instabilities becomes clear. The negative vortex concen- 

trations around x=0.25,0.45, and a third near x=0.7 (not 
shown), are indicative of a Kelvin-Helmholtz roll-up. The 
remaining vortex concentration around x-O.1 has some 
dipole component suggestive of Rayleigh-Taylor physics; 
but, in reality, all instabilities when developed have a 
mixed character, there being both a vortex layer and heavy 
fluid over light. On physical grounds we believe the first 
instability is near x=0 and predominately Rayleigh- 
Taylor which then spreads to the vortex sheet. 

By symmetry the vorticity vanishes for x=0 and the 
exterior flow is that of a stagnation point, converging along 
the y axis and diverging horizontally. This flow tends to 
suppress instabilities by decreasing their amplitude, in- 
creasing their wavelength (and hence decreasing their 
growth rate), and ultimately washing them into the rolled- 
up regions on the back of the plume. We show semiquan- 
titatively in Sec. V B that these effects are responsible for 
making the quantity [ V6’I /K, where K is the curvature of 
the cap, so large before instabilities are manifest. Finally on 
the finest scale, in Figs. 14(d) and 14(e), we see that there 
are no mesh-dependent instabilities. 

[The term “instability” in this context must be under- 
stood in some Wentzel-Kramers-Brillouin (WKB) sense 
since the flow is not stationary prior to Fig. 14 (cf. Figs. 
3-6). It is therefore unclear whether any external pertur- 
bation is needed to provoke the “instability” but if so, Sec. 
V B shows the requisite magnitude decreases as 
exp(-ccst]VC3]1’2). The precise pattern in Figs. 14(a)- 
14(e) could depend on many small effects whose elucida- 
tion is immaterial to what follows since a quasistationary 
state never reforms. The literally minded reader may sim- 
ply take Fig. 14 as our initial condition.] 

A short time later (Fig. 15), the stronger of the two 
vortex concentrations in Fig. 14(e) has significantly rolled 
up, creating a characteristic pattern in 0 [Fig. 15(a)]. A 
blowup of the inner region [Fig. 16(a)] suggests that the 
location of the maximum of I V8 I is about to move back to 
x =O. Even though the x mesh in Fig. 16 was rather mar- 
ginal and greatly refined on the next remesh, there is no 
suggestion of numerical problems even in the derivative. 
The jump in 8 across the interface is 0.9 compared with the 
total variation of Eq. ( 12) along x=0 which is 1.005. Note 
that the curvature of the iso- lines has changed sign. The 
driving force for the blowup is almost purely Rayleigh- 
Taylor. The vortex sheet (note the magnification in y) in 
Fig. 16 (b), whose sign is opposite to the predominant vor- 
ticity in Fig. 15(b), will now thin and spawn new roll-ups. 
Because of the disparity of scales, all the complex vortex 
structures in Figs. 14(c) and 15(b) reduce to a quasiuni- 
form strain in Fig. 16(a). 

Figure 17 shows that the roll-up in Eq. (15) has trig- 
gered another one above it and another below it, not shown 
in full. The numerical algorithms are evidently quite ro- 
bust. The symmetry axis, x=0, is responsible for creating 
the large a$. A magnified view around x =O.,y=O.O05 
would resemble Fig. 16 (see the Appendix). 

In Figs. 18 (a) and 18 (b) we show on undistorted 
scales the shallow wedge or cusp that evolved from Fig. 16, 
but note the units. The mesh has been so refined that the 
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FIG. 14. The temperature 0 [(a), (b), and (d)], and vorticity w [(c) and (e)], at t=8.754 showing the development of the instability that disrupts the 
bubble cap; (N.B. 0 is even and o is odd under x*-x). The contour interval for 6 is 0.1 and f3 increases gradually from 0 at y= - o3 to hit 1 .O on its 
innermost contour and then jumps down by -0.9 to zero at its leading edge. The contour interval of o in (c) is 3.3, (range - 19.9 to 3.3) and in (e) 
2.2. The lowest solid contour is 0. 

outermost x points shown are close enough to “infinity” 
that they are affected by the cutoff which explains the ver- 
tical contour lines of 8. The interface for large x is also 
thicker than it would be at higher resolution due to the 
TVD algorithm (cf. the Appendix). A magnified and ver- 
tically stretched view of the inner region shows two vor- 
ticity concentrations pig. 18(d)] and corresponding un- 
dulations in 1’3 [Fig. 18(c)]. 

In Figs. 19(a) and 19(b) we show just the inner 25% 
of Figs. 18 (c) and 18(d) at a time when the maximum 
1 Ve] moves to two symmetric points off the y axis. The 
curvature of the iso- lines near x=0 has again reversed 
sign [Fig. 19 (c)l, and the plume of cold fluid descending 
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into the wedge has undergone a tip splitting, visible also in 
Fig. 19(d) as a bit of negative vorticity. 

Near the final time (Fig. 20), we have recentered our 
coordinates to concentrate on one of two equivalent re- 
gions of max ] VB 1. The computation is no longer symmet- 
ric under x-+ -x. The slight dip visible in Fig. 19 (c) 
evolves into the right-hand side of the maxima in Fig. 
20(a). The jump in 8 across the interface decreases from 
about 0.75 at t=9.3 to about 0.28 at the final time during 
which time max IV@] increases by -6000. 

Our numerical grid, as shown in the figures, telescopes 
rapidly inward to follow the singularity. Because the sin- 
gularity is approached so rapidly, the large scales of flow in 
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FIG. 15. A continuation of the run in Fig. 14 showing 6 (a), and w in (b) 
at t=9.3, (max(VB[ ~243); 6 varies from 0 foryZ0.015 to 1.0 around 
y- - 0.03 in units of 0.1; and w varies from - 26.4 to 13.2 in units of 6.6. 

the earlier figures, insofar as they are pertinent to the sin- 
gularity, are effectively frozen during the time which re- 
mains until the singularity is attained. Looking over our 
sequence of figures, it is apparent that they cannot be trans- 
formed into each other by adjusting scales. We return to 
this point in Sec. VI. 

V. ANALYTIC ESTIMATES 

A. Necessary conditions for a singularity 

We now examine analytically how gradients in V (or 8 
in the Boussinesq case) generate the 4 vorticity Q=o~r 
(resp. o) . This will clarify a number of qualitative features 

0.0 
(al 

(b) x 

FIG. 16. A blowup of $0 (a) and o (b) for the data plotted in Fig. 15 
with the vertical scale magnified by 3 to make the y mesh visible. The 
gradient J,f3 varies from -218 to 0 in units of 36.3, and the vorticity 
varies from 0. to 13.2 in units of 2.2. 

in our numerics and provide a base from which to calculate 
the strain rate in ( T,Z) . The time integral of the strain must 
diverge in a finite time if c3v is to do likewise. To establish 
sufficient conditions for a singularity appears to require 
proving that a nontrivial equation actually has a solution, 
which seems hopeless. On the other hand, our bounds, 
which are nonrigorous, do make roll-up an improbable 
place to find a singularity for smooth initial data and sug- 
gest that a cusp is more likely-rather like what we find. 
We will work in the Boussinesq limit of (6a) and (6b) set 
x= (T,z) to facilitate writing equations, but retain CI and V 
as dependent variables. Various multiplicative factors of r 
which become constants, 7, in the Boussinesq limit and 
were eliminated from (7) by a slightly different resealing 
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FIG. 17. Continuation of Fig. 15 at t=9.736 (max IV01 =1.55x103). 
The range of 0 is unchanged, i.e., B(O,y 5 -0.01) -0.9, and o varies from 
-50.0 to 30.0 in units of 10.0. The cutoff has reduced 0 to 50.1 for 
1x1 ZO.25 oryi3 -0.4. 

are retained here in order to keep dimensions and the con- 
nection with axisymmetry more explicit. 

To firmly exclude the notion that (6a) and (6b) are 
somehow like 2-D Euler and therefore regular for all time, 
we note the following scaling ansatz for (6a) and (6b) : 

v=/(;), IL=$(;), (13) 

where r= t* --t. It is “natural” in that it could be derived 
by supposing that the analog to (10a) and (lob) has a 
stationary solution with a = const > 0, as already noted. If 
the scale of the singular part of V is not preserved in time 
(e.g., the “jump” in V across the cap decreases), then one 
could have a solution V=const+r7~(x/?+71), 

a== ( l/r)g( x/g+‘r). The (Y,z) components of w always 
diverge more strongly than we At the same level of na- 
ivete, analysis of 3-D Euler implies o--7- ‘g(x/r), which 
is a stronger singularity than (13) since gradients do not 
have to be as large for blowup. Alternatively, the singular 
velocity scale is 1 for 3-D Euler but 0( 7) based on v, ,v, 
obtained from (13). The ansatz ( 13) is merely illustrative 
and will play no role in the remainder of Set V. 

Essential to our estimates is proper exploitation of La- 
grangian coordinates in the (r,z) plane for one of which V 
itself is the natural choice. This will prove advantageous 
since a,V2 is the only source of 0 which otherwise is ad- 
vetted, i.e., remains constant in Lagrangian variables. 

We illustrate these ideas by a trivial demonstration of 
the following useful lemma. 

Lemma I: The total circulation defined as 
jXlrdr dz=Sw# dr dz within any closed contour line V 
=cst is constant. 
The proof is simply to integrate (6b) and observe no mat- 
ter how convoluted the contour, the z integral of the right- 
hand side vanishes. This lemma is not a trivial corollary of 
Kelvin’s theorem which pertains to the flux of w through a 
Lagrangian contour in 3D, since here the swirl does not 
uniformly rotate a curve V=cst that initially is in a plane 
$b=&. 

It immediately becomes apparent why in Fig. 4(b) 
a=0 along the uppermost locus of a,V=O in Fig. 4(a). 
This locus consists of contour lines that initially were small 
circles around the maximum of Vat t=O. [The breaks in 
the maximum contour line in Fig. 4(a) are indicative of 
numerical errors.] There is no net circulation within and 
minimal production of plus and minus fi since a,V is uni- 
formly small near a maxima. 

A further refinement of Lemma 1 consists in calculat- 
ing the circulation C within a contour defined by V= V, 
and a second Lagrangian variable il which intersects V 
transversely and projects 1: 1 onto z=O,r,<r<r, as shown 
in Fig. 21. One finds 

Lemma 2: 

l&Cl <f( v;,,- v;, (ry2-q2) 
52( v;,, - v;,2/(r:pv21 >, (14) 

where V = (aPa,>. The second equality is not rigorous since 
it assumes V2 is a quadratic function, but serves to empha- 
size the important tendency for I d,CI to decrease when 
approaching a singularity, V V2-+ CO. At the expense of fur- 
ther notation, one can readily write a formula for the cir- 
culation per unit il in conservation form, a,( a,C) + f3.d= 0, 
wherej is the appropriately weighted integral over the “tri- 
angle” in Fig. 21. Lemma 2 can be applied to Fig. 4(b) 
with il defined as the symmetry line z=O to prove the total 
circulation for z > 0 approaches a constant at the same rate 
the thickness of the cap goes to zero. 

The two lemmas are rather global in that they refer to 
circulation within a region. A precise and useful formula 
for the velocity is readily established in what we will call 
the “contour dynamics limit” where we assume !J=O ini- 
tially and replace the continuous V2 by a series of steps 
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FIG. 18. Continuation of Fig. 17 showing the temperature 0 [(a) and (c)] and o [(b) and (d)] at t= 10.020 (max IVe[ =5X 104). The vertical scale 
is magnified by 3 in (c) and (d). The contour interval is 0.1 for 0 (range 0.1, 0.24.9), and 20.0 for o (range 20-180). 

each defined by some jump AV2 along a contour x(&t), 
where d is a Lagrangian marker. The Boussinesq approx- 
imation to Eqs. (4)) (6a), and (6b) as defined in the be- 
ginning of this subsection reduces a complicated Green’s 
function to a log. The velocity from one such contour reads 
(i=r,z;g=AV2/F3), 

vi(x) =gQj 
J 

In 1 [x--x(&t> I 1 y(a)$J, 

y= * 
J 

&A (At’Mt’, 
0 

(15) 

where eri defines the two-dimensional cross product. This is 
just the usual formula for velocity in terms of circulation 
density with y computed from (6b) assuming V2 is a step. 
Equation (15) could be used to construct a numerical 
scheme to time step x(&t). 

A plausible estimate for the rate of growth of I V VI 2 
can be constructed from ( 15). It consists in calculating, 
locally, the strain rate from a bundle of nearly parallel 
steps in V2 at a point within the bundle. We assume there 
is a single characteristic length along the level sets of V, 
which we take to be the inverse curvature, K, and integrate 
only to this distance. By differentiating (6a) one finds 

d,lVV12=--2VV*e*VV, (16) 
where d, is Lagrangian and only the component of the 
strain, e,=i(SIUi+S,ai), along the local normal n^ 
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= V V/ ( V V I needs to be calculated from ( 15). To expand 
the integrand we require, 

a,x=$ 

&X=S,;+S;K$, (17) 

where /z is a Lagrangian variable along a step, Tis tangent, 
and s is arclength. We find 

$*e*n^((x) =g 
J 

;/I (x-x$qx-xt, 
(x-x’)4 YW 1: f (18) 

where x’ = x(il’,t) is the contour being integrated over (cf. 
Fig. 22). Expanding ( 18) around /z =;1’=0, and using 
akL =y, 

n^-e*n^ 1 [ @+;Ky2) (a,~)p+~s~s~~2/s~]dy 

--i-=3 J D2 , 

D= (8+iKP)1+ (.Y:g)‘, (19) 

where S= S& can be of either sign and sn= S’,s, etc. To 
eliminate superfluous-complexity we will only need to work 
around the tip of the parabola where sA~=O. However, our 
estimates would be dimensionally the same if we took 
sAn-~.$. The y integral in ( 19) is convergent, though for 
consistency we should assume K ( y I 5 0( 1) . We finally in- 
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FIG. 19. Continuation of Fig. 18 showing the temperature 0 [(a) and (c)] and u [(b) and (d)] at t=10.0646 (max IV01 =3.7x lo’), withy magnified 
relative to X. The contour lines of 0 run from 0.9 to 0.3 in units of 0.1 and those of o from -74 to 444 in units of 74. 

tegrate over 1 S 1 5 O(K - ’ ), which we parametrize in terms 
of the total jump in V2 and exploit the conservation of the 
volume in a A&A V rectangle in the form sIti/ 1 VV[ =cst to 
rewrite (16)-(19) as 

t 
&(VJq2;sc 

s 
K(t’) (VV)‘(t’)dt’, (20) 

0 

with c a generic constant. The time integral originates from 
i3,y in (15) expanded as in ( 17) and the multiplicative 
1 V VI 2(t) in ( 16) has canceled against the sr2 prefactor in 
(19). 

Equation (20) is the basis of our earlier assertion that 
blowup is impossible unless the contour lines of Vfold as 
they squeeze together. To bound how rapidly I VVI di- 
verges if there is blowup, we assume on physical grounds 
that the radius of curvature is larger than the thickness of 
the strip in V that is responsible for generating the circu- 
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lation. In analogy to the second inequality in Lemma 2 we 
have IVVI-* <O(K~‘). Then (20) becomes 

d,(vv)2;sc s t (Vvy3(f)dt’, (214 
0 

IVVl 5 l/(t*-tj2. (2lb) 

This is an alternative reason for our choice of “naive” 
scaling dimensions in ( 14). 

For the bubble tip in Fig. 4(a) or 11 (a), our assump- 
tions of locality, that all the nearby vorticity comes from 
the parabolic region around the tip and K/ I VVI 5 0( l), 
are well satisfied. Vorticity in regions not thereby well rep- 
resented are far enough away to be treated in a far-field 
approximation and contribute at most constant stretching 
since their circulation is bounded by Lemma 2. Therefore 
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FIG. 22. Illustration of the coordinates employed to calculate the strain 
produced by the step in V2 labeled by A’ at a point on another step [cf. E$ 
r19,1. 

FIG. 20. Continuation of Fig. 19 at t= 10.0780 (max 1 VQ] = 1.1 X 10”) 
showing 0 in (a), and IV01 in (b) with y magnified relative to x. The 
contour lines in (a) run from 0.88 to 0.48 in units of 0.08 and those in (b) 
from 1.795X 10’ to 1.077X 10b in units of 1.795 X 10’. The origin in x has 
been shifted from Fig. 19. 
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FIG. 21. Illustration of an arbitrary Lagrangian contour used in Lemma 
2 to show that the circulation of Cl is only produced from the shaded 
triangle according to Eq. (7b). 

the tip must become unstable (cf. Sec. V B below) before 
any blowup can occur since otherwise (20) predicts expo- 
nential growth. 

Equation (20) is clearly a poor approximation to the 
strain in the center of a spiral such as Fig. 4(a) or 6(a), 
because there is vorticity nearby in space that is compara- 
tively distant when measured along a contour line. Let us 
define the spiral as a ribbon bounded by a given contour 
line of V. We can then assert by Lemma 2 that the total 
circulation is bounded. (With some control on the shearing 
of the ;l=cst lines one could assert that the circulation 
density, a,C, decreases with the stretching, but that we will 
not need.) 

To bound the strain in (18) it suffices to put x in the 
center of the spiral and approximate the spiral as a series of 
concentric uniform, rings of width Wi and radius 
rj=X& lwJ Take the absolute value of the integrand in 
(18), replace the integral of dil’ around one ring by 
(dil’/ds) (2~~;) where s is arclength, and in the center let 
l/(x-X’)2- l/6. The inverse stretching d;l’/ds is related 
by volume conservation to 1 V VI - ’ which in turn varies as 
up After amalgamating all constants into c, our bound on 
( 18) becomes 

$0e*n^< c 
N Wi c --cc’ In 

j=l ri 
(22) 

with the restriction that the rN is fixed. Although rN may 
grow, it will do so only at some smooth rate determined by 
the large scales and therefore it remains finite at any hy- 
pothetical blowup time. The second inequality follows by 
extremizing over all wP For G=maxi / V V I 2- l/mini( wi)2 
we find from (16) 

d,G<cGln G 

and no finite time singularity. 

B. Linear stability of the bubble cap 

In our axisymmetric simulations, instabilities never ap- 
peared in the thin spherical caps [cf. Fig. 11 (a)] and we 
need to verify for our parameters that none are expected. 
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We also show that the instability which is already well 
developed in Fig. 14(a) indeed occurred where expected. 
Since the axisymmetric problem was run for many times 
the characteristic Rayleigh-Taylor time scale for a tlat in- 
terface, with no superimposed flow, the strain-induced sta- 
bility of Zeldovich et aZ.,’ discussed by many authors,” is 
probably responsible for stabilizing the bubble. 

In view of the figures, it is reasonable to idealize the 
bubble as a wedge cut from a circle and introduce the 
thickness of the interface between hot and cold only as a 
lower cutoff on the minimum allowed wavelength. Follow- 
ing WKB, we will linearize (15) around the straight inter- 
face 

r=ro, 

z(a) =za, 

where I is a characteristic length; for a bubble, the radius of 
curvature is rc. A constant strain, s > 0, defined as 

ur= -s(r-r-o), 

v,=sz, 

is superimposed on the interface and we initialize with 
r=re+a cos(kil), a&l and y=O. The circulation builds 
up as y= -k sin(k;l)Sg a(t’)dt’ and for a(t) we find 

Z+2sh+ (s2-de-“‘)a=O, (23) 

where 2 = T&k/l. We have checked numerically that (23 ) 
can be solved accurately enough for our purposes with a 
WKB ansatz, a(t) =exp[Skf (t’)dt’] with 

f = -s+ *essti2. 

Clearly the shortest wavelengths grow most rapidly but 
provided the perturbation remains small, it will eventually 
decay because the stretching increases its wavelength and 
decreases its amplitude. The maximum of a(t) works out 
to be just a(0) (sz/g)exp[2(a/s- l)]. To decide in a prac- 
tical sense whether a given bubble (Z-+r,) is stable, take the 
maximum k=rJ& where S is the thickness, and demand 
amplification by a factor rJ& i.e., a perturbation of mag- 
nitude some fraction of S grows to the same fraction of r,. 
Our criterion for instability is 

(g(s) Senp2[ (&)*‘2-l] (244 

We evaluated (24a) at t= 17 in Fig. 9 which is the last 
point of the solid curve. At this time, 
g=AV2/d-82/133, r,-1, r/6-15, and around the tip 
s=OS, so that g/(26?)-0.9 and (24a) is not satisfied. 
For the Boussinesq simulation around t- 7.5 we have g= 1 
by assumption, r,-2.0, rJS=50, and s=O.5 again, so that 
(24a) is easily satisfied. 

A more refined approximation models the bubble as a 
curved slab of thickness A, 6$A(r,, obtained by intersect- 
ing a wedge with an annulus. To be conservative, we ter- 
minate the unstable growth when kerns’ decreases from rJ6 
to A/S, but otherwise repeat the derivation of (24a). One 
finds for instability, 

(z) 5exp2( (&)I”[ l-G)‘“i), (24b) 

which is still satisfied in the Boussinesq simulation since 
S/A-0.25. 

Note that as S-+0 even with A/S fixed, an arbitrary 
amount of amplification [e.g. the right-hand side of (24b)] 
occurs before the wavelength is stretched out to r,. This 
alone would not demonstrate linear instability, in a strict 
sense, for perturbations around a precisely stationary state 
(i.e., a flat interface extending to infinity), but the bubble is 
by no means a stationary flow and there are multiple 
sources for the initial perturbation assumed in deriving 
(24a) and (24b). 

VI. CONCLUSION 

Let us recapitulate the evidence in favor of a finite time 
singularity for the axisymmetric Euler equations. After the 
contour lines of 8 near x=0 went from convex to concave 
and cusp like (t 2 8.5 in Fig. 12)) an additional 10” increase 
in max( ] V8 ] ) was observed with no obvious impediment 
to further integration. A far better diagnostic for a finite 
time singularity is the strain evaluated where 1 VB 1 is max- 
imum, i.e., d, In max( I VB I ). Exponential growth in 
max( I V8 ] ) is thereby reduced to a constant. There is ev- 
ery indication in Fig. 13 (b) that the inverse strain will hit 
zero in a finite time. 

The most questionable aspect of our numerics is the 
nearly uniform increment of strain that gets lost when cir- 
culation is pushed out to infinity. This could be readily 
parametrized and compensated for by adding a uniform 
strain by hand each time modes were truncated at infinity. 
This would eliminate the steps from Fig. 13(b) and very 
plausibly hasten the collapse. While this may be done in 
the future, the methodology we have followed provides 
explicit and public bounds on our sins. 

It should be emphasized that this collapse problem 
cannot be touched without an adaptive mesh code. Our 
final inner mesh spacing was -2X lo-*, and the initial 
data had an outer scale 2 1. To even proceed as far as the 
initial instability in Fig. 14 requires a grid spacing of 
5 10-3. 

The data in Fig. 13, plus the slow decrease in 8 across 
the interface noted at the end of Sec. IV C, are ail consis- 
tent with the scaling forms (v is velocity), 

e=cst+Ty- [x/2+7,-in(r)], (254 

v=cst+r’+‘Jh[x/g+‘I,-in(r)], (25b) 
where r= t* - t and the dependence of f,h on the resealed 
time T - -ln( T) must be slower than exponential for the 
prefactors to be well defined. In fact f and h remain 0( 1) 
as T- m. A fit gives 77 =0.2 f 0.1 if only random errors are 
included and perhaps =tO.2 if systematic errors are fac- 
tored in. It is very unlikely, particularly in view of the 
similar results we obtain for porous media convection [cf. 
Eq. (27) below] that there is not some decrease in 8 as 
T+ co. Obviously for our range of scales, a small exponent 
cannot be distinguished from a logarithm. 
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The attentive reader will have noted in connection with 
[Eq. (lOa)] that a more general symmetry of the Bouss- 
inesq equation is 

1 x t 
m--*iw a+9’j 2 ( ) 

(26) 

where I and q are constants. The relative scalings on 8, X, 
and t are dictated by the dimensions of the effective grav- 
itational acceleration. It is (26) of course which underlies 
(25). Hence the continuous resealing in (lOa)-( 10~) 
merely removed the largest part of the divergence. Addi- 
tional small coordinate adjustments were still made by 
hand as already noted. A more elaborate algorithm in 
which both 7 and a [cf. (lot)], were adjusted could be 
implemented but was not worth the effort. 

The inattentive reader will by now have observed in 
(25b) that the singular part of the velocity decreases, but 
clearly the vorticity and strain still diverge as r-l. The 
same is true of the inviscid Burgers’ equation at the point 
of shock formation. 

The -In(T) argument in (25) is essential since the 
shape of the solution is continuously evolving and shows 
no signs of stabilizing. It is entirely plausible to us that this 
is real and just a manifestation of repeated Rayleigh- 
Taylor instabilities and roll-up. Looked at more closely, 
the growth appears in bursts with each new instability 
causing enhanced stretching, which is stabilizing, until the 
interface thins sufficiently for a new instability to occur. It 
should be emphasized that singularities may occur essen- 
tially independently all along the bubble interface since the 
dynamics are local. The same phenomena was seen in our 
earlier simulations of vortex filaments.” 

It clearly makes sense to ask if f and h in (25) have 
chaotic dynamics as a function of T- -ln( T) . Our numer- 
ics are inconclusive on this point since four decades of 
scaling in length translate to very few characteristic times 
in T. To prove that a singularity exists would require show- 

j ing that q and a could be adjusted in equations for f and 
VA h analogous to (lob) so as to obtain smooth 0( 1) 
solutions. In contrast to a fixed point, a chaotic flow in T, 
even if low dimensional, greatly complicates this task. 
There may be some narrow window on the orbit through 
which the scaled solution can leak away. On the other 
hand, chaotic flows have embedded unstable periodic 
points which could be searched for numerically. 

It is useful to contrast our conclusions with two other 
singularity problems in two dimensions. A vortex sheet is 
known to have a finite time curvature singularity with the 
time-integrated stretching, c~,s, uniformly bounded.12 This 
depends crucially on the zero thickness limit being taken 
first and is not relevant to a situation like ours with smooth 
initial data in which for a sheet approximation to be valid, 
K - ’ 2 thickness - ( aAs) -*. (Area preservation relates the 
thickness and stretching. ) 

Another relevant problem is porous media 
convection’3 that is defined by a conserved scalar ,u(x,t) 
evolving under 

07) 

where the velocity v, and not its time derivative, is deter- 
mined by the buoyancy force ,u;r. The corresponding in- 
terface model is still (15) with no time history, i.e., 
y=&x,. 

Extensive simulations have shown that ,D “falls” or 
“rises,” depending on its sign, in the x1 direction and 
makes a sharp interface which proceeds to randomly fold 
in such a way that ~/d,p is bounded between two con- 
stants. There is a finite time singularity obeying 
a,~- I V,U I - l/( t* - t) and a very slow decay in the jump 
of p across the interface. The fluctuations in the scaling 
regime are more pronounced than seen here. 

Let us finally translate back from Boussinesq to three- 
dimensional axisymmetric variables and note several con- 
clusions. The enstrophy from a single singularity is 
bounded, but 1‘101 2+a d3x with a > 7 diverges. This fol- 
lows from 0,,,.--7-~ and the length scale p+17 [in (25)] 
applied to Sr and Sz [cf. the transition from (6) to (7)]. 
[The energy in the singular region scales as r4+4q and 
comes from vc i.e., (25a).] This is of course a weaker 
blowup than expected dimensionally for the unconstrained 
Euler equations, CD-r-‘8(x/r), because the singular re- 
gion is smaller. Note also that a larger prefactor, r -2 vs 
r- ‘, for instance, is a sign that the governing equation is 
less nonlinear (i.e., consider solutions to dgc=x’+‘). The 
small singular region also makes the singularity easily con- 
trolled by viscosity. Simple dimensional considerations 
give a viscous length which scales as Y(~+~)‘(~+~~) in terms 
of the kinematic viscosity Y. 

We are inclined to believe that nonsymmetric singular- 
ities exist in three dimensions and are either unstable or 
appear on smaller scales than were reached in Ref. 2. To 
elucidate the precise mechanisms would be very interest- 
ing. The singuiarities we have uncovered here are without 
much physical relevance and would be unstable if the axi- 
symmetry were relaxed. 

Of more immediate interest is to realize how the “con- 
ventional” vorticity strain relation emerges for axisymmet- 
ric Bow.~~~‘~ Recall that the rate of strain matrix in the high 
dissipation regions has eigenvalues of signs ( +, + , - ). 
The intermediate one is much less than the others and the 
vorticity is parallel to it. The same picture emerged for the 
bubble cap which acts as a vortex sheet with w along 2 
across which v9 has a large jump (i.e., the flow is locally a 
two-dimensional shear). The existence of the bubble fol- 
lows simply from the Boussinesq analogy, but an argument 
of comparable physical appeal is unknown in three dimen- 
sions. 

In the vicinity of the vortex maximum, most of the 
initial conditions studied in Ref. 2 are locally axisymmetric 
in the sense that the tip of a parabola can be approximated 
by a circle. This could partially account for the genesis of 
the vortex sheets observed there. In conformity with our 
observations in Ref. 2, nonzero net helicity did not have a 
qualitative impact on the flow structures (cf. Sec. IV A). 

Note added in proo$ Slightly more extensive Bouss- 
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FIG. 23. The temperature 0 (a) and vorticity o (b) for a 1282 mesh 
corresponding to the final time in Table I. 

inesq simulations than those presented here have appeared 
in Ref. 16. 
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APPENDIX: MESH REFINEMENT 

In this section we compare our numerical scheme on 
four different meshes, 1282, 1922, 2562, and 3842 for the 
Boussinesq equations ( lOa)-( 10~). (Note that Figs. 12-20 
were obtained for 2562.) For each factor of 2 in res-olution, 
our computer time increases by 10, a factor of 4 to 5 for the 
Poisson inversion, and a factor 2 for the time step which is 
set by the Courant condition. We restarted our data near 
the middle of the scaling regime where ] V0 I -3000 [cf. 
Figs. 12 and 13(a)], and ran it through two remeshes dur- 
ing which time max I V8 ] grew by a factor of - 3.9. Filter- 
ing was done on the first remesh, when the number of mesh 
points was changed, but not on the second to accentuate 
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TABLE 1. Convergence of maximum vorticity (first entry) and maxi- 
mum 1 VB 1 with mesh. The entry marked “growth” is the ratio of line 3 
to line 1. The last line is the strain rate at the final time at the point where 
IV01 is maximum. Ail runs were begun by remeshing a common file at 
tz9.845 doing a second remesh at the same resolution at t=9.916, and 
continuing to t=9.959. The integration was done with Eqs. (lOa)-( 10~). 

Time 128s 192L 256’ 384’ 

Remesh 1 (85.1, 2350) (89.6, 2650) (92.1, 2850) (93.8, 3110) 
Remesh 2 (89.5, 4430) (104, 5620) (111, 6160) ( 119, 6850) 
Final (103, 6650) (127, 9640) (144, 1.10~ 104, (163, 1.26~ 104) 
Growth (1.21, 2.83) (1.42, 3.64) (1.56, 3.86) (1.74, 4.05) 
Strain 15.0 15.8 16.6 15.9 

any numerical noise. The initial data resembled Fig. 16 
with the “Vee” a bit more developed. 

Before considering the data, one limitation should be 
stressed. We are simulating a system that plausibly has a 
positive Lyapunov exponent. Small errors will grow expo- 
nentially as in any other chaotic or turbulent system. One 
typically assumes that the system tends to an attractor, and 
that statistical averages are reproducible numerically. We 
have redone, in various segments, all the data in Fig. 12 for 
WI maxZ lo2 experimenting with coordinates and various 
ways of remeshing. The contour plots are always very close 
for comparable values of ] V0 1 max and the largest percent- 
age error is in the time a certain instability induced pattern 
forms. The scaling behavior in Figs. 13 (a) and 13 (b) is 
robust. 

Figures 23 and 24 show the data for the 1282 and 2562 
meshes at the final time in Table I. In comparison with Fig. 
24, the initial data was similar in shape and less well re- 
solved by a factor of -2/3, which places it at the low end 
of our acceptable range. Resolution is always defined by 
the number of grid points per say a factor two change in 0 
near the origin. At the final time, there are no obvious 
numerical instabilities visible in the 128’ data which has 
simply been diffused more in the high gradient region by 
the TVD algorithm. 

In Table I, the first row shows purely the errors attrib- 
utable to describing a continuous field with a discrete mesh 
plus the filtering that was done after interpolation. The 
percentage errors in max o are smaller than 1 V0 ] since the 
latter involves a derivative and converges only as mesh 
spacing squared. To estimate the errors for 2562 we com- 
pared with data initialized onto a 5 122 mesh (which we 
could not afford to run further), which gave max( co, 1 V6 ] ) 
=(94.7,3230) and therefore errors of - (3%, 12%). 
[Without the initial filtering, the errors are ( < 1%,7%).] 

After time evolution, the errors in 1 V81 reflect what 
was seen in the figures. Clearly the errors grow in time as 
one expects. Normalized to a factor 2 increase in 1 V8 1 and 
extrapolated to reflect our actual mesh, 2562, versus infin- 
ity we obtain errors - ( 10%,5%), which is comparable to 
what was quoted in Sec. IV. Most of the error in the third 
line of Table I is attributable to the initial conditions. The 
errors in w relative to I V0 I are larger than expected since 
its maxima occurs in a less well-resolved region of the flow. 
Also, examination of the 3842 contour plots suggests that 

the incipient roll-ups visible in Figs. 18 (c) and 18 (d) oc- 
cur sooner for higher resolution as is physically reasonable. 

The strain as noted earlier is -2d ln( I V0 I )/dt. Hence 
the last line in Table I shows that in spite of the greater 
diffuseness of the vorticity on the coarser mesh, the growth 
rate of the singularity is not greatly affected. The large 
disparities in 1 V81 at the final time are not due to the 
comparatively small errors in the intrinsic growth rate but 
rather the enhanced diffusivity generated by the TVD al- 
gorithm on a coarser mesh and the initial conditions. Ev- 
idently, the true solution diverges more rapidly than the 
numerical one, 
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