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Structures and Multipoint Correlators for Turbulent Advection: Predictions and Experiments
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We present theoretical predictions and wind tunnel measurements of the 3-point correlator of
fluctuating temperature in preheated turbulent flow. The dependence of this passive scalar correlator
on the point configuration is calculated on the basis of a model Hopf operator describing its time
evolution but can be understood in terms of the underlying frontlike structure of the temperature field.
Model predictions reproduce the main features observed in experiment. The geometric insight into the
structure of the fluctuating field provided by multipoint correlators suggests new approaches to the study
of turbulence itself. [S0031-9007(98)07639-X]
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Turbulent advection and mixing is a technically im-
portant problem in engineering (e.g., combustion) and
geophysical flows (e.g., dispersion of pollutants). Th
statistical properties of scalar fluctuations (e.g., tem
perature or the concentration of a pollutant) has man
similarities with the statistics of the turbulent velocity field
itself [1,2]. Much work [3] has been devoted to under
standing the scaling properties of turbulent fields whic
deviate from the simple dimensional form predicted by th
Kolmogorov theory [3] (K41). The observed anomalou
scaling is caused by the relative excess of large fluctuatio
on small scales—the intermittency phenomenon—whic
is often interpreted in terms of “structures” present in th
flow, such as vortex filaments [4] for the velocity field
and the gradient sheets or “fronts” for the scalar field [5,6
[see Fig. 1(a)]. Yet, the connection between the scalin
and the spatial structure of the flow has remained elusiv

One way towards establishing a connection betwee
scaling and structure is to go beyond the traditiona
study of correlations attwo measurement points to the
investigation of multipoint correlation functions. The

FIG. 1. (a) A cartoon of the instantaneous temperature profi
Qsxd exhibiting alternation of well-mixed plateau regions
with the fronts where the gradient is concentrated. (b) Th
contributing of fronts tokusrAdusrBdusrCdl: If G, G0 are fronts
separatingu ­ 1 (hatched side) fromu ­ 21 regions, frontG
contributes 1 to the correlator, whileG0 contributes21. The
net result depends on the front distribution and the geometry
the triangle.
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latter, in contrast with the conventional 2-point structu
function, depend not only on the overall scale but al
on the geometry of the point configuration [Fig. 1(b
and thus contain more information. Moreover, the rece
theoretical progress [7–10] on the passive scalar probl
has led to the calculation of the multipoint correlator
making comparison between the experiment and the
both possible and necessary. The purpose of this Le
is to report and compare the experimental and theoret
results for the configuration dependence of the 3-po
correlation function of the temperature field mixed by
nearly homogeneous and isotropic turbulent flow, in t
presence of an imposed large scale temperature gradie

The dynamics of the scalar fieldQ advected by turbulent
velocity $us$r , td is governed by

≠tQ 1 $u ? =Q 2 k=2Q ­ 0 , (1)
wherek is the molecular diffusivity. The scalar field can
be decomposed into the mean gradient and the fluctu
ing components:Qs$rd ­ Ĝ ? $r 1 us$rd (wherekul ­ 0).
The moments of the structure function for the scalar fie
defined asFnsrd ­ kfQsrd 2 Qs0dgnl, have been stud-
ied experimentally [2,6,11].F2srd , r2y3, in agreement
[1,11] with the K41 theory. However [11],F3srd , r,
in contrast with the scaling exponent5y3 expected [12]
from K41 theory. As a consequence, the skewness
the scalar derivative parallel to the mean gradient,sk ;
ksĜ ? =ud3lyksĜ ? =ud2l3y2 is of order 1 rather than de-
caying with Reynolds number as Re21y2 predicted [12] by
K41 theory. This effect implies that the anisotropy in
troduced by the large scale boundary conditions pers
down to small scales which contradicts the very cent
concept of the Kolmogorov theory: the isotropy and un
versality of turbulence on small scales. This anomalo
behavior, first observed in the atmosphere and then in
turbulent boundary layer over a heated plate [2,5], is a
sociated with the transient formation of scalar gradie
sheets aligned with the large scale gradient. The pheno
non is not an artifact of wall bounded shear flows since
© 1998 The American Physical Society 4373
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is in no way diminished in the homogeneous turbulen
produced in wind tunnels when supplemented by a lar
scale thermal gradient [6,11] and, in fact, persists wh
the turbulent velocity is replaced by a synthetic Gauss
one in numerical simulations [13]. In the latter case, o
has access to the entire temperature field which appe
to be terraced with well mixed “plateaus” separated
the “cliffs” of scalar gradient [see Fig. 1(a)]. The simu
lations help legitimate theoretical approaches;one does not
have to first understand the turbulent velocity before ca
culating its mixing properties[14–16]. For a Gaussian
white in time velocity field, the generaln-point correlation
functions are governed by the Hopf equations which c
be written down exactly [15,17] and the exponents calc
lated as a function of that assumed for the velocity va
ance [8,9]. However, real turbulence is far from whit
and to facilitate comparison with the experiment we sh
rely on a class of phenomenological models [10,18], whi
for the 3-point function lead to the Hopf equation in th
following form:

sL0 1 aLDd kus$r1dus$r2dus$r3dl ­ I3 , (2)

where L0 is the Batchelor-Kraichnan (BK) operato
[14,15] describing the random straining effect of th
velocity field from the scales comparable to the poi
separations andaLD models the incoherent effect of veloc
ity fluctuations on smaller scales which act like eddy diffu
sivity. The right-hand side of Eq. (2) is the forcing term
Explicitly, the BK and eddy diffusivity operators are

L0 ­
NX

ifij

D
s0d
ab s$ri 2 $rjd≠a

ri
≠b

rj
,

LD ; R2y3
NX

i,j

D
s2y3d
ab s$ri 2 $rjd≠a

ri
≠b

rj
,

(3)

where D
sed
ab srd ­ D0fsd 1 1 2 eddab 2 s2 2 ed srarby

jrj2dg jrj22e, and where R2 ;
P

i,js$ri 2 $rjd2. This
choice of LD corresponds to small scale velocityd-
correlated in time and ensures that, in the limit where tw
points (say,$r1 and $r2) come close together, the correlatio
function behaves asj$r1 2 $r2j

2y3. For a ! ` the Hopf
equation (2) reduces, up to a multiplicativeR2y3 factor
expressing the scaling of the correlation time, to the for
it has in the Kraichnan’s white in time velocity limiti
(with the K41 power spectrum) [15].

It was found that the homogeneous solution of Eq. (2
determined by the zero modes of the linear Hopf ope
tor appearing on the left-hand side, dominates in the sc
ing range, making the inhomogeneous forced soluti
irrelevant [8–10]. Rotational invariance of the homo
geneous problem plus the fact that the 3-point functi
is odd under parity imply that the latter must have a
gular momentuml ­ 1. Using the translational symme
try, Eq. (2) can be reduced to an elliptic boundary val
problem in two variables; after expressing the operato
as finite differences, the resulting banded matrices
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solved following Ref. [19]. The scaling index defined a
kusa $r1dusa $r2dusa $r3dl ­ alkus$r1dus$r2dus$r3dl appears as a
nonlinear eigenvalue in the boundary value problem. T
exponent varies continuously froml ­ 1 for a ­ 0 to
l ø 1.38 for a ! `, as shown in Fig. 2. The latter value
of the exponent is too large, compared to the experime
tal valuesl ø 1d, implying that the white in time velocity
cannot accurately describe the experiment. The num
cal solution for thel ­ 1 zero mode also determines th
configuration dependence of the correlator which will b
compared with the experiment below.

In the wind tunnel with a mean flow alonĝx, and the
transverse scalar gradient alongĜ ; ŷ; we placed two
probes separated by a distancey, and recorded tempera
ture fluctuations as a function of time. Using Taylor’
hypothesis, one can thus measure the correlation betw
the three points:A ­ sx1 1 x2y2, yd, B ­ sx2, 0d, and
C ­ s0, 0d. To remove the effects of slow drifts in the
wind tunnel, the experimental data is best accumula
in terms of scalar differences between pairs of poin
chosen from amongsA, B, Cd. We define a generalized
3D order structure function by requiring that it satisfie
full permutation symmetry. Introducingdu1 ­ uB 2 uC

and du2 ­ 1y
p

3 suB 1 uC 2 2uAd, we constructS3 ­
ksdu1 1 idu2d3l which has the desired symmetry. Th
real part S3R ­ ksuA 2 uBd suB 2 uCd suC 2 uAdl re-
duces ultimately to 2-point correlators, e.g.,kusAdusBd2l.
The imaginary part, however, is the irreducible 3-poi
correlator: S3I ­ kdu

2
1du2 2 du

3
2dl ­ C3 with C3 ;

kusAdusBdusCdl provided that 1-point objects, such a
ku3

Al, vanish as required byu ! 2u symmetry. At a fixed
value of y, the correlation functions depend, assumin
scaling, onx1yy and x2yy. Thanks to the permutation
and reflection symmetries, it suffices to present only o

FIG. 2. The scaling exponent of the 3-point correlatio
function as a function ofa. The exponent tends tol ø 1.38
whena ! `. Close toa ­ 0, l ø 1 1 0.4a2 2 0.35a5y2.



VOLUME 81, NUMBER 20 P H Y S I C A L R E V I E W L E T T E R S 16 NOVEMBER 1998

-
ted

ura-

lly

ot

e
a-
ts

e

e
e

le
quadrantx1y2yy $ 0. The data is nondimensionalized
by dividing by F3syd ­ kfus0d 2 usydg3ly6 which is
also used to measure the scaling exponentl ø 1. The
theoretical functionC3 ­ kusAdusBdusCdl shown in Fig. 3
is to be compared with the experimentally measuredS3I

shown in Fig. 4. The two have a similar qualitative be
havior which includes the predicted and observed chan
of sign of the correlator from negative to positive with in
creasingx1yy as the observation pointsB andC separate,
and the observation triangle evolves from acute to obtu
at vertexA. The best fit fora ø 0.75 (corresponding to
l ­ 0.27) yields agreement on the level of18%.

It is instructive to compare the positions of the nod
C3 ­ 0. Quite generally, one can prove that any func
tion depending on configuration of three points and tran
forming asl ­ 1 under rotations must vanish because
the additional permutation symmetry for an equilateral tr
angle [which corresponds tosx1yy, x2yyd ­ s0, 2y

p
3 d].

Indeed, the measuredS3I is zero (within experimental
error) at that point. The measured correlator disagre
with the prediction in two ways: (a) It is nearly lin-
ear as a function ofx2yy near the origin, compared to
the sublinearx2y3

2
, behavior expected forx2 ! 0, as the

sB, Cd pair of points merge together; (b) there is a con
siderable deviation for largex1,2yy. These deviations are
not unexpected because the scaling range is limited
the dissipation scale on the side of smallx2yy and by
the integral scale forx1,2yy large. Since the ratio ofy to
the integral scale isø0.05, one may expect a20% level
error for sx1y2yyd ­ 5 in the outer extremes of Figs. 3
and 4, wherex1,2yy ø 5. Additional measurements [11]
at largery separations reveal an improved agreement f
smallx2yy at the expense of thex1,2yy ¿ 1 range, where
the integral scale crossover effect becomes more sev
confirming our interpretation. Future experiments wit
more extensive scaling range should be closer to the th
retical limit and further theoretical work may comput
subleading modes describing the crossover behavior.

Let us return to the physical interpretation of the con
figuration dependence of the 3-point correlator. The ske
ness of the temperature fluctuations is attributed to t
transient appearance of sheets of intense scalar gr
ent (fronts) preferentially aligned with the normal to th
large scale$G. Provided the instantaneous density of suc
sheets is low, their contribution to the 2-point skewness
kfQsrd 2 Qs0dg3l , r, consistent with the observed scal
ing exponent. Our observation that the same scaling p
sists when all points are spread apart supports the not
that the sheets extend up to the integral scale. The s
plest realization of the “front” picture assumes a single un
step in theQ field appearing at an anglef with respect
to the large scale gradient with probability1 1 a cosf

(corresponding to a purel ­ 1 mode). Let the front [see
Fig. 1(b)] cut across the observation triangle with vertexA
on the positive side andB, C on the negative: This gives
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FIG. 3. Contour plot of the computed (fora ­ 0.75) cor-
relation function kusAdusBdusCdl for three coplanar points,
A ­ sx1 1 x2y2, yd, B ­ sx2, 0d, and C ­ s0, 0d, as a func-
tion of x2yy (horizontal) andx1yy (vertical) in the range
0 $ x1yy, x2y4 # 5. Integer values of the coordinates are in
dicated by ticks along the perimeter. Isocontours are separa
by 0.2. The scaling exponent isl ­ 1.069.

a positive contribution tokusAdusBdusCdl and, if B ­ C,
this would be the only possibility. However, asB andC
separate there appears an increasing number of config
tions where eitherB or C fall onto the positive side of the
front, resulting in a negative contribution so that eventua
C3 changes sign. Although for each anglef there exist
two fronts with opposite signs, their probabilities are n
equal and the net effect remains. TheC3 predicted by this
naive front model is shown in Fig. 5 and fully captures th
qualitative behavior of both the calculated and the me
sured correlators. Of course, the magnitude of the fron
has a nontrivial distribution of its own and the fronts ar

FIG. 4. Contour plot of the generalized 3-point structur
functions S3I measured in the experiment, plotted in th
same range ofsx1yy, x2yyd as in Fig. 2. The isocontours are
separated by 0.2. The value ofy is 3.6 mm; the integral
length scale is 7.1 cm, and the dissipative (Kolmogorov) sca
is h ­ 0.2 mm.
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FIG. 5. Contour plot of the computedC3 correlation function
for the simple front model, shown in the same range of sca
as in Fig. 2, with the same isocontour separation. This cru
model captures well the main features visible in Figs. 3 and

not just planes, yet the simple model with no adjustab
parameters is remarkably predictive. Refining this simp
model is not very useful, but ultimately the same info
mation is implicit in theN-point correlators of the type
considered in the present paper.

This Letter has introduced a new measure of small sc
intermittency involving three points, which is sensitiv
to the structures—the gradient sheets—characteristic
turbulent mixing. Improved comparisons with experime
need not occur only by increasing the Reynolds numb
Theory is able to furnish, to within an overall factor
the leading corrections through which the large scal
contaminate the inertial ones, and so at the expense
a free parameter the fits should improve.

Our new correlation function can also be determine
in a homogeneous shear flow wherek $ul ­ Gyx̂, where
we imagine that the fluctuations in̂x ? $u play the role
of temperature. Transport ofx momentum alongŷ is
analogous to the heat flux. Preliminary measureme
[20] and simulations [21] of≠yu also display a skewness
of order 1, contrary to the postulate of inertial rang
isotropy, which has only been checked experimenta
for k $u $ul [22]. It is therefore tempting to speculate
that the vortical structures seen in turbulent flows a
a consequence of the nonlinear evolutions of thin she
layers analogous to the gradient sheets of the scalar.
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