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Structures and Multipoint Correlators for Turbulent Advection: Predictions and Experiments
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We present theoretical predictions and wind tunnel measurements of the 3-point correlator of
fluctuating temperature in preheated turbulent flow. The dependence of this passive scalar correlator
on the point configuration is calculated on the basis of a model Hopf operator describing its time
evolution but can be understood in terms of the underlying frontlike structure of the temperature field.
Model predictions reproduce the main features observed in experiment. The geometric insight into the
structure of the fluctuating field provided by multipoint correlators suggests new approaches to the study
of turbulence itself. [S0031-9007(98)07639-X]

PACS numbers: 47.27.Ak, 02.50.Fz

Turbulent advection and mixing is a technically im- latter, in contrast with the conventional 2-point structure
portant problem in engineering (e.g., combustion) and irfunction, depend not only on the overall scale but also
geophysical flows (e.g., dispersion of pollutants). Theon the geometry of the point configuration [Fig. 1(b)]
statistical properties of scalar fluctuations (e.g., temand thus contain more information. Moreover, the recent
perature or the concentration of a pollutant) has manyheoretical progress [7—10] on the passive scalar problem
similarities with the statistics of the turbulent velocity field has led to the calculation of the multipoint correlators,
itself [1,2]. Much work [3] has been devoted to under-making comparison between the experiment and theory
standing the scaling properties of turbulent fields whichboth possible and necessary. The purpose of this Letter
deviate from the simple dimensional form predicted by thds to report and compare the experimental and theoretical
Kolmogorov theory [3] (K41). The observed anomalousresults for the configuration dependence of the 3-point
scaling is caused by the relative excess of large fluctuationsorrelation function of the temperature field mixed by a
on small scales—the intermittency phenomenon—whichmearly homogeneous and isotropic turbulent flow, in the
is often interpreted in terms of “structures” present in thepresence of an imposed large scale temperature gradient.
flow, such as vortex filaments [4] for the velocity field The dynamics of the scalar fietdl advected by turbulent
and the gradient sheets or “fronts” for the scalar field [5,6}velocity (7, t) is governed by
[see Fig. 1(a)]. Yet, the connection between the scaling 9,0 + 1 -VO — kV?0 =0, (1)

and the spatial structure of the flow has remained elusiveyhere is the molecular diffusivity. The scalar field can
One way towards establishing a connection betweeRe gecomposed into the mean gradient and the fluctuat-
scaling and structure is to go beyond the tradltlonaﬁng components®(7) = G - 7 + 0(7) (where(g) = 0).
study of correlations atwo measurement points to the The moments of the structure function for the scalar field,
investigation of multipoint correlation functions. The yefined asF,(r) = (O(r) — ©(0)]"), have been stud-
ied experimentally [2,6,11].F»(r) ~ r%/3, in agreement
[1,11] with the K41 theory. However [11]F5(r) ~ r,
in contrast with the scaling exponefif3 expected [12]
(b) from K41 theory. As a consequence, the skewness of
the scalar derivative parallel to the mean gradiept=
(G - VO)H/UG - VO)?)*? is of order 1 rather than de-
B caying with Reynolds number as Ré? predicted [12] by
K41 theory. This effect implies that the anisotropy in-
troduced by the large scale boundary conditions persists
down to small scales which contradicts the very central
FIG. 1. (a) A cartoon of the instantaneous temperature profil€oncept of the Kolmogorov theory: the isotropy and uni-
®(x) exhibiting alternation of well-mixed plateau regions versality of turbulence on small scales. This anomalous
with the fronts where the gradient is concentrated. (b) Thepehavior, first observed in the atmosphere and then in the
contributing of fronts t(6(r4)8(rp)0(rc)): If I'. 1" are fronts 4, rylent boundary layer over a heated plate [2,5], is as-
igg?rirgﬂpegg 1_ té (tﬂgtf:rc]ﬁ%g?oer), t,rv?]?%,_coﬁriﬁ?tf:f’lfro?htre sociated with the transient formation of scalar gradient

net result depends on the front distribution and the geometry o$heets aligned with the large scale gradient. The phenome-
the triangle. non is not an artifact of wall bounded shear flows since it
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is in no way diminished in the homogeneous turbulencesolved following Ref. [19]. The scaling index defined as
produced in wind tunnels when supplemented by a largéd(ar,)8(ar»)0(ar3)) = a*(6(7,)0(7,)6(73)) appears as a
scale thermal gradient [6,11] and, in fact, persists whemonlinear eigenvalue in the boundary value problem. The
the turbulent velocity is replaced by a synthetic Gaussiamxponent varies continuously froth= 1 for « = 0 to
one in numerical simulations [13]. In the latter case, one\ = 1.38 for @ — o0, as shown in Fig. 2. The latter value
has access to the entire temperature field which appeaos the exponent is too large, compared to the experimen-
to be terraced with well mixed “plateaus” separated bytal value(A = 1), implying that the white in time velocity
the “cliffs” of scalar gradient [see Fig. 1(a)]. The simu- cannot accurately describe the experiment. The numeri-
lations help legitimate theoretical approactmse does not cal solution for thel = 1 zero mode also determines the
have to first understand the turbulent velocity before cal-configuration dependence of the correlator which will be
culating its mixing propertie$14—16]. For a Gaussian compared with the experiment below.
white in time velocity field, the generalpoint correlation In the wind tunnel with a mean flow alonty and the
functions are governed by the Hopf equations which carransverse scalar gradient alody= §; we placed two
be written down exactly [15,17] and the exponents calcuprobes separated by a distangeand recorded tempera-
lated as a function of that assumed for the velocity variture fluctuations as a function of time. Using Taylor's
ance [8,9]. However, real turbulence is far from white, hypothesis, one can thus measure the correlation between
and to facilitate comparison with the experiment we shalthe three pointsA = (x; + x/2,y), B = (x,,0), and
rely on a class of phenomenological models [10,18], whichC = (0,0). To remove the effects of slow drifts in the
for the 3-point function lead to the Hopf equation in thewind tunnel, the experimental data is best accumulated
following form: in terms of scalar differences between pairs of points
>\ A2\ () — chosen from amondA, B, C). We define a generalized
(Lo + aLp)(0(F)6(2)0(:) = 15, @ 3D order structure function by requiring that it satisfies
where Ly is 'th'e Batchelor-Kraichngn_ (BK) operator permutation symmetry. Introducingé; = 65 — ¢
[14,15] describing the random straining effect of the,q 80, = 1//3(65 + 6c — 204), we constructs; =

velocity field from the scales comparable to the point«ae1 + i86,)%) which has the desired symmetry. The
separations and L p models the incoherent effect of veloc- ) part Sz = (84 — 05) (05 — 6¢) (6 — 6,)) re-

ity fluctuations on smaller scales which act like eddy diffu- y ,ces ultimately to 2-point correlators, e{f(A4)0(B)>2).
sivity. The right-hand side of Eq. (2) is the forcing term. 1o imaginary part, however, is the irreducible 3-point

Explicitly, the BK and eddy diffusivity operators are correlator: Si; = (56266, — 563)) = C; with Cs =
Lo %D(O)(? 7yt gt <0§A)0(B)0(C)) prO\_/ided that 1-point objects, su'ch as

0 ab\'i 9k %ro (04), vanish as required by — —60 symmetry. At a fixed

i N (3) value of y, the correlation functions depend, assuming
Lp = RY3 ZDﬁﬂ)(;i — 7)ot b scaling, onx;/y and x,/y. Thanks to the permutation
i< b and reflection symmetries, it suffices to present only one

where Déeb)(r) =Do[(d + 1 — €)bap — (2 — €)(r?rt/
[r>)]|r|>~€, and where R? = Yi<i(Fi — 7;)*.  This L4 e
choice of Lp corresponds to small scale velocigy-

correlated in time and ensures that, in the limit where two
points (say7; andr,) come close together, the correlation

function behaves aF; — 7|*?. For @ — = the Hopf '3
equation (2) reduces, up to a multiplicati®®/? factor

expressing the scaling of the correlation time, to the form

it has in the Kraichnan’s white in time velocity limit g 1.2

(with the K41 power spectrum) [15].

It was found that the homogeneous solution of Eq. (2),
determined by the zero modes of the linear Hopf opera-
tor appearing on the left-hand side, dominates in the scal- 11
ing range, making the inhomogeneous forced solution
irrelevant [8—10]. Rotational invariance of the homo-
geneous problem plus the fact that the 3-point function Y7/ B A I B
is odd under parity imply that the latter must have an- o 2 4 6 8 10
gular momentuni = 1. Using the translational symme- a
try, Eq. (2) can be reduced to an elliptic boundary valug g 2 The scaling exponent of the 3-point correlation

problem in two variables; after expressing the operatorfunction as a function ok. The exponent tends tb ~ 1.38
as finite differences, the resulting banded matrices ar@hena — «. Close toaw = 0, A = 1 + 0.4a> — 0.35a°/%.
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quadrantx;»/y = 0. The data is nondimensionalized ' T ' T

by dividing by F3(y) = (6(0) — 6(y)]*)/6 which is //
also used to measure the scaling exponert 1. The R
theoretical functiorC; = (6(A4)0(B)6(C)) shown in Fig. 3 L,/

is to be compared with the experimentally measused p e
shown in Fig. 4. The two have a similar qualitative be- - / L7
havior which includes the predicted and observed change
of sign of the correlator from negative to positive with in- 7 .
creasingy;/y as the observation poinsandC separate, . . _
and the observation triangle evolves from acute to obtuse L7 7 s

at vertexA. The best fit fora = 0.75 (corresponding to - . -

A = 0.27) yields agreement on the level 68%. -7 - - -
It is instructive to compare the positions of the node - T
C; = 0. Quite generally, one can prove that any func- R TS g ety
tion depending on configuration of three points and trans-

forming as/ = 1 under rotations must vanish because ofFIG. 3. Contour plot of the computed (fax = 0.75) cor-
the additional permutation symmetry for an equilateral tri-relation function (6(4)6(B)6(C)) for three coplanar points,
angle [which corresponds ttx;/y,x2/y) = (0,2/+/3)]. A= +x/2y), B=(x,0), and C = (0,0), as a func-

. e . tion of x,/y (horizontal) andx;/y (vertical) in the range
Indeed, the measuresl;; is zero (within experimental 0= x/y.0,/4=5. Integer values of the coordinates are in-

error) at that point. The measured correlator disagreegicated by ticks along the perimeter. Isocontours are separated
with the prediction in two ways: (a) It is nearly lin- by 0.2. The scaling exponent is= 1.069.

ear as a function of,/y near the origin, compared to

the sublinearxi“, behavior expected far, — 0, as the a positive contribution t¢6(A)0(B)0(C)) and, if B = C,

(B, C) pair of points merge together; (b) there is a con-this would be the only possibility. However, &and C
siderable deviation for large; ,/y. These deviations are separate there appears an increasing number of configura-
not unexpected because the scaling range is limited b§ons where eitheB or C fall onto the positive side of the
the dissipation scale on the side of small/y and by front, resulting in a negative contribution so that eventually
the integral scale fox;,/y large. Since the ratio of to ~ C3 changes sign. Although for each angethere exist

the integral scale is=0.05, one may expect a0% level two fronts with opposite signs, their probabilities are not
error for (x;/2/y) = 5 in the outer extremes of Figs. 3 equal and the net effect remains. Teepredicted by this
and 4, wherex;,/y = 5. Additional measurements [11] naive front model is shown in Fig. 5 and fully captures the
at largery separations reveal an improved agreement fogualitative behavior of both the calculated and the mea-
smallx,/y at the expense of thg ,/y > 1 range, where sured correlators. Of course, the magnitude of the fronts
the integral scale crossover effect becomes more severiaas a nontrivial distribution of its own and the fronts are
confirming our interpretation. Future experiments with
more extensive scaling range should be closer to the theo-
retical limit and further theoretical work may compute
subleading modes describing the crossover behavior.

Let us return to the physical interpretation of the con-
figuration dependence of the 3-point correlator. The skew-
ness of the temperature fluctuations is attributed to the
transient appearance of sheets of intense scalar gradi-
ent (fronts) preferentially aligned with the normal to the

large scaleG. Provided the instantaneous density of such
sheets is low, their contribution to the 2-point skewness is
{O(r) — ©(0)P) ~ r, consistent with the observed scal-
ing exponent. Our observation that the same scaling per-
sists when all points are spread apart supports the notion
that the sheets extend up to the integral scale. The sim-
plest realization of the “front” picture assumes a single unit
step in the® field appearing at an angl¢ with respect FIG. 4. Contour plot of the generalized 3-point structure
to the large scale gradient with probability+ a cosé functions S;; measured in the experiment, plotted in the

. - same range ofx,/y,x,/y) as in Fig. 2. The isocontours are
(corresponding to a pure= 1 mode). Let the front [see separated by 0.2. The value of is 3.6 mm; the integral

Fig. 1(b)] cut across the observation triangle with verex |ength scale is 7.1 cm, and the dissipative (Kolmogorov) scale
on the positive side anfl, C on the negative: This gives isn = 0.2 mm.
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