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ABSTRACT: We derive the elastic theory suitable for describing the free energy required to deform a stiff 
helical molecule with the symmetry of DNA. At quadratic levels in the strains we find, in addition to the 
independent bending and torsional energies incorporated in previous theories, a previously unknown coupling 
between twist and bend. If the backbone is given constant curvature, minimization of the free energy with 
respect to the twist degrees of freedom indicates that this coupling drives a decrease in the molecular twist, 
or an unwinding of the helix. New experiments are proposed to bring out the symmetry-breaking effecte of 
the twist-bend coupling: (i) ring closure experiments will indicate a helix repeat that becomes progressively 
more underwound for smaller rings, and (ii) gel mobilities of supercoiled rings of integral-helix-repeat length, 
with equal and opposite added linking numbers, will differ. 

I. Introduction 
DNA, in addition to being the information storage 

element for biological protein synthesis,lV2 is the molecule 
most like the theorist’s notion of a polymer. In living 
organisms, single linear chains of as many as 108 elementary 
units (nucleotide “base pairs”) not only are precisely 
controlled in length but also have precisely controlled 
sequences of interchangeable base pairs. The ability to 
control such a long chain with such precision is impossible 
using today’s synthesis methods applied to the molecules 
usually associated with polymer science, e.g. polystyrene, 
poly(dimethylsiloxane), poly(ethy1ene-propylene). 

In water, a t  moderate salt concentrations, a linear DNA 
molecule (removed from an organism and from contact 
with proteins) behaves as a flexible, self-avoiding polymer 
at  long length scales, with statistics identical to those 
expected for any linear chain in a good solvent. However, 
a t  short length scales, DNA is a stiff polymer with, in 
addition to bending persistence, persistence of internal 
twisting degrees of f r e e d ~ m . ~ ~ ~  In this paper, we focus on 
the description of the free energy of deformation at  these 
shorter length scales. Interactions of DNA with proteins 
which regulate ita expression and control its conformation 
frequently occur on these scales. 

Our major result is that for amolecule with the symmetry 
of DNA, the bending and twisting degrees of freedom are 
not independent. At the lowest (quadratic) order in 
deformations from the undistorted state, there is a coupling 
of twist and bend. To our knowledge, all previous 
researchers3-8J4 have used models with decoupled twist 
and bend degrees of freedom. Intriguingly, Fuller3 com- 
mented that left- and right-handed twists are distinct for 
a chiral structure such as B-DNA; no effort was subse- 
quently made to understand the nature of this asymmetry. 
We show quantitatively how our twist-bend coupling gives 
rise to the effect that Fuller suggested. 

This work is organized as follows. To begin, in section 
1I.A we must introduce appropriate strain degrees of 
freedom. We ignore microscopic stretching degrees of 
freedom, which corresponds to the fact that, over a 
persistence length of DNA (the length of chain which needs 
about kT of energy to be deformed into a circuit, about 
500 A)+ a compression or extension requiring a similar 
energy is a miniscule fraction of that persistence length. 
Ignoring the stretching degrees of freedom allows any 
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deformation to be written in terms of the sequence of 
rotations relating the successive base-pair orientations, a 
prescription followed by previous r e ~ e a r c h e r s . ~ J ~  We 
then expand the free energy in these strains and identify 
what couplings remain after taking into account the 
symmetries of the molecule. 

What remains a t  quadratic order, in addition to de- 
coupled twisting and bending energies, is a coupling of 
twist to bend. In section ILB, we express the resulting 
quadratic free energy in terms of more useful quantities 
than our strains, namely the (Frenet-Serret) curvature 
and torsion of the backbone and the rate of change of the 
molecule twist. This allows simple computation of the 
response of the twist degrees of freedom to backbone 
deformations later in the paper. In section ILC, we make 
some brief comments about thermal fluctuations in our 
model. 

In section 1II.A we carry out a simple perturbative 
calculation using minimization of the quadratic free energy, 
deriving the effect of the twist-bend coupling for a chain 
constrained to follow a path with constant curvature and 
torsion. We find that the twist-bend coupling causes an 
unwinding of the helix, under conditions of constant 
backbone curvature. The shift in twist is nonlinear 
(quadratic) in the twist-bend coupling, and thus always 
of the same sign. In section IILB we verify the perturbative 
result in a limit that allows an exact solution of the 
functional minimization problem. 

In section IV, we discuss several consequences of our 
results. First, in section IV.A, we discuss the effective 
free energy after averaging over the helical repeat length, 
which now has a term that breaks chiral symmetry (as 
does the molecule itself), due to the nonzero coupling of 
twist and bend. In section IV.B, we discuss the twist state 
of small DNA rings, along with recent experiments. In 
section IV.C, we note that the twist-bend coupling by 
itself cannot increase the twist of DNA adsorbed onto a 
helical path on a cylindrical surface. This suggests that 
the increased twist reported for DNA on nucleosomes is 
due to details of the adsorption potential. In section IV.C, 
we note that the breaking of chiral symmetry by the 
quadratic twist-bend coupling (and by higher-order cou- 
plings) should lead to differences in certain properties of 
topoisomeric rings of DNA with excess linking numbers 
+n and -n. This suggests new experiments that could be 
done to test our ideas. Finally, in section IV.E, we discuss 
the additional questions raised by this work. 
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V 
Figure 1. Schematic diagram of the B-DNA molecule. The 
molecular diameter is d = 20 A, the helical repeat length is 1 = 
27r/w0 = 34 A, corresponding to a stack of about 10.5 nucleic acid 
bases. The nucleotides are bound between the sugar-phosphate 
backbone helices: we note the arrows on the side view (upper 
portion of figure), which indicate the opposite directedness of 
the two helices. The wide major groove is marked “M”, while the 
narrower minor groove is marked “m”. The lower part of the 
figure shows the end view of B-DNA, with tangent t directed out 
of the page. 

11. Elastic Free Energy of DNA 
A. Symmetry Analysis. B-DNA molecules2 are right- 

handed chiral rods of cross-sectional diameter d = 21 A. 
As schematically shown in Figure 1, the pairs of nucleotides 
(occupying the major groove region, denoted M in Figure 
1) are arranged in a helix with a pitch of about 1 = 34 A 
corresponding to a helical repeat every 10.5 base pairs 
(bp). We define the molecular axis (the center of the 
molecule) to be described by the space curve r(s), with s 
being arclength. The tangent t 1 dr/ds thus has unit 
length. 

At  any s, consider the plane perpendicular to t. The 
two sugar-phosphate backbones (the two helices, drawn 
with opposing arrows in Figure 1) intersect this plane at  
two points R and S. We define u to be the unit vector in 
this plane that points from the molecular axis to the 
midpoint of E. A final unit vector v is defined by v = 
t X u so that the set (u, v, t) forms a right-handed 
coordinate system at  each point s. It will be helpful to 
temporarily use indexed vectors e(l) u, e(2) = v, and e(3) 
= t. 

A general deformation of the molecule that maintains 
t2 = 1 may be described by infinitesimal rotations Q(s)  of 
the coordinate  axe^:^^^ 

de“’ 
ds 
-- - + ill x e“’ 

where 00 = 2* /1= 0.185 A-l determines the helical repeat 
length in the absence of deformations. We may think of 
the components Oi = il.eci) as “strains” which locally 
generate rotations of the coordinates around e(’). If Q = 
0, the molecule takes its undistorted configuration shown 
in Figure 1. The molecular axis r(s) is obtained for general 
Q by integrating the tangent equation dr/ds = e(3). 

The integral T w  = L/1 + J ds Q 3 / ( 2 r )  is defined to be 
the double helix “twist”3 where L is the molecule length, 
and where the integral is from s = 0 to s = L. For an 
undistorted molecule, T w  = L/1, and Tw just counts the 
number of helical turns of length 1 along the chain. For 
a distorted chain, the excess twist per helix repeat is (Tw 
- L/l)/(L/l) = ( Q 3 ) / ~ 0 ,  where we use the notation ( Q 3 )  = 
L-’J; ds Q3(s) to denote an average along the chain of 
length L >> 1. 

Since we assume that the Q = 0 state is equilibrium, we 
may write the free energy for small strains as a Taylor 
expansion in a and its s derivatives.10 The lowest order 

terms are 

(2) 
where we have introduced the matrices Aij and Aijk, which 
are symmetric under all permutations of their indices, 
and where the integral runs over the molecular axis of 
length L. If we ignore nucleotide-sequence dependence 
of the elastic properties of the molecule (or if we restrict 
our attention to symmetric repeats such as ($i)N then the 
A matrices have no s dependence, since in these coordi- 
nates, every point along the molecule in the undistorted 
state is equivalent. We will refer to these matrices as the 
“elastic constants”: they may depend on environmental 
factors (temperature, ionic strength, pH, etc.). We will 
ignore the constant free energy A0 for the remainder of 
this paper. 

The  second-order matrix has six independent 
components: All ,  A22, A33, A12, A139 and A23. We now 
show how symmetries make some of these components 
vanish. Note that rotation by 180’ around the vector u 
is a symmetry of the undistorted molecule (see Figure 1). 
Now consider an infinitesimal segment of length ds from 
s = -ds/2 to ds/2, with uniform strain Q = (01, 02, OS).  
Rotation of this segment by 180’ around u(s = 0) yields 
precisely the segment configuration with uniform strain 
il’ = ( 4 1 ,  Qz, O3). Therefore configurations D and D’ have 
the same free energy, indicating that A12 = A13 = 0.l’ 

We note that rotations by 180’ around either t(0) or 
v(0) do not take our infinitesimal distorted segment to a 
configuration with transformed D because these operations 
are not symmetries of the undistorted molecule. The lack 
of symmetry under these operations is due to the existence 
of two distinct regions of the DNA surface bounded by the 
two helices, marked “M” and “m” in Figure 1. These two 
regions are referred to as the ”major groove” and the “minor 
groove”, respectively. The minor groove is narrow, while 
the major groove is wider, filled up by the nucleotides 
which are bound between the backbones. The two grooves 
are also distinguished by the opposite directedness of the 
sugar-phosphate backbones on their boundaries. A ro- 
tation of the undistorted molecule around either t or v by 
180” exchanges the major and minor grooves. 

Chiral polymers without this particular broken sym- 
metry (e.g. a double-helix polymer with indistinguishable 
backbones, and therefore invariant under rotation by 180’ 
about t) will have A23 = 0. Finally, one should note that 
reflections (useful in derivation of the elastic energy of 
thin rods with reflection symmetrieslO cannot be used to 
analyze a chiral rod such as DNA. 

Thus, the nonzero elements of then = 2 elastic constant 
matrix are All ,  A22, A33, and A23. Physically, A11 and A22 
are (distinct) bending constants associated with bends 
locally in the planes perpendicular to u and v, respectively. 
We expect these constants to be approximately equal to 
the bend persistence length ~ 5 0 0  A.4 The constant A33 is 
just the twist rigidity, and is roughly equal to the twist 
persistence length 2500 A.4 

In addition to the bending rigidities and twist rigidity, 
we have a coupling A23 of bends about the local v axis and 
the twist in the quadratic (O(Q2)) elastic theory. Its overall 
magnitude should also be controlled by the degree by which 
rotations of the molecule by 180° about v and t are not 
symmetries. For DNA, these operations essentially ex- 
change the major and minor grooves of the molecule, which 
are rather different in structure: we thus expect A23 =Ai,. 
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The above analysis applied to Aijk indicates that only Alll, 
A1239 '4133, and A122 are nonzero. Extension of this to higher- 
order terms is straightforward. 

B. Free Energy in Terms of Axis Curvature, 
Torsion, and Twist. For the remainder of this paper, we 
study the free energy of section II.A, truncated at  quadratic 
order in the strains Q: 
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We suppose that space-fixed axes {x, y, z) are rotated 
into {Pi+)) by successive rotations around the z, x ' (s) ,  and 
z"(s) axes by angles ab), p(s), and 76). For a chain of 
length L,  it is straightforward to show that Qi(s) --Qi(L 
- s) under the transformation ( 4 s )  - a(L - s), B ( s )  - B(L 
- SI, Y(S) - r (L - 41. 

The quadratic portion of the free energy (2) and the 
integration measure for statistical-mechanical averages 
over the Euler angles (a product of da  d[cos 01 d r  factors) 
are unchanged by this transformation. Therefore, (Jds 
Q ~ ) T  = 0, where (-)T indicates that a thermal average is 
taken. 

This means that for a freely fluctuating open chain of 
length L, the mean twist is just that of the undistorted 
state: (Tw)T = L / l .  Of course, there will be correlations 
between the bending strain Q2(s) and the twisting strain 
Q3(s) introduced by A23. At higher order, there are terms 
in the energy that change when Qi - -Qi (e.g. the cubic 
terms of (2)): these will lead to small nonzero (Qi)T. 

For a ring polymer of length L, we require that the 
molecular axis be closed (r(L) = r(0)) and that the local 
coordinate axes come back to themselves (ei(L) = ei(0)). 
Only configurations of the polymer satisfying these 
constraints should be included in the partition sum, a 
further complication beyond the nonlinearity of the energy 
function. It is easy to see that with the ring constraints, 
the above argument for ( Q i )  = 0 will fail. This is because 
generally, the two configurations related by Qi(s) --Qi(L 
-s) are not both closed. We demonstrate this with asimple 
example. Suppose that &(s) = K sin os, = K cos us, 
and Q3(s) = w - 00, for constant K and w. Referring to (6), 
we see that r(s) is a circle of radius 1 / ~ ,  and that there is 
excess twist proportional to w - uo. The torsion of the 
molecule axis is zero. For smooth closure of the circular 
molecule, we require uL = 27m for integer n. 

Now consider the new configuration Qi(s) = -Qi(L - s): 
it is easily seen that the curvature is again constant K' = 
K ,  but that the torsion of this new configuration is 7' = 2uo. 
This nonzero torsion and curvature means that the axis 
is not a right helix, and is certainly not closed. The loop 
constraint thus breaks the symmetry of the statistical 
weight under Qi(s) --Qi(L-S). An important consequence 
of this is that a relaxed but circular DNA molecule will not 
have zero average excess twist. In the next section we will 
explore this phenomenon by computing the lowest energy 
twist configuration for a DNA segment with prescribed, 
constant backbone curvature and torsion. 

111. Minimum Free Energy for Constant 
Curvature and Torsion 

In this section we calculate the configuration of min- 
imum free energy of a DNA molecule, assuming that the 
(Frenet-Serret) curvature and torsion of the molecule axis 
r(s) do not depend on s. This will allow us to understand 
what the effective free energy is, in terms of curvature, 
torsion, and the twist of the molecule after taking into 
account the short-length-scale twist response. We will 
find that a bend of the molecule induces a change in the 
equilibrium twist and that a twist of the moelcule changes 
the effective bending rigidity. Essential to the following 
is the physical fact that there is a separation of length 
scales corresponding to (a) typical bends of radius com- 
parable to the bend persistence length (=A = 500 A4) or 
twists over lengths comparable to the twist persistence 
length (4 = 500 A4) and (b) the helix repeat length ( I  = 
34 A) at which the twist-bend coupling oscillates. We 
seek @(s) minimizing (7) for the case where K and r are just 
constants. This will allow us to compute the twist response 

= Jt  ds [Al1Q; + A2,0,2 + A3,Q,2 + 2Az3QzQ31 (3) kT 2 
Our aim is to re-express this free energy in terms of 
variables such as the molecular curvature which are more 
intuitive than Qi. In what follows, s subscripts denote s 
derivatives. 

The molecular axis r(s) may be expressed in terms of 
an ordered set of orthonormal vectors: the tangent unit 
vector t = r8, the normal n, and the binormal b, where the 
last two are defined through the Frenet-Serret equations:12 

t, = Kn n, = - ~ t  + rb b, = -rn (4) 

where we have introduced the curvature K ( S )  and torsion 
7(s). We can expect n, b, and t to vary on a scale 
comparable with the bend persistence length. 

Since the vectors (u, v) and (n, b) are coplanar and with 
t each form right-handed triads, we may write 

(5 )  
where the winding angle +(s) rotates the slowly varying 
(n, b) into the rapidly rotating (about one cycle per helix 
length 1) (u, v). The three variables K ,  7, and 6 may be 
used to eliminate the three Q i ,  using the relations 

u + iv = e-'#'')@ + ib) 

52, = -v.t8 = K sin 4 

Q, = U.t, = K COS 4 
- 

Q3 = v-us - wo = 6, - w (6) 

where i = wo - 7. 

= A33, and D = A23, we write (3) as 
Using notation A = (A11 + A22)/2, B = (A11 - A d 2 ,  C 

= Jt  ds [AK' - BK' COS 24 + C(4, - i)' + kT 2 
2 0 ~ ( 4 ,  - i) cos 41 (7) 

We see that A is the usual bending rigidity of the Kratky- 
Porod model of a stiff polymer,l3 B is an asymmetric 
bending ~ons tan t , '~  C is the twist rigidity,3i4 and D is the 
twist-bend coupling. We note that B and D multiply 
oscillating functions with zero mean, the former making 
about two cycles per helix repeat and the latter making 
about one cycle per helix repeat. The effects of B, and 
even the existence of D, have not been mentioned in the 
previous work on DNA conformation e n e r g e t i ~ s . ~ ~ J ~  

C. Thermal Fluctuations. The model (3) looks like 
a Gaussian model, being quadratic in the variables Qi. 
However, Euler anglesg describing the orientation of the 
local coordinates e%) should be integrated over, rather 
than Qi, in the calculation of statistical-mechanical av- 
erages. The free energy in terms of Euler angles is 
nonlinear, complicating evaluation of the partition func- 
tion. However, there are some basic comments that can 
be made about thermal averages using energy (3). 

Consider rotated coordinates fci) where f(l) + if(2) 
eiw@(e(l) + ie(2)) and f(3 = e(3). The new unit vectors satisfy e) = C4 X fci). This transformation removes the uniform 
rotation of the e") around the tangent a t  rate 00. 
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to axis curvature and torsion, useful for, e.g., computing 
the twist response of DNA wrapped around a cylinder to 
form a superhelix, as occurs in adsorption onto nucleo- 
somes. 

For K and 7 independent of s, and for L >> 1, (7 )  becomes 
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LkT- -@ 2 + J;? E(4s- & I 2 -  b cos 24 - 2d cos 41 (8) 

where b = B K ~ / C  and d DK& are just constants. Since 
K and 7 will be much smaller than wg, we see that d lb  = 
O ~ / K  >> 1. We have thrown away a term of the form 4s cos 
4 which can be integrated, giving rise to a surface term of 
order 1/L which can be ignored in favor of the remaining 
terms. 

The $(s) minimizing (8) satisfies the Euler-Lagrange 
equation d8(6Fl6&) = 6F/64, or 

(9) 4ss = b sin 24 + d sin 4 

4s2 = 0' - b COS 24 - 2d COS 4 

which may be integrated to yield 

(10) 
where w is an integration constant that we will see is related 
to the mean twist, and therefore will be comparable to wg. 

A. Effect of Twist-Bend Coupling for Small KIwO. 
In this subsection, we perturbatively calculate the free 
energy (8) at  second order in the small parameters blwo2 
and d / q 2 ,  using 4(s) satisfying (10). We first note the 
results a t  "zeroth order" in b and d.  Setting b = d = 0 
allows (10) to be integrated to obtain 4(s) = ws + 4(0), 
corresponding to a uniform winding rate. The free energy 
per length is FILkT = A K ~ / ~  + C(w - ;)2/2. The constant 
w is then set by minimizing FILkT, giving w = ;, or Q3 = 
0. The equilibrium twist is thus just Tw = LI1, inde-  
pendent  of the axis curvature and torsion. 

For nonzero b and d ,  we may compute the relation 
between the molecule length L and @ $(L)  - 4(0), the 
total winding angle, by simply integrating (10): 

where terms of higher order than b2 and d2 (denoted O(3)) 
are ignored. The mean rate of change of 4 along the 
molecule (averaged over many helix repeats) is therefore 

) (12)  

We note the absence of terms linear in b and d which, 
since they multiply cos 24 and cos 4, vanish apart from 
a small boundary contribution. 

The free energy per length is thus 

-- F A K ~ +  
L k T - 2  

up to boundary corrections of size 1/L. Since there are no 
O(1) terms in (&), and since we know that a t  equilibrium 
q58 - G will be at most O(l), we may replace (&) = w without 
making O(2)  errors in FIL. 

At this point we aim to write the free energy as an 
expansion in w - G. Plugging in &, obtained from (10) 
(noting that @s > 0 for a right-handed molecule) allows us 

to write the integrand of (13) as 

(w - i ) 2  
(14) 1 b2 - r (- cos2 24 + d 2  cos' 4) + - 

w3 4 W 

where we have ignored terms linear in cos 4 and cos 24 
that vanish after the 4 integrations and where we have 
kept all terms to O(2) in b and d.  Integration yields the 
free energy per length: 

(15) 
which we see has a nontrivial term at  O(2) in b and d.  

If we imagine that we constrain the molecular axis to 
have constant curvature and torsion, then we can compute 
the equlibrium twist response by minimizing the free 
energy with respect to w,  giving 

(16) 

and equilibrium free energy 

We observe that as d2 a K ~ ,  there is a softening of the 
bending rigidity due to the twist-bend coupling. The 
equilibrium winding rate is obtained from (12) to be 

- 1 d2  1 b2 
(&) =w- - - - - -+O(3 )  2 ;3 a i 3  

We see that the equilibrium winding angle is reduced by 
the presence of nonzero b and d :  the helix tends to be 
unwound by the relaxation of the twist degrees of freedom, 
if the axis is given curvature. The corresponding twist is 

again showing an unwinding of the helix for nonzero b and 
d. 

B. Exact Solution to the Euler-Lagrange Equation 
for b = 0. In the case where we set b = 0 (a reasonable 
approximation since we will usually have KIwg << 1 and 
thus bld << 1) the Euler-Lagrange equation (10) may be 
explicitly integrated. The length of moleculei over which 
4 changes by 2a is 

for k2 = 4d/(w2 + 2d), where F is the elliptic integral F ( k )  
= dx (1 - k2 sin2 x ) - ~ / ~ .  

The free energy of a segment of length1 may be explicitly 
computed by plugging (10) into the free energy (7) and 
then integrating over 4 from 0 to 27. Per unit length, the 
resulting free energy is: 

where E is another elliptic function: E(h) dx (1 
- k 2  sin2 x)1/2. Equation 21 is easily numerically minimized 
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these contributions to the elastic energy from the degrees 
of freedom a t  subhelical scales. However, we also find a 
coupling of the square of the curvature to the twist, which 
arises from the constraint that the axis follows a path with 
mean curvature and torsion. 

We imagine a segment of DNA with an imposed twist 
and curvature: its free energy per unit length is given by 
(15). Using the relations (12) between w and ( 4 d )  and (6) 
between 48 and Q3 and keeping only lowest-order terms, 
we may express the free energy in terms of the average 
excess twist ( 0 3 ) :  

0 00 0.05 0.10 0 15 0.20 
Molecule curvature ( D n ) / ( C w , )  

Figure 2. Equilibrium excess twist (Qa) /wo per unperturbed 
helix repeat for b = 0, versu dimensionless curvature D~l (Cw0) .  
The solid curves are obtained from the exact solutions of the 
EulerLagrange equation, while the dashed curves are the O(d2) 
perturbative result. Results for three values of axis torsion are 
shown, from top to bottom, duo = -0.1,0, and +0.1, respectively. 

to find the equilibrium value of w. Since the average 
winding rate is just (&) = 27d, we have (Q3) = 2747 - w. 

In Figure 2 we display the exact result for the excess 
twist ( Q ~ ) / w o  as a function of the dimensionless curvature 
DK/(CWO) = d/(;wO), for torsions 7 / 0 0  = 0 and 7/00  = iO.1. 
The dashed lines show the O(d2) excess twist from the 
previous subsection for b = 0, namely (QS)/WO = -d2wo/ 
(2;3). As discussed above, the response to constant 
curvature is an untwisting of the helix. The exact and 
perturbative results are asymptotically the same as DK/ 
(COO) - 0 and do not substantially differ until DK/(CWO) 
> 0.2. Positive torsion gives rise to a slight further 
unwinding of the helix, while negative torsion slightly 
reduces the twist response. Torsions beyond about r1 = 
50 A, or T/WO = 0.1, are not likely in experiment, so we 
conclude that our perturbative results will apply in most 
experimental situations. 

IV. Discussion 
In this section we first consider the consequences of eq 

19, which implies that agradual bend of the DNA molecule 
gives rise to an "unwinding" or reduction in average twist. 
The effects that we will discuss are (a) the effective free 
energy for a DNA segment averaged over one period of 
twist includes a term that couples twist to the square of 
curvature, reflecting the broken chiral symmetry of the 
molecule; (b) DNA rings with large curvatures formed in 
cyclization experiments will have twists lower than that 
of a straight segment; (c) a chain constrained to follow a 
helical path with constant curvature and torsion (a 
solenoidal supercoil as found in nucleosomes), but without 
constraint of its twist, will be underwound; (d) rings of 
DNA with linking number excesses ALk of +n and -n will 
have different average structures. Finally, we wil l  discuss 
the shortcomings of the present work and describe how 
one might overcome them. 

A. Effective Free Energy Averaged over the Helix 
Repeat. The free energy used to describe distortions of 
DNA after averaging over the helix repeat length is usually 
taken to be the sum of a bending energy proportional to 
the square of curvature and a twisting energy proportional 
to the square of the deviation of the twist from WO. For 
constant molecular axis curvature and torsion, we find 

D2 (Q3) 
F = J ds [(A - $ ) K ~  + C( + - -21 (22) 

2 c *o 
There is no term of type T K ~  in the effective free energy 
to this order of approximation: T would first appear in a 
term proportional to (D2 /c )~ (Q3)~2 /w~2 .  We note that B 
does not appear a t  this order since it first occurs in a term 
proportional to K ~ .  For fixed K, minimization with respect 
to (Q3) gives the excess twist (19) for 7 = 0 (QS) /WO = 
-(D/c)2(~/wo)2/2. 

The free energy (22) differs from the usual curvature- 
twist model (the first two terms)3-sJ4 by having an 
additional term of the form ( 5 2 3 ) ~ ~ .  This term, being odd 
in (Qs), discriminates between positive (right-handed) and 
negative (left-handed) twists and is due to the right-handed 
double-helix structure of DNA. For left-handed DNA, 
the same analysis would lead to this free energy with a 
( Q3)K2 term of opposite sign. In either case, the response 
to curvature is an unwinding of the molecular helix. 
Alternately, we observe that an imposed twist changes 
the effective persistence length: overwinding the helix on 
the molecule ( ( Q 3 )  > 0) stiffens the molecule, while 
underwinding the helix ( ( Q 3 )  < 0) makes the resulting 
structure easier to bend. 

The original quadratic elastic constant matrix Aij must 
have positive eigenvalues for stability of the unstressed 
state: A11 > 0 and A22A33 > A z ~ ~ .  Assuming that A22 > 
0 and A33 > 0 (the latter is required for twist stability in 
(2211, we see that (A11 + A22)A33 > A2s2 holds. This is just 
the stability condition that the bending ( ~ 2 )  term in (22) 
be positive. 

Equation 22 is suitable for describing the twist response 
when the molecular axis is constrained to have slowly 
varying (compared to the helix repeat) curvature and 
torsion. As mentioned in section II.C, any constraint on 
the curvature, torsion, or topology will drive the excess 
twist to a nonzero equilibrium value. These constrained 
situations are distinct from an open chain: recall from 
section ILC that the equilibrium excess twist vanishes for 
the open chain. 

The first correction for D # 0 to the effective free energy 
is of order ( Q ~ ) K ~ ,  cubic in the strains. One might think 
that cubic terms in the free energy (Alll, A122, A1239 and 
A133) will lead to corrections at  this order. However, the 
contribution of these terms may be easily seen to vanish 
at  cubic order by considering their contribution to the 
free energy (8) as a perturbation: 

6A123~~(4, - ii) sin 4 cos 4 + 3A133K(4s - ii12 sin 41 (23) 
To obtain the third-order contribution of these terms to 
the free energy, we need only plug into (23) the lowest- 
order approximation to the solution of the EulerLagrange 
equation,154(s) = us + $40). The higher-order corrections 
to 4 that we calculated in section 1II.A introduce terms 
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of higher than third order. The oscillating functions of Cp 
cause each of the third-order contributions to (23) to 
vanish. This is analogous to the vanishing of the contri- 
bution of A23 to the free energy, a t  second order in the 
strains. 

B. Twist State of Small DNA Rings. Circular DNA 
molecules can be made with precisely controlled cir- 
cumferences.16-18 Molecules with circumferences of as 
little as 200 bp may be constructed, corresponding to circles 
of radius r = 100 A. The radii of such rings are less than 
the persistence length, and thus they are circular, as 
fluctuation away from this shape will require many kT. 
The formation of such rings by cyclization will require 
fluctuations that bend the rings into essentially circular 
shape. 

The duration of such a bend fluctuation will be of the 
order of the relaxation time of asegment of the persistence 
length (=A)  subject to hydrodynamic effects, or A3q/kT, 
where q is the solvent viscosity. Using A = 500 A and q 
= 0.01 P, we find a lifetime of around 3 X s. The twist 
degrees of freedom will equilibrate rather quickly, since 
one only needs to wait for twist to diffuse down the helix,4 
requiring a time of order Ad2q/kT (here d is the DNA 
diameter of 20 A), or about 5 X lo4 s. The separation of 
these two time scales indicates that the twist state 
equilibrates during the bending fluctuations. When 
cyclization occurs, we therefore expect the twist state to 
be described by the free energy minimum calculated in 
section 111. 

We thus use eq 19 for the twist response for a DNA 
circle with K = l / r  and 7 = 0 to find ( Q S ) / W O  = -0.5(D/ 
C)2/(rcoo)2. For r = 100 A, we find (Q3)/wo = -1.6 X 

This is a small, but measurable, effect: accuracies 
of 0.01 base pairs in determination of helix repeats have 
b e e n  o b t a i n e d  i n  r e c e n t  c y c l i z a t i o n  e x -  
periments.1618 In fact, =200 bp rings17 were measured to 
have a helix repeat of 10.54 bp, while longer 250 bp16 rings 
showed a helixrepeat of 10.45 f 0.02 bp, and 366 bp rings1* 
were found to have a helixrepeat of 10.44 bp. Thevariation 
in helix repeat in the correct direction (an unwinding) to 
be described by the twist-bend coupling and the exper- 
imentally observed effect could be produced by a twist- 
bend coupling of D / C  = 2.4. 

It is essential to note the solvent conditions and the 
precise sequence in these experiments differed so that 
this explanation of the variation of the helix repeat is not 
at all conclusive. However, an unambiguous experiment 
could clearly be designed to test our predictions. 
C. Twist State of the Helical Supercoil on t he  

Nucleosome. In eukaryotic cells, DNA is stored adsorbed 
onto disk-shaped protein complexes called nucleosomes: 
the DNA is wrapped around nucleosomes in a left-handed 
helical configuration2 similar to that drawn in Figure 3a. 
This fact motivates consideration of the twist response 
for a chain whose molecular axis is constrained to follow 
a helix. 

The radius of this nucleosome “Superhelix” is about r 
= 45 A, and the superhelical repeat is about h = 27 A. The 
curvature and torsion of a helix are both constant, with 
K = r / ( r2  + p2) where h = 21rp. For the nucleosome 
superhelix, K = 0.022 A-l (=llr because r >> p). If we 
suppose that the twisting degrees of freedom may relax 
once the molecule is adsorbed onto this superhelix, we 
would expect a twist decrease of (&)/coo = -8 X 10-3(D/ 
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Figure 3. Supercoil structures: solid line represents an entire 
DNA molecule. (a) left-handed ”solenoidal” supercoil as found 
in chromatin; (b) right-handed “plectonemic” interwound su- 
percoil assumed by a free ring with negative excess linking 
number. 

C)2 (equivalent to an increase in helix repeat length for a 
straight segment of about +0.08(D/C)2 bp). 

The twist of DNA adsorbed on nucleosomes has been 
measured.lg This can be done with the following 
experiment: (a) adsorption of a linear molecule onto 
nucleosomes; (b) ligation of the linear chain into a ring 
while it is nucleosome-adsorbed; (c) release of the ring 
from the nucleosomes. The ring is observed to be 
supercoiled, and the linking number, which is a topological 
invariant, may be measured. Per unit length of molecule, 
it is found that ALUL = -2.0 X 10-3 A-l: about one link 
is removed per 146 bp of DNA. 

ALk = ATw + Wr, where the 
“writhing number” Wr is a function of the molecule axis 
geometry. For a left-handed superhelix, Wr/L = -s(l - 
s)/(27rp) with s = p / ( r 2  + p2)1/2.8 For the nucleosome- 
adsorbed state we have Wr/L = -3.2 X 10-3 A-l, giving 
ATw/L = (Q3)/(2a) = +1.2 X A-l, or ( Q ~ ) / w o  = +4 X 

The DNA is thus inferred to  be overwound by 4% 
in the nucleosome-adsorbed state.1g We caution that there 
exist alternative explanations of this effect that propose 
writhing of the internucleosomal, or linker, DNA.21 

Recent experiments that chemically “mark” exposed 
regions of the 146 bp DNA segment on a nucleosome22 
indicate that ATw = +0.23, giving ATw/L = 4.6 X 10-4 A-1 
or (Q3)/wo = 1.6 X which is smaller than the result 
of the supercoiling studies, but still positive (overwound 
molecule).23 It was further found that about two-thirds 
of the DNA segment bound to the nucleosome had a helix 
repeat of 10.05 bp, while the other one-third had a helix 
repeat of about 10.7 bp, suggesting that the twist on the 
nucleosome is not uniform. 

Comparing these experimental results with our theo- 
retical estimate of the twist change due to the twist-bend 
coupling for a helically bound chain, we see that it is 
unlikely that the presence of the twist-bend interaction 
is responsible for the twist of DNA on nucleosomes. In 
fact, supposing that the twist can freely relax after the 
chain is adsorbed predicts a negative excess twist, while 
a positive excess twist is actually observed. Thissuggests 
that details of the adsorption potential favor a twist 
increase for DNA present on the nucleosomes: in other 
words, the adsorption potential constrains twist as well as 
the molecular axis curvature and torsion. Further support 
for this conclusion comes from the result that the helix 
repeat changes from place to place on the adsorbed 
molecule.22 

D. Struc tura l  Asymmetry of ALk = in Topoiso- 
mers. Rings of DNA may be placed in states of different 
helix topology, states indexed by the integer linking 
number Lk of the twophosphate-sugar backbones. Chains 

By White’s 
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with identical chemical content but with differing linking 
numbers (different topologies) are referred to as topoi- 
somers, and they will have different geometrical structures 
due to the different amounts of stress energy stored during 
the addition or removal of units of linking. Typical 
supercoiled rings are ”interwound superhelices” with the 
basic structure shown in Figure 3b. If we suppose that 
the twisting number of the rod configuration Two = L/1 
is an integer (experimentally obtained by the use of a chain 
that is a near-integer multiple of I in length), then the 
excess linking ALk = Lk -LIZ is a positive or a negative 
integer. 

If the energy is just a sum of K~ and ( f2d2 contributions 
(i.e. if D = 0), we would expect the geometrical structures 
of molecules with excess linking numbers ALk = +n to be 
related to those with ALk = -n by mirror reflection or 
“parity” (the operation r - -r). Thus, geometrical 
properties whose definitions are invariant under parity 
reversal, such as the average radius of gyration of the 
molecules, will be the same for topoisomers with ALk = 
fn .  Likewise, properties of free supercoils in a nonchiral 
(parity-symmetric) environment, such as (a) diffusion rate 
across a thin porous membrane, (b) sedimentation coef- 
ficient in a nonchiral solvent, (c) electrophoresis mobility 
in a nonchiral medium, or (d) scattering properties in a 
nonchiral solvent, should be identical for chains with ALk 
= in, for vanishing twist-bend coupling D = 0. 

However, DNA rings with a twist-bend coupling D # 
0 will have a free energy term ( f 2 3 ) ~ ~  coupling bend and 
twist. Such a term breaks the parity symmetry of the free 
energy, and will cause topoisomers with linking +n and 
-n to have different structures, and thus, e.g., different 
mobilities in gel electrophoresis experiments. 

E. Further Questions. The twist-bend coupling 
discussed in this paper suggests some immediate theo- 
retical investigations. First, it should be feasible to 
compute the coupling using models for the mechanical 
energy of DNA developed by several research groups.24 
Furthermore, the higher-order elastic constants might be 
at  least estimated in magnitude using such calculations. 
Finally, it would be very interesting to estimate the scale 
of variations in the elastic free energy that arise from 
variations in the base-pair sequence. 

Real DNA often is intrinsically bent.25 It would be useful 
to apply the approach of this paper to a helical polymer 
with intrinsic curvature and torsion. A recent paper by 
Irwin and Olson examines this problem.26 

Once the scale of variations due to base-pair sequence 
is approximately known, it may be interesting to repeat 
the computations of this paper, with the modification that 
there are arclength-dependent elastic constants, as a way 
to take into account the effect of variations in sequence. 
In our formalism, arclength is treated analogously to time 
in a Lagrangian dynamics problem; thus sequence- 
dependent elastic constants will add “time” dependence 
to the elastic constants. If the sequence statistics can be 
modeled by a reasonably simple ensemble, there may be 
interesting problems involving the forcing of the twist by 
correlated stochastic forces. The nature of the twist states 
may include spatial twist chaos.27 We note that arclength 
dependence of the curvature and torsion of the backbone 
will also translate into time-dependent forcing of the twist. 

Now that we have ruled out the twist-bend coupling as 
being responsible for the overtwisting of DNA condensed 
on nucleosomes, we plan to focus on understanding what 
sort of adsorption potentials can give rise to the observed 
twist in chromatin. Clearly, it will be necessary to use a 
potential that is sensitive to where the minor and major 
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grooves are exposed to the protein: this introduces the 
notion that the state of DNA on nucleosomes may be 
described by the dynamics of a nonlinear oscillator in a 
periodic potential. Mode-locking and chaos are both 
possible in such a system. There may be even more 
interesting twist states arising from the alternation of 
adsorbed DNA and the connecting ‘linker’ segments. 

The calculations in this paper consider the backbone 
path to be prescribed. For chains not adsorbed to surfaces, 
it would be interesting to study the more difficult problem 
of the response of the axis curvature and torsion as well 
as that of the twist. For example, for rings, the curvature 
and torsion will have some small nonuniformity in the 
minimum free energy state; the twist response will be 
slightly altered from that calculated in this paper for small 
rings. 

Thermal fluctuations should be studied for the basic 
model introduced in section 11. We need a more complete 
picture of the fluctuations of an open chain, especially 
those that lead to ring formation, and also of fluctuations 
that occur after rings with a certain linking number are 
formed. As mentioned above, the exact form of the free 
energy of a ring as a function of excess twist would be 
interesting, and not too hard to calculate for small 
fluctuations. Finally, we are now at  work on a model for 
the plectonemic supercoiling of rings of DNA which have 
excess linking: we hope to be able to estimate the amount 
of asymmetry between chains with opposite excess linking. 
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