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A simple analytical argument is given to show that the distribution function of the pressure and 
that of its gradient have exponential tails when the velocity is Gaussian. A calculation of 
moments implies a negative skewness for the pressure. Explicit analytical results are given for 
the case of the velocity being restricted to a shell in wave number. Numerical pressure 
distributions are presented for Gaussian velocities with realistic spectra. For real turbulent flows, 
one expects that the pressure distribution should retain exponential tails while the pressure 
gradients should develop stretched-exponential distributions. In the context of the theory, 
available numerical and laboratory data are examined for the pressure, along with data for the 
wall shear stress in a boundary layer. 

I. INTRODUCTION 

In an incompressible (unit density) flow, the pressure, 
p, is an instantaneous functional of the velocity, Vi, deter- 
mined by 

V”p’ - (iliUj) (djUi) =$d2-s2, (1) 

where repeated indices are summed, w is the vorticity, and 
sfj= (apj++juf>/2 is the rate-of-strain tensor. In spite of 
the appearance of the velocity gradients, standard 
argumentsIp imply that various scales contribute to the 
pressure an amount proportional to their kinetic energy, 
and hence the large scales dominate.3 

The probability density function (pdf) of the pressure, 
in contrast to that of the pressure gradient, need not be 
symmetric, and, in fact, numerical simulationsP6 and lab- 
oratory experiments7 show that the pressure pdf is skewed 
to negative values, where it has an exponential tail. For 
isotropic turbulence, numerical simulations516 show a less 
pronounced exponential tail for positive values. While the 
second equality in (1) suggests that intermittency- 
enhanced vorticity fluctuations could be responsible for the 
skewne.ss,4 the dominance of the pressure by the large 
scales argues otherwise. Indeed, Kimura and Kraichnan’ 
have shown numerically that a Gaussian random velocity 
field generates a pressure field with negative skewness and 
exponential tails! 

In this paper we show analytically that, for a Gaussian 
velocity, the pressure pdf has exponential tails and negative 
skewness in both two and three dimensions. Two dimen- 
sions is actually very relevant, because the energy- 
containing eddies of the Taylor-Green” simulations of Ref. 
4, and those near walls, where the pressure was measured 
experimentally,7 are not isotropic. Also, the skewness is 
generally larger in two than in three dimensions. 

Merely the quadratic dependence of the pressure on 
the velocity can account for the exponential tails, and their 
occurrence is not an argument for “intermittency” under 
any reasonable definition of the term. In fact, we can con- 
clude that the ability to fit the pdf for negative fluctuations 
by a single exponential for real turbulence data argues 
strongly that there is no information about intermittency 

or small scales encoded in the tail of the pdf. The large- 
scale velocity modes, which manifestly set the variance and 
skewness of the pressure, already yield an exponential, 
which, provided it Jits the data for all negative pressure 
fluctuations, p - (p) 5 - dw, leaves nothing 
to be explained by “intermittency.” 

Only a stretched exponential pdf, such as would be 
obtained from a sum of exponentially distributed quantities 
with decreasing amplitude and increasing variance, would 
be suggestive of small-scale contributions. Simulations” 
show something of this sort for pressure-gradient pdf’s. 
Standard arguments’ determine the variance of the pres- 
sure gradient, or Lagrangian acceleration, to be 
--CJcfW(Wk12, where E(k) is the usual energy spec- 
trum. This expression is clearly dominated by small scales 
in the vicinity of the viscous cutoff. A purely Gaussian 
velocity, however, gives exponential tails not only for the 
pressure, but also for the pressure-gradient pdf. 

In the following three sections we consider a Gaussian 
velocity field. We derive general bounds on the pressure 
and pressure-gradient pdf’s, give several explicit analytical 
results, and present numerical pressure pdf’s for a few in- 
teresting cases. In the conclusion, we return to the question 
of what to expect for the pdf’s of the pressure and its 
gradient for real turbulent flows. We also examine avail- 
able data for the pressure and speculate on the relevance of 
our theory to data for the wall shear stress from a turbulent 
boundary layer. 

II. THE ANALYTIC STRUCTURE OF THE GENERATING 
FUNCTIONS 

If c(p) denotes the pdf of p, the generating function of 
P(p), P,(z) =Jdp P(p>exp(izp), is given by 

gp(z) = (eizp(o)),, (2) 
where the brackets denote an average over the velocity 
ensemble of interest. The asymptotic behavior of the pdf is 
determined by the analytic structure of its generating func- 
tion according to standard results on Fourier transforms. 
(Because we are interested in a homogeneous system, we 
concentrate, for convenience, on the pdf of the pressure at 
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the origin, p( x=0) and assume periodic boundary condi- 
tions.) In terms of the Fourier transform of the velocity, 
v(k) =Jdx v(x)exp(ix*k), the pressure becomes 

P(O) = - s 
kqj$(q)vj(k) 

(a) (4) -7k-q)2 , (3) 

where the notation (dk) means &/(2~)~, * denotes com- 
plex conjugation, and by virtue of u?(k) = vi( - k), only 
half of the Vi(k) are independent. In addition, we need to 
impose incompressibility, which is most easily done by ex- 
pressing the velocity as the curl of a vector potential, 
v=VXA. In two dimensions, A=&/, where the z axis is 
taken as normal to the two-dimensional plane and 1c, is the 
familiar streamfunction. In terms of A, the pressure be- 
comes 

p(o)=- (M(dq) s 
A*(q) - WW W-W *A(k) 

(k-d2 
(4) 

We will now assume the velocity field (and therefore 
the vector potential) to be Gaussian. The generating func- 
tion for the pressure pdf thus becomes the functional inte- 
gral, 

~&z> =N 
s 

9A(k)S[k*A(k)]exp - (dk) (dq) 
( s 

X [izM,j(kq) + (2Plds(k-q>Sij] 

(5) 

where c?(k) =(v*(k) -v(k)), N is a normalizing con- 
stant into which the purely numerical Jacobian, 1 Sv/SA 1, 
has been absorbed, and the (inflnite-dimensional) matrix 
M is given by 

o(k)a(q) (kXq)i(kXq)j 
Mij(k,q>= kq - (k--d2 * (6) 

The delta function in (5) constrains the vector potential to 
be transverse to ensure one-to-one correspondence between 
the fields A and v. However, because ATMi#j involves 
only the transverse part of A, omitting the constraint, 
6[k* A(k)], introduces only a z-independent overall con- 
stant, which the normalization, P(z=O) = 1, eliminates. 

The unrestricted, normalized Gaussian functional in- 
tegral (5) evaluates to 

(7) 

Thus, singularities occur when i/z is an eigenvalue of M, 
which puts them on the imaginary z axis because M is real 
and symmetric. Since M acts on a space of complex func- 
tions, its eigenfunctions are generally complex (eigenvalue 
il,), with the exception of those that are radial, i.e., a 
function of 1 k [ only (eigenvalue a,), and hence purely 
real. Because the functional integral (5) involves separate 

integrals over the real and imaginary parts of each inde- 
pendent eigenfunction, it follows that (7) generally takes 
the form 

iqz) = 
1 

II,Jl+izil,II,( l+iz&) . (8) 

We will now show that the eigenvalues of M are 
bounded from above in absolute value by a finite number, 
/2, which means that poles cannot be closer to the real 
axis than l//L This, in turn, implies that the dominant 
asymptotic behavior of P(p) is exponential, i.e., 
P(p) -exp( - Ip/;1] ) for large Ip I, unless special circum- 
stances remove all singularities from the upper or lower 
half of the z plane (we will show below that this occurs for 
pressure in two dimensions when the velocity lies on a shell 
in k space). To bound the eigenvalues of M, choose an 
arbitrary vector, Y(k), with adjoint Yt( k), and form the 
quantity 

P‘t*M*Y 
AZ *+.q 5% 

[s 
(dk)(dq)oWo(q)Y+(k) .iiii.W(q) 

x(r”;;Le)] /j-WWP’(k)12, (9) 
where i3 is a unit vector along kXq, r= k/q+q/k, cos 6’ 
=k*q/(kq), and [W(k) I = [YT(k)Yi(k)]‘“. Since Y is 
arbitrary, a bound for IAl is also clearly a bound for il 
since, in particular, the bound must hold for Y being the 
eigenvector having the largest eigenvalue in absolute value. 
To bound ] A 1, we replace P l n with I PI and observe that 
sin2 t9/( r- 2 cos 19) < 1 for r>2. Therefore 

il=max ]A] 

Ll-~4~l)2 Q s dkl\Ir12 < S~o”W=(lvb=o) 12>, (10) 

the last inequality just being the Cauchy-Schwartz in- 
equality. The bound in Eq. (10) agrees with conventional 
estimates’ of d-. 

The pdf of pressure gradients is also of some interest. 
The generating function of the pressure gradient in the x 
direction, say, a#, is simply obtained by replacing M in 
Eq. (5) and (7) by 

M$(k,q) = -i[ (k-q) .%]Mii(k,qj. (11) 

Since M’ is Hermitian with respect to the continuous in- 
dices k and q, and symmetric with respect to the discrete 
indices i and j, its eigenvalues are purely real placing the 
singularities again on the imaginary z axis. Furthermore, 
since the elements of M’ are purely imaginary, the eigen- 
values of M’ must come in pairs f,u, making the corre- 
sponding generating function a function of z?- only. Thus, 
the pressure-gradient pdf is symmetric, i.e., invariant under 
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ad- - dg. Physically this is, of course, unavoidable, as an 
isotropic fluid cannot preferentially accelerate in any par- 
ticular direction. 

To find a bound, /2’, for the magnitude of the eigen- 
values of M’, we repeat the steps that led to the estimate 
for il, except that we now use distinct right and left trial 
vectors, W,(k) and W,(q). The norm of the new factor, 
(k-q) l 2, is bounded by fi r-2 cos 8 and hence we 

SC- can use the inequality sin’ 8/ r-2 cos 8 < 1 to eliminate 
all r dependence. Thus we derive 

;/f<Y~*M’*YR/(Yt,*YLYtR*Y~)1’2 

< (mokak). 
s (12) 

Note that if we assume a Kolmogorov spectrum for 
I&‘c?( k) with wave number cutoff ~JJ, then 
A’- (2) L-u3q”3, which scales like Y-I/~, where L is the 
integral scale and Y, the kinematic viscosity. This again 
agrees with conventional estimates* for ,/m. 

It is very interesting to note that both MI2 and M’2 
have a trace of order the square of the eigenvalue bounds 
just derived, e.g., 

s (22-e) 
2 

Tr(M2> = (a> (&>hk>&q) 

<(Iv(O) 12j2. (13) 
Because there is no factor of order the dimensionality of 
the space on which M or M’ acts, which is infinite in the 
continuum limit, their eigenvalues are square summable 
and can only accumulate at zero. In other words, there 
must be gaps between all nonzero eigenvalues, particularly 
between the largest, and all the others. In the extreme case 
of two dimensions and the velocity restricted to a shell in k 
space, all but two of the eigenvalues are identically zero 
(cf. the Appendix). Because the leading singularity is iso- 
lated, one sees by deforming the integration contour for the 
pdf that the form of the tails can be calculated exactly. 
Thus, if the leading singularity has a square root [cf. Eq. 
(8>1, P@) a Ip[ e1’2 exp[ f (const)p], while a simple pole 
just gives P(p) a exp[ f (const)p]. Our concluding discus- 
sion as to the form of the pdf for a realistic velocity en- 
semble will also exploit the discrete spectrum of M. 

III. EXPLICIT ANALYTICAL RESULTS 

Having established the exponential tails of the pressure 
pdf, we now compute its skewness by taking moments of 
Eq. (4). Since we are assuming the velocity field to be 
Gaussian, averages of products of 2n velocities simply de- 
compose into products of n averages of two velocities, (VU), 
paired in all possible ways. Because of isotropy, homoge- 
neity, and incompressibility the (vu) averages must take 
the form 

!Ui(k)Ui(q))=(2T)d6(k+q) 

with f(k) defined by 

(27~)~ 2E(k) 
fck)=(d-l) cd,+’ (15) 

where E(k) is the spectrum of the turbulence, defined by 
(v(x) l v(x))/2= JgE(k)dk, and Cd=2(?r)d’2/r(d/2) is 
the surface area of a unit sphere in d dimensions. 

After some algebra, we find 
A 

(p2),=2 s (&,I WWfWf(kdk;~ :;:“$:t 
2 (16) 

and 

(p3>,= -8 j- (a,) (mc,)(dk,)f(k,)f(k,)f(k,)~~k3 

X 
(i*Xi;3) l (i3Xii2) (L2Xil) ’ (ic,Xft,) 

(h-W2 (k2-kd2 

(i(3X&2) l (i2Xi;l) 
X 

(k3--kd2 ’ 
(17) 

where (Xn)C~ ((X- (X) )“). In two dimensions, the inte- 
grand of ( 17) can be expressed as 

f (k,)f (Wf (W@k2k2 
sin2( 8t2) sin2( 023) sin2( e3i) 

’ ’ 3 (k-W2 &z-W2 &s-k? 
(18) 

which is positive d&rite giving a negative definite skew- 
ness in two dimensions, independent of the spectrum. In 
three dimensions, the sign of the skewness is not immedi- 
ately evident, since the cross products of ( 17) are not al- 
ways aligned in three dimensions. 

We now consider the special case of purely on-shell 
modes, f(k) = ( 2r)d8 (k- k,)f,, which allows explicit 
evaluation of the moments. We tlnd 

and 

if d=2, 
if dr3, (19) 

-lO~k~f~, if d=2, 
-?$$$ktii, if d=3. (20) 

Thus we obtain for the skewness, S= {p3)c/(p2)~‘2, 

i 

10 
-F= - 1.924 50..., if d=2, 

s= 
-&= -0.714 43..., 

i21) 
if d=3. 

For the case of on-shell velocity in two dimensions, the 
generating function for both the pressure and pressure gra- 
dient can easily be evaluated explicitly (for details, see the 
Appendix). If rN(X) denotes the pdf of X scaled to unit 
variance, and P,,(z) the corresponding generating func- 
tion, we lind 

(22) 
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for the generating function of the pressure and IV. PRESSURE pdf’s FOR REALISTIC SPECTRA 

,. 1 - 
paJJJ2z)= J(1+1>(1+322) ’ 

for the generating function of the pressure gradient. Note 
that (22) implies that PN(p) is identically zero for p)O, 
i.e., forp - (p) > (2/v?) m, since all the singularities 
lie in the upper half of the z plane. The pressure-gradient 
pdf is symmetric, as expected. From the explicit generating 
functions the moments of the corresponding pdf’s are eas- 
ily computed by differentiating 

W”> = ( -iY( -g irdz,)z=o 
The pressure pdf is the inverse Fourier transform of 

(22), which, for p < 0, may be expressed in terms of the 
degenerate hypergeometric” function IF,(&,y,<) as 

(25) 

The pdf’s have the following asymptotic forms: For p large 
and negative, 

and for large 1 a$ I, 
1 t (26) 

1O0 

10-l 

10% 

10" 

104 

IO* 

lo* 

1o-7 

(27) 

-15 -10 -5 0 5 

(P-<P>)/O 
FIG. 1. Pressure pdf’s in two dimensions; o = d(p2), Solid line: The 
numerical pdf for E(k)-k/(G+kz), with ke=6 and k< 118, obtained 
from IO4 independent realizations of the velocity field on a 512’ lattice. 
S=--1.1885*0.0005 and K=6.44*0.01. Dashed line: The exact result 
for on-shell velocity. The absence of an exponential tail for positive p is 
particular to the on-shell velocity in two dimensions. 

We computed the pressure pdf numerically in three 
dimensions on a 1123, and in two dimensions on a 2562 
lattice, with units chosen to make the minimum wave num- 
ber unity. All convolutions were fully dealiased using the 
algorithm of Ref. 12, and many realizations of the Gauss- 
ian velocity were averaged to improve the statistics. 

In two dimensions we considered a velocity having an 
equilibrium spectrum13 E(k) a k/(G+R). Figure 1 
shows the resulting pressure pdf (k,=6 and k < 118), to- 
gether with the exact on-shell result of Eq. (25). Note that 
the pdf for the equilibrium spectrum, as for any generic 
spectrum, has an exponential tail for p - (p) > 0, unlike the 
extreme on-shell case. The pdf for the equilibrium spec- 
trum is characterized by a skewness of S= - 1.1885 
f 0.0005 and a kurtosis K=uP-tP))4vtP2): 
=6.44&0.01. When the velocity is restricted to a shell, 
S= - 1.924 50... and K=9 [cf. Eq. (22)]. 

With a k- 5’3 Kolomogorov spectrum in three dimen- 
sions, we obtain the pressure pdf of Fig. 2, which has S 
= -0.490*0.002 and K=4.21*0.05. We also verified 
that the pressure spectrum is proportional to k-7’3, in 
agreement with the scaling arguments of Ref. 1. When the 
velocity is restricted to a “shell” in three dimensions 
(24<k<25), the pdf has S=-0.7132*0.0001 and 
K=4.34*0.01 (also shown in Fig. 2). This skewness 
agrees with the result for a S-function shell, Eq. (21)) to 
0.2%, and is the largest we found in three dimensions for 
any spectrum. Note that in three dimensions, even the shell 
case has an exponential tail for p- (p) > 0.14 

(P-<P>>/O 
FIG. 2. Numerical pdf’s for pressure in three dimensions on a 1123 
lattice; o = d(p2), Solid line: km- 5’3 Kolmogorov spectrum, lo4 inde- 
pendent realizations of the velocity field. Here S=-0.490*0.002 and 
K=4.21 AO.05. Dashed line: On-shell velocity (24<k<25), IO3 indepen- 
dent realizations of the velocity field. Here S= -0.7132*0.0001, and 
K=4.34*0.01. Note that unlike in two dimensions, the 3-D on-shell case 
has an exponential tail for p- (p) > 0. 
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IV. CONCLUSIONS 

What can we say about the pressure pdf of real flows 
based on our treatment for Gaussian velocities? Through- 
out this discussion, we use Galilean invariance to refer to 
the velocity relative to that at r=O, where the pressure is 
measured. To make this explicit, we use the ‘notation 
Av(r)=v(r)-v(0). The distribution, p(Av), of an arbi- 
trary velocity ensemble depends, a priori, on the entire field 
Av. Let us use the eigenvectors of the pressure matrix, M, 
as a basis for the velocity field. We should then be able to 
limit consideration to only those modes for which Av has 
appreciable variance, i.e., to those corresponding to the 
energy-containing scales. Since M has a discrete spectrum, 
it should, therefore, suffice to consider a finite number of 
modes. If we assume on experimental grounds’f’5*16 that for 
all such modes p + exp[ - const (A-u) “I, with a ~2, as 
IA+w, then again we find that PJz) has a strip of an- 
alyticity. [If a were larger than 2, P(z) would be entire, 
while a <2 would put singularit$s on the real axis.] 
Whether the leading singularity of P(z) is a square root or 
not depends on whether the corresponding eigenstate has 
spherical symmetry in k space, and on the precise way in 
which p(Av) limits to its asymptotic form. 

It is interesting to note that a skewness of Au can easily 
be accommodated” by assuming p(Av) 
-exp[- (Av)~~(Av)], where f(Au) is a positive, mono- 
tonically increasing function that tends to. a constant as 
Au+ f CO. When we introduce a skewness in this way, but 
keep the variance fixed, the tails of P(p) move up (the 
leading singularities move closer to the real axis) because 
the integral on Au diverges as Av-+ - CO for smaller 1 Im z] 
than it otherwise would. Something like this effect was 
observed by Kimura and Kraichnan.’ 

It follows from the preceding discussion that experi- 
mental pdf’s should be represented by a generating func- 
tion that has a strip of analyticity. A reasonable ansatz is 

F(z) = 
1 

J1 +i&zII,( 1 +A$) ’ (28) 

where the /2, are, for simplicity, taken to be real, and 
l4*1 -+Q as It-+ 03. Inclusion of an infinite number of il,, 
guarantees that P(p) is infinitely differentiable at the ori- 
gin, although fits to experimental data do not require such 
precision. Clearly, there are enough parameters in (28) to 
fit nearly anything, so that data analysis is only illuminat- 
ing to the extent that it is reasonably successful with only 
a few parameters, as we shall now demonstrate. 

We nondimensionalize all pdf’s by scaling to unit vari- 
ance and shifting to zero mean (the zero of pressure is 
arbitrary). Figure 3 shows the pdf for wall pressure mea- 
surements compared with the Kolmogorov curve of Fig. 2, 
and a two-parameter fit with the form (28), taking” 
II,I( l+iAg) =lI~=r[l +i&z/(an)][l-iA&( (A, is a 
uniform scale on z) . The fit is excellent for p - (p) < 0, but 
poor in the tail forp- (p) > 0, where the data may be fitted 
to (p -pO) ,4 as noted in Ref. 7. If taken literally, one would 
infer that the corresponding i(z) is analytic for Im z < 0, 
and that the first singularity for Imz>O is a fifth-order 

(P-<PW(J 

FIG. 3. A fit (solid line) to the wall-pressure data of Ref. 7 from the 
swirling flow between two parallel counter-rotating disks (a = 1250 rpm) 
using the generating function P(z)=(l+iz)-‘” 
ic~,m_~[l+iz/(an)]-‘[l--iz/(bn)]-*, with a=2.5 and 6=1.9. The 
product was truncated at n=50. Also shown (dotted line) is the Kol- 
mogorov curve of Fig. 2. Here a = do,. 

pole. Needless to say, this appears nongeneric, and we can 
only speculate that the rather large transducers used in the 
experiment might have biased the measurements. Al- 
though Ref. 7 provides some evidence that the transducer 
was sufficiently small to give effectively a point measure- 
ment, it is very hard to see on theoretical grounds why 
P(z) should be analytic for Im z < 0. 

As shown in Fig. 4, we were more successful in fitting 
the pressure pdf from the statistically isotropic simulations 
of Ref. 6, using the same two-parameter form as for Fig. 3. 
The slight upward curvature of the tail of the fit for 
p- (p) < 0 is due to the leading singularity, having a 
square root [cf. Eq. (26)]. The fit is excellent down to 
P(P) - 1O-4/&%, h w ere the data veers off the fit. The 
pdf of Fig. 2 for the kws13 spectrum fits the data less well 
than what is shown, presumably because of the skewness of 
the velocity. 

Following our remarks in the Introduction, the differ- 
ence between our exponential fit and the data in Fig. 4 
represents events that could be attributable to intermit- 
tency. This view is reinforced by recent measurements,” 
which again have more weight in the far negative tail than 
an exponential fit to the center would allow. The experi- 
menters are able to associate these large negative excur- 
sions with the intense vorticity tubes (diameter on the or- 
der of the dissipation scale) that they saw in their earlier 
visualizations. I9 This suggests that the far negative tail 
comes from small-scale events, which means that near 
dissipation-scale velocity differences of order several times 
m must be occurring. Recent simulations have in- 

deed found velocity differences of this order in the imme- 
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(P-<P>)/~ 

FIG. 4. A fit (soIid line) to the pressure pdf for the iso!ropic simulations 
of Ref. 6 (dashed 

“G. 5. The data for the wall shear stress, r, of Ref. 21, fit with 
line) using P(z)=(l+iz)-‘” 

Xn,m,,[l+iz/(nn)]-‘[l-iz/(bn)]-‘, with a=2.4 and b= 1.75. The 
P(z) = ll;=, ( 1 -iz/n)~-*. The product was truncated at n=50. Here 

product was truncated at n= 10. c SE mr 
u= m. 

diate vicinity of vortex tubes.20 This phenomenon is a se- 
vere violation of Kolmogorov scaling! 

(assuming periodic boundary conditions that eliminate 
surface terms), the pressure gradient is given by 

Pressure pdf’s are also available from the Taylor- 
Green simulations of Ref. 4. These pdf’s show more 
structure4 (and probably have larger error bars) than the 
data in Fig. 4. For Reynolds numbers of Re= 1600, 3000, 
and 5000, these pdf’s have skewnesses of S= -2.20, 
-1.93, and -2.30, respectively, and are similar to our 
2-D-shell Gaussian case (S= -- 1.92), with a pronounced 
tail for p - (p) < 0 and a sharp drop for p - {p) > 0. 

ap(o) = s drW,Gbm~, adh, 

We feel it is useful to speculate on the distribution of 
the wall shear stress of a turbulent boundary layer, since 
high quality data is available from Couette+Taylor flows,‘l 
and comparison with even the minimal theory of this paper 
does raise interesting testable predictions. Outside of the 
viscosity-dominated region near the wall, the momentum- 
flux tensor is a quadratic functional of the velocity analo- 
gous to the pressure. One can speculate that the near-wall 
region simply passively transmits the large-scale velocity 
fluctuations, which may dominate the fluctuations in the 
wall shear stress. Hence, we again employ Eq. (28), with 
all singularities restricted to Im z> 0, as required by the 
data. For simplicity, we omit the square-root singularity22 
and take /2,= - l/n. The corresponding pdf has no adjust- 
able parameters after shifting to zero mean and scaling to 
unit variance. At the very least, the quality of the fit of Fig. 
5 shows that “intermittency” is not needed to explain the 

where V’G(r>= -6(r), and again we use Av=v(r) 
-v(O). While (29) suggests a value of 
( (a$)2> - ((Av)‘)( (dXv)2>, this is larger by a factor of 
( Lq)u3 than the conventional estimate’ noted in the In- 
troduction. The latter is obtained via an additional integral 
by parts, which is legitimate since 1 Av 1 -r for r( l/v, so 
that the singularity at r=O is integrable. We therefore use 
as an estimate for &.p what is in effect a bound obtained by 
suppressing indices: 

a#- 
s 

--L (Avj2 
0 

---p-- dr. 

Clearly, the largest contribution to (30) comes from r- l/ 
q, because for larger r, 1 Av 1 -~l’~ (e.g., Ref. 1). For the 
pressure itself, the corresponding 
p- sOL(Au)%-’ 

integral, 
dr, is dominated by the integral scale, L. 

Equation (30) implies that if Av has an exponential pdf, 
then a# is distributed like a stretched exponential, viz., 

in analogy with Ref. 24. 
(31) 

data. 
Finally, we venture a few remarks about the pressure- 
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APPENDIX: pdf’s IN TWO DIMENSIONS FOR AN ON- 
SHELL VELOCITY 

We denote the Fourier transform of the on-shell 
streamfunction by $( 0) =+* (19+r), where 8 is the direc- 
tion of the wave vector (which lies on a circle; the “shell”). 
The pressure is then given by 

p(O)=-c 2n -2rdeldez$*(el) s J 0 0 
x[l+cos(~1-~2)1~(~2). (Al) 

Since we will scale the pdf to unit variance at the end, we 
set the dimensional constant c= l/( 42). Expression (Al ) 
becomes diagonal by expressing I/J(~) in terms of circular 
harmonics as 

J/(e) = 2 &ei? (AZ) 
II=--C.2 

The condition $( 0) = @* ( 8 + %-) implies 

&=(-lY& (A31 

By homogeneity, (@$J cc a,,, and by isotropy all $,, 
have the same variance, which we set to unity. Writing 
&=xll+iyn, and noting that (A3) implies yo=O, the gen- 
erating function, Eq. (5)) becomes 

jyyz) =.,y 

s 
dxo dx, dyl ,-(iz+l/z)x~-(iz+1~~x~+y~l 

(A41 

Normalizing and scaling to unit variance produces Eq. 
(22). 

The pressure gradient is given by 

2rr 2rr 
&p(O) =ic’ ss de1 de2 ~*uv~i+c0s(~,-e,~i 

0 0 

x bsv4) ---c0s(e2) iw,). (A51 

We expand g(0) in circular harmonics and proceed as for 
the pressure pdf to obtain 

P(z) =.A,- s dx,-, dx, dyl dx2 dy2 e-\YiBii\Yi, 

where Y z (x0,x1 ,x~J)~ ,JJ~) and 

(A61 

B= 

l/2 0 0 -iz 0 
0 100 --iz 
0 0 1 iz 0 

--iz 0 iz 1 0 
0 -iz 0 0 1 

(A71 

Formalizing and scaling to unit variance gives Eq. (23) as 
PQ,,(~z) = [2 Det(B)]-1’2. 
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