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The statistically stationary state of a turbulently advected passive scalar is studied, with an 
imposed linear mean gradient in two dimensions, via a number of numerical experiments. For a 
synthetic Gaussian velocity field, which is generated by a linear stochastic process, and whose 
spectra and Eulerian correlation time follow Kolmogorov scaling on all scales, the exponents of 
the scalar spectra are consistent with 5/3 or 17/3 depending on the diffusivity. For large P&let 
numbers (Pe), the probability density function (PDF) of the scalar gradients perpendicular to 
the mean is well fit, from about 0.1-10 times the root-mean-square value, by a stretched 
exponential with exponent -0.6. The PDF for gradients parallel to the mean has similar tails 
and a d ( 1) skewness for all Pe studied. The scalar has a ramp-and-cliff structure similar to that 
first seen in shear-flow experiments with scalars. A physical picture of the mechanism by which 
the ramp-and-cliff features form is given. A second model with the velocity evolving under the 
Euler equations restricted to a band of wave numbers produces the k-’ Batchelor spectrum 
when the scalar is dissipated with a hyperdiffusivity ( z k’). For physical dissipation ( = I?)) the 
PDF of the scalar has exponential tails, and for gradients less than the cutoff set by the 
maximum strain, the PDF of the gradients is similar to that obtained with the stochastic velocity 
model. The PDF of the dissipation is approximately stretched exponential like the gradient 
PDFs and not lognormal. The skewness of the gradients parallel to the mean decreases with 
decreasing autocorrelation time of the velocity, and the gradient PDFs assume a limiting form 
in the white-noise limit. 

I. lNTRODUCTlON 

Soon after Kolmogorov’s first seminal papers’ on the 
energy spectrum of turbulence, cascade ideas were applied 
to passive scalars advected by turbulence.” Several decades 
of increasingly detailed experiments with scalars (e.g., 
Refs. 3-12) have clearly shown significant deviations from 
theoretical predictions, yet in themselves have not been 
comprehensive enough to point to a refined theory. The 
numerical experiments presented in this article aim to fur- 
ther dissect turbulent mixing. Although we drastically sim- 
plify the problem by utilizing synthetic velocity fields and 
periodic boundary conditions, we find, within our limited 
range of scales, the same conflicts with cascade ideas that 
are observed in natural flows. 

Experiments have shown the scalar to “misbehave” in 
a number of ways. Its wave-number spectrum can be fit 
very well to a power law over a range of about 30 in wave 
number at moderate Re, but the exponent can vary from 
1.3 to 1.6 depending on the large-scale geometry.‘1”2 At 
higher Re, some experiments” suggest the exponent tends 
to 5/3, but only a single geometry was examined. Also, the 
second-order temperature structure function in the bound- 
ary layer shows two power-law regimes with a pronounced 
break in the exponent.5 For very large Prandtl (or 
Schmidt) number, experiment&’ have failed to clearly 
discern Batchelor’s k- ’ regime which is generally felt to be 
a solid theoretical result.13 Finally, we note that the scalar 
derivative kurtosis can be quite large ( - 10-50) (Refs. 3 
and 4), but its systematic dependence on Re is not avail- 
able. By this measure, the scalar is more intermittent than 
the velocity. 

Although the variability of the spectral exponent seen 
in experiments might be an artifact of moderate Re, the 
scalar derivative skewness is of order 0.8 and shows no 
signs of decreasing with Re for the highest Re attainable in 
the laboratory3-5” ’ A Re-independent derivative skewness 
contradicts cascade ideas, which predict that the relative 
anisotropy on a wave-number scale k is sL/( I+?) 1’3, where 
sL is the large-scale strain and ~~ is the usual kinetic-energy 
dissipation rate. In addition, inspection of time series of the 
scalar, o(t), suggests that the events responsible for the 
skewness involve scalar differences of the order of the total 
variation ( - 
microscale.4’14 

m) over scales of order the Taylor 

The anomalous behavior of the derivative skewness 
was first noticed for the temperature field, 0, in a turbulent 
boundary layer.3’4 This is a complicated flow whose only 
purpose, from the point of view of symmetry (and apart 
from its intrinsic interest), is to convert the mean scalar 
gradient normal to the heated plate, ~9(0)/@, into a 
streamwise gradient, a@/&, which is more easily mea- 
sured, i.e., by symmetry, 

sign( (ZJ)‘) =-sign[ (G)(F)] (1) 

(both sides are odd under x + -x, and even under y 
-+ -y). A boundary layer is inhomogeneous in y and sca- 
lar gradients are maintained in part by direct injection 
from the wall, rather than by degradation of larger scales. 
Cascade ideas still assert local isotropy far from the walls. 

The purpose of this paper is to sharpen the conflict 
with cascade ideas by examining the scalar under much 
simpler conditions for which the Row is precisely homoge- 
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neous and isotropic. To break the rotational invariance of 
the scalar on the large scales, so that the derivative skew- 
ness does not vanish by symmetry [in fact, we find it re- 
mains d(l)], we impose a constant mean gradient, g, on 
the scalar, i.e., O(x) =0(x> +g l x. The scalar transport 
equation for the fluctuation, 8, then reads 

c?,~+V~v6=KV28---v*g, (2) 

where K is the scalar diffisivity, and v is an incompressible 
(V l v=O) velocity field with a dynamics of its own and 
homogeneous-isotropic statistics. The term v* g is seen to 
act as a spatially homogeneous source of scalar fluctua- 
tions, which maintains a nontrivial statistically stationary 
state. For simplicity we take both v(x) and 19(x) to have 
periodic boundary conditions. When necessary, any arti- 
facts due to the periodicity can be eliminated by choosing 
the integral scale of the velocity to be much less than the 
box size. To further simplify the problem, and for reasons 
of computational efficiency, we will only work in two di- 
mensions. Although the cascade regimes of the velocity 
vary greatly between two and three dimensions, those for 
the scalar do not when a comparable velocity is imposed, 
since the conservation properties of the scalar do not de- 
pend on dimensionality. We shall employ two-dimensional 
(2-D) model velocity fields which mimic three- 
dimensional (3-D) turbulence in various regimes by hav- 
ing appropriate spatial and frequency spectra. For techni- 
cal simplicity, we will take the multivariate (equal-time) 
probability density function (PDF) of the velocity to be 
Gaussian, because we do not think that the velocity skew- 
ness matters and too little is known about intermittency to 
model it with confidence. Furthermore, the PDF of the 
velocity at a point is very nearly Gaussian in 
experiments.15*16 An obvious pathology of two dimensions, 
that with a static velocity field closed streamlines prevent 
convective transport, is not an issue if the velocity is time 
dependent on a reasonable scale. 

It is our goal to demonstrate that even with a Gauss- 
ian, homogeneous, isotropic velocity field, the statistically 
stationary state of Pq. (2) reproduces many of the anom- 
alous features of turbulent transport seen experimentally in 
more complex settings. To that end, we will primarily be 
interested in spatial spectra, and the scalar and scalar- 
gradient PDFs whose character and dependence on the 
dimensionless parameters we will determine within our 
computational limits. What emerges can be examined in 
sufiicient detail to suggest the first steps toward a phenom- 
enological theory. 

The problem we have posed could be addressed in the 
laboratory with either grid or continuously forced turbu- 
lence by measuring the temperature derivative along an 
imposed linear temperature gradient (under conditions 
where the temperature is passive). However, this has not 
been done yet, although the scalar itself has been studied 
under those conditions.g*10 

In the following section we recapitulate the pertinent 
cascade theories. In Sec. III we describe the two model 
velocity fields which we use to advect the scalar. Numeri- 
cal results for spectra, scalar, and scalar-derivative PDFs 

for the two models comprise Sets. IV and V. The conclu- 
sion reconsiders the anomalous features of turbulent mix- 
ing based on our simulations. 

II. SUMMARY OF RELEVANT THEORY 

The spectra E(k) are normalized so that for the scalar 
(e2(x)) -J,“dk E@(k), and for the velocity (v’(x))/2 
E J$dk EJ k). The turbulent velocity field is character- 
ized by an integral scale, L, the mean kinetic energy dis- 
sipation rate, eU, and the dissipation, or Kolmogorov, 
scale, I, = ( Y~/E,> 1’4, where Y is the kinematic viscosity. 
Correspondingly, the scalar is characterized by a mean dis- 
sipation rate of scalar variance, Q, and a dissipation scale, 
Is. The (@v) triple correlation obeys a von K&m&n- 
Howarth-type relation,” which, for the stationary state, is 
given by 

i$. ([ANr)12Avi(r)) I 

=fiPwdV(X’)k& @(X)e(X% (3) 

where r=x-x’, he(r) =0(x) -0(x’), and Av(r)=v(x) 
-v(x’>. For scales r such that LSrSlo, the dissipation 
term in (3) is negligible, and g* (O(x)v(x’)) 
=g.(B(x)v(X))+~(r/L),withg.(B(x)v(x))=--EB/2, 
since in the stationary state we have the balance [x=x’ in 
Eq. (3)) plus the identity V * (eve) GO] 

-g- (e(X)V(X>) =K(v&vo) S&i!. (4) 

Assuming scaling for the correlations, the Y dependence of 
Af?( r), and hence the spectrum, follow immediately. Thus, 
if v(x) has a Kolmogorov spectrum, one derives from (3) 
the Oboukhov-Corrsin result,* 

E&k) a ~g~-“~k-“~, (5) 

for I;-’ 4 k(min ( 1; ’ ,I; * ) , where the dissipation scale, 10, 
(the Corrsin scale) is given by 

K3 l/4 

l*= 2 ( ) =prm314 i “9 
” 

(6) 

where Pr= y/K is the Prandtl (or Schmidt) number. 
For small Pr, l&Z,, the scalar dissipation is still con- 

centrated at 10, but a second steeper power law extends 
beyond the scalar-inertial regime (5)) in which the scalar 
at I; ’ <k4 I;’ is maintained via a nonlocal cascade by 
beating the velocity Fourier modes, v(k) , against e(q), for 
q - 1; ‘. Thus, factoring the velocity out of the advection- 
diffusion balance” 

s dqdq’(v(k-q) l qHqM-k+q’) l q’N-9’)) 

=it?k4(O(k)O( -k)), (7) 

since the integral is dominated by q,q’ & k, we obtain the 
Batchelor-Howell-Townsend’g result 

Ee( k) a qum3km4E,( k), (8) 

which for a Kolmogorov velocity is a k-‘7’3. 
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In the opposite limit, lu$le, and for I;‘$k41;‘, the that the derivative skewness goes to zero with increasing 
velocity field can in effect be replaced by a random strain Pe as Pe--2’2.27 [we shall always define the skewness for 
field of amplitude s- ( E,/JY) 1’2. Batchelor’3*20 then showed the periodic part of the scalar, 8, which appears in Eq. (2). 
that the scalar is randomly folded, or in terms of the spec- For the full scalar field, 0, the above reasoning leads to a 
trum that Pe-“2 dependence.] 

Ee(k) a (eB/S)k-‘. (9) 

In the Batchelor regime, the dissipation scale is determined 
by balancing diffusion against the compressive effect of the 
strain, i.e., 

There are no theoretical predictions for the scalar- 
gradient PDFs except in the Batchelor regime (9), where 
it is lognormal under some circumstances.28 We do expect 
that the gradient will not exceed s@, where s is the 
maximum sustained strain and 8 is a temperature differ- 
ence which is itself exponentially distributed.23 K l/2 

lo- - 0 =pr-1’2 1 
s “’ (10) 

For lu$r$Ze, Eqs. (9) and (10) imply that 
( (A@ “) - ( l e/s) log ( r/Ze) , which, except for the loga- 
rithm that cannot be extracted from scaling, also follows 
from (3) since Au-sr, for r$Z,. It should be emphasized 
that only random strain and large P&let number are re- 
quired for (9) and ( 10). There is no need for large Rey- 
nolds number. 

The scalar PDF is dominated by the integral scales. 
Under conditions of an imposed mean gradient as in (2), a 
phenomenological theory predicted there to be exponential 
tail? that were subsequently seen experimentally.g710 A 
coarse-grained modelz2 replaces turbulent advection by 
random, instantaneous interchanges of fluid particles sep- 
arated by an integral scale. In this model, the tails of the 
PDF result from a burst of interchange events which occur 
with Poisson-distributed probability. A calculation that re- 
mains more faithful to the continuum equations finds tails 
in the scalar PDF from transient suppression of the strain- 
enhanced mixing along a Lagrangian trajectory.23 Nearly 
exponential (but transient) scalar PDFs were also seen in 
direct numerical simulations of 3-D turbulence.“4 

A heuristic mechanism for the scalar derivative skew- 
ness was recently proposed in a slightly different context:25 
Since Eq. (4) shows that the correlation g* (~0) is nega- 
tive, positive (negative) fluctuations of the scalar, which 
are coherent on the integral scale (scalar “blobs”), are 
more likely to be moving against (with) the gradient. One 
may then expect that such blobs develop a ramp-like pro- 
file with a steepening leading edge and a flattening “wake.” 

Our simulations in Sec. IV, however, suggest an alter- 
native mechanism for the production of ramps, which 
seems to us more generic and was also seen in experiments 
on a planar jet.26 The presence of ramps immediately im- 
plies a nonzero derivative skewness. In sharp contradiction 
with notions of eddy diffusivity, both experimental data4 
and our simulations show that the thickness of the leading 
edge of the ramps scales with the molecular diffusivity, K, 
even for the highest P&let numbers studied. 

It is useful to have some quantitative estimate for the 
skewness based on mixing-length or eddy-diffusion ideas so 
as to have an objective way of deciding what is “anoma- 
lous.” The most straightforward procedure would estimate 
( (g l V0)3) as ] g 1 3, since only the large scales have a mean 
gradient. The denominator of the skewness is rigorously 
expressed as a ( QIC) 3’2. Thus, writing ee in terms of 
large-scale quantities [cf. Eq. (4)], one would conclude 

III. NUMERICAL FulODELS FOR THE ADVECTING 
VELOCITY 

A simple way to mimic in 2D the random flow of 3-D 
turbulence in its inertial range is to give the Fourier modes 
of the streamfunction, $k, the stochastic dynamics 

al$k(f)= -?‘(k)$k(t) +qk(t), (11) 

where qk(t) is a white-noise process with statistically in- 
dependent real and imaginary parts. Because we want the 
velocity field to be homogeneous and isotropic, we take 

( 12) 

Since the stochastic forcing is Gaussian, and Eq. ( 11) is 
linear, $k is itself a stationary Gaussian process with cor- 
relations 

(~k(t)~k’(t’))=8k,-k’$e , 
-yWlt-t’l (13) 

also known as an Ornstein-Uhlenbeck (OU) process2’ We 
obtain the desired Kolmogorov scalings of E,,(k) -ke513 
and y(k) -/?3 with a(k) cc kB2. 

Clearly model ( 11)) while having the correct spec- 
trum, is not free of physical pathologies. Since ( 11) is a 
linear process, “eddies” are not self-advecting and hence 
the model is not Galilean invariant so that we cannot de- 
fine a proper Lagrangian frequency for the velocity. We 
merely take the Eulerian frequency, y(k), to scale like the 
Lagrangian frequency as predicted by Kolmogorov. We 
choose the free time scale in y(k) such that for an integral 
scale L and integral time T = L/ m, y(27r/L) = l/T. 

Large-scale velocities, V- L/T, sweep the scalar past 
spatial velocity structures of wavelength k-’ 4 L, so that 
scalar fluctuations see a change in the velocity at the 
sweeping frequency rshl - Vk= (Lk)/T, which is clearly 
faster than y(k) - (l/T) ( Lk)2’3. This lessens the eddy 
diffusivity, K,(r), experienced by the scalar on scale r, 
which following Taylor,30 we estimate as 

K,(r)=([Av(r)]2)~S-VL(r/L)5’3, (14) 
rather than K,(r) - VL ( r/L)4’3, which follows from Kol- 
mogorov scaling. In Sec. IV we study the sensitivity of the 
model to the choice of time scale, y- ’ (25-/L), and find 
that the suppression of eddy diffusivity is not a serious 
deficiency of the model. 

The sweep-enhanced diffusivity ( 14) also prevents us 
from simply deducing the Oboukhov-Corrsin result (5) by 
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factoring the von K&man-Howarth relation (3). Instead, 
since the correlation time is reduced, we can work in the 
white-noise limit and adapt a Richardson-like closure’3 
which, neglecting indices, reads 

KeW ; WW2) 

Hence, ( (A@ “) - r1’3, or E8( k) - k-4’3. Actually, our nu- 
merical exponent is much closer to 5/3 than to 4/3, which 
may reflect naturally occurring numerical factors that push 
the crossover between (14) and the Kolmogorov result to 
smaller scales than we can resolve. In any event, as already 
noted, laboratory experiments give exponents of the scalar 
spectrum in the range of 4/3-5/3, so that our “incorrect” 
exponent in itself is not a significant limitation of the 
model. 

In order to avoid the pathologies of the OU velocity, 
we also consider the case of inviscid 2-D Euler flow with 
wave numbers restricted to a band, i.e., 

dfilo+d(v*Vw) =o, (16) 

where w(x) =%* VXv(x) is the vorticity, whose Fourier 
modes we restrict to lie in an annular region, or “band,” in 
k space defined by kti < k <k,,,,, . In order for the dynam- 
ics to preserve this restriction on the velocity, we intro- 
duced the projection operator d in ( 16) which zeros all 
modes not in the prescribed band. This restricted Euler 
dynamics is easily shown to conserve both kinetic energy 
and enstrophy. Furthermore, the dynamics (16) can be 
shown to obey a Liouville theorem (i.e., to conserve phase- 
space area), which together with an ergodicity hypothesis, 
implies a stationary canonical Boltzmann ensemble,31 
- exp[ - &(a + fik2)vk’v-k], for arbitrary a,@ An 
equal-time, one-point Gaussian PDF for the velocity fol- 
lows immediately. 

Model ( 16) has the advantage of being self-advecting 
and hence it contains no free time scale. However, the 
model is not capable of mimicking a 3-D inertial range. In 
fact, because of the quadratic invariants and the Boltz- 
mann ensemble, the velocity has an equipartition equilib- 

rium spectrum 32 of the form E,(k) cck(G+k2)-‘. There- 
fore, we shall use this model only when the wave-number 
band is narrow, i.e., kmax/kmin 5 2, which we may view as a 
turbulent velocity field that has been coarse grained to the 
integral scale.= The same model is also useful to explore 
the Batchelor regime, i.e., to examine the structure of the 
scalar for k > k,, . 

Briefly, these velocity models for scalar advection were 
implemented as follows. The numerics are performed on a 
NX N grid with physical dimensions 2~x27~. giving a 
wave-number spacing of unity. The linear terms in the 
equations of motion (for both streamfunction and scalar) 
are treated implicitly and time stepping is done in Fourier 
space with a second-order Runge-Kutta scheme. All con- 
volutions are fully dealiased using the algorithm of Ref. 33. 
The models are typically initialized with a Gaussian- 
random velocity field of the appropriate spectrum, and 
with 6(x) =O. For all runs with the restricted Euler model, 
we have initialized the velocity with an equilibrium speo 
trum truncated at kmin and k,,, and peaked at 
k. = (k,, + km,,) /2. Statistical stationarity is typically 
achieved after -5-10 integral times as ascertained by 
monitoring the instantaneous, spatially averaged scalar 
variance and dissipation. 

IV. RESULTS FOR KOLMOGOROV-ORNSTEIN- 
UHLENBECK ADVECTION 

We use the OU stochastic model of the velocity, with a 
ke513 spectrum for ail resolved wave numbers, to investi- 
gate the case Ze > I,, or equivalently, the case of small Pr. In 
order to improve the statistics which fluctuate with the 
integral scales, we only allow velocity modes with k>2, 
which gives us four integral volumes with integral scale 
L=T. We define a P&let number, Pe= VL/K, with V 
= ,/m. The highest Pe accessible to us for system 
size N=256 was determined by examining the scalar gra- 
dients in space, and by ensuring that resolution errors in 
the third and fourth moments of the scalar derivative were 
at most a few percent. These resolution errors were esti- 

TABLE I. Summary of the variances of the scalar gradients and their production term, g. (v6’), for OU 
advection. The total sampling time for which statistics were compiled is denoted by f,. Errors for moments 
are estimated as the variance of the time series for the spatially averaged moments divided by m, 
assuming approximately one statistically independent sample per turnover time, T. 

Pe= vL/K 

(K) 
g-(vO)/(VL) 2[(WI 0)‘)&?Pe)l 

N VT x 1o-2 x 10-z 
2[((Vll W)/(gZ I+)1 

x 1o-2 

39.3 bO.5 128 19.1 5.7hO.5 6.5 *oXi 4.9AO.3 
(8.064~ lo-‘) 
97.2hO.2 64 764 6.2hO.l 6.42 f 0.09 5.92 hO.07 
(3.200~ 10-2) 
246=t 1 128 191 5.9AO.2 5.9 *to.2 6.OhO.l 
(1.270~ 10-2) 
627=J=5 256 73.3 6.4hO.4 6.4kO.3 6.4hO.3 
(5.040X 10-q 
1540=!=20 512 28.6 5.4AO.4 5.3AO.3 5.5AO.3 
(2.000X 10-q 
2700 * 60 768 4.65 7.2AO.9 6.6hO.8 6.3AO.l 
(1.165x10-‘) 
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FIG. 1. Normalized spectra of the scalar for OU advection with a k-5’3 
velocity spectrum for all wave numbers. The spectra have been offset 
vertically for clarity. The dotted line indicates k-‘7’3. Starting with the 
lowest curve, the corresponding Pkclet numbers and lattice sizes, N, are 
(Pe, N)=(39.3, 128), (97.2, 64), (246, 128), (627, 256), (1.54x103, 
512), and (2.70x lo’, 768). 

mated by recomputing the moments after setting 8k=O for 
1 k J > k* and extrapolating the dependence on k*. The 
maximum Pe’s for systems of other size were determined 
by scaling the diffusivity such that the ratio of Corrsin 
scale to grid spacing is constant, i.e., if a system of size N2 
is resolved for diffusivity K, then a system of size (N’)’ is 
assumed to be equally well resolved for diffusivity 
(N/N’ ) 4’3K. 

The OU model, when optimized to produce an inertial 
range as described, gives poor statistics for the scalar itself, 
which is a large-scale quantity and hence insensitive to the 
small scales. Under these conditions, we therefore present 
only scalar spectra and not the scalar PDF.34 Somewhat 
unexpectedly, the derivative statistics also converge slowly 
due to events which are initiated on the large scales and 
evolve into the ramp-and-cliff features alluded to in Sec. 
II.3,4 

Table I shows that our simulations obey the balance 
between scalar-fluctuation production and scalar dissipa- 
tion as expressed by Eq. (4), while further demonstrating 
that the dissipation is isotropic [( (V, 0)*) N ( ( Vi1 @*)I, 
and that the source term g* (ve) has no significant Pe 
dependence.3’ Thus, g l (~0) is properly a large-scale quan- 
tity, so that by (4) the scalar-gradient variance is propor- 
tional to Pe. Figure 1 shows the scalar spectra obtained for 

FIG. 2. PDFs of the perpendicular scalar gradients normalized by their 
RMS value, (T. Since the PDFs must be symmetric, they have been 
“folded” by plotting P(VI 0/o) vs 1 V, 8 1 /a. The PDFs have been shifted 
vertically and, starting with the lowest curve, correspond to (Pe, N) 
=(97.2, 64), (246, 128), (627, 256), (1.54x10’, 512), and (2.70x103, 
768). The dashed lines are tits to Eq. (17), with fitting parameters given 
in Table II. The inset shows a blowup of the center of the PDFs (without 
folding). 

a variety of Pe. We see a km513 inertial range over about a 
decade of wave numbers for the highest Pe, while for the 
lowest Pe, the predicted velocity-inertial/scalar-diffusive 
regime of k- ITI3 ’ IS clearly evident. We are thus encouraged 
to examine the scalar field more closely. 

The PDF, P( VI 0)) of the scalar gradient transverse to 
g is presented in Fig. 2 for several Pe’s. Since 2 is the only 
imposed direction, any asymmetry between P( f [ VI 6 1) is 
purely a result of sampling errors. We find that the PDFs 
can be fit well to the stretched-exponential form, 

P(VI O/CT) =H”exp( -pjV, ebla), (17) 
over a range of VI 0 from a fraction ( -0.1 for the large 
Pe) of its root-mean-square (RMS) value, a, outward. The 
fits are also shown in Fig. 2, and the corresponding param- 
eters are collected in Table II. The form (17) is at this 
stage empirical, but has recently also been used for turbu- 
lent Rayleigh-BCnard convection to approximate the PDF 
of temperature differences,36 and the PDF of the curvature 
of isothermal and isoconcentration surfaces3’ 

Figure 3 shows the PDF, P(V,, @>, of the scalar gradi- 
ent parallel to g. For all Pe shown, P( VII 6) is very skewed. 
The skewness, S ((Vi, 8)3)/( (Vi, 0)2)3/2, is tabulated in 

1824 

TABLE II. Parameters of Eq. (17) for the fits displayed in Fig. 2. 

Pe 97.2 246 627 1544 2697 

; 
0.92*0.01 0.80+0.05 0.66l~O.OO5 0.627 *0.005 0.563 +0.005 
1.66ztO.05 1.8AO.2 2.39hO.05 2.50 l 0.05’ 2.89 f 0.05 
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I” ,o -5 0 5 10 15 20 

FIG. 3. The parallel-gradient PDFs corresponding to Fig. 2. The P&et 
number increases from bottom to top. 

Table III. For Pe 2 300, S has very weak Pe dependence 
and clearly fails to conform to the naive expectation of 
S-Pe-3’2. Also given in Table III are the values of the 
scalar-gradient kurtosis, Ks = ( (ii l V6) 4)/( (ii l V6) *) ‘, for 
the perpendicular and parallel directions. The kurtoses are 
4 ( 10) and increase slowly with Pe. 

How does the estimate of S- Pe-‘I2 fail? The center of 
P(VII 6) is shown in Fig. 4, with the gradient plotted on 
the scale of the external gradient, g. The most probable 
value of VII 8 [where P(V,, 6) is peaked], rapidly ap- 
proaches -g with increasing Pe, which means that the 
velocity field is successful in expelling the mean gradient 
over most of space. The snapshot of 6(x) in Fig. 5, and the 
associated slices through 6(x) in the direction of the gra- 
dient in Fig. 6, clearly show the formation of large-scale 
ramps in 8 with gradient -g. (The slices of Fig. 6 are 
reminiscent of the temperature time series of Refs. 3,4, and 
26.) The ramps correspond to regions of near-zero total 
gradient, V8+g, and are separated by thin high-gradient 
cliffs. The cliffs occupy linear, not extensively folded re- 
gions in the x-y plane (as defined in Fig. 6). 

Typically, a cliff is formed by a convergence of the 
large-scale flow whose inflow directions have a substantial 
component along 2 to establish the overall Cs (gL,> jump in 
8. The cliff is usually well correlated with the separatrices 
along the outflow from the (instantaneous) stagnation 

10-r 

FIG. 4. Same as Fig. 3, but with VII 6 plotted in units of the mean 
gradient, 8, and without vertical offset. The P&clet number increases from 
top to bottom. 

point formed by the convergence (see Fig. 7). (A similar 
result is shown for the conditionally averaged velocity in 
Figs. 6 and 7 of Ref. 26.) The scalar appears to be always 
quite well correlated with the instantaneous streamfunc- 
tion and, in particular, the fine structure of the cliffs is 
correlated with the small-scale velocity field. (When the 
fine structure is suppressed at lower Pe as in Fig. 7, the 
correlation between the streamfunction and the scalar is 
actually somewhat more evident to the eye than in Fig. 5.) 
Inhomogeneities formed by the small-scale velocity are 
rapidly mixed into the uniform ramp regions which the 
cliff separates. After a time of order T, the cliffs themselves 
typically get advected by the large scales into the mixing 
regions, where they become homogenized while new cliffs 
are being formed by newly born convergences. Naively, 
one would think that a sharp feature like the cliffs would 
thicken with the eddy diffusivity and not with the molec- 
ular diffusivity, K. The cliffs observed, however, are self- 
generated and delinitely conditional on the flow, even 
though we have no precise analytic way of determining 
their location. A cliff placed randomly in the flow would 
broaden in accordance with eddy-diffusivity notions. 

Since our velocity field is not static, there is no obvious 
reason why the scalar should partition itself with the 
streamfunction as described other than the fact that the 
lack of Galilean invariance in our model does in fact single 

TABLE III. Skewness and kurtosis of the gradient PDFs for OU advection. Errors were estimated as for 
Table I. 

Pe 

S 
liil 
KL 

39.3 97.2 246 627 1544 2697 

0.88+0.17 1.31*0.04 1.62*0.11 1.67AO.18 1.51*0.20 1.37+0.46 
4.8* 1.1 7.03*0.31 10.2+0.91 14.OA2.1 16.1k2.7 17.9h7.7 
3.9* 1.2 6.08 ST 0.33 9.OlhO.94 12.3*2.1 14.8A2.4 17.6*7.8 
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min = -2.87107, max = 2.35341 

(b) 
FIG. 5. (a) Snapshot of Q(x) in the stationary state for OU advection at 
Pe= 1544 on a 512’ lattice. The instantaneous, spatially averaged parallel- 
gradient skewness of the snapshot is S= 1.01 (the ensemble-mean skew- 
ness is S= 1.51 AO.20). The mean gradient is applied in the horizontal 
and the (linear) gray scale is given in units of gL/lr, where L is the 
integral scale. (b) Evenly spaced contours of the corresponding stream- 
function. 

out points of convergent flow, where v=O. We defer fur- 
ther discussion on this point until after Sec. V. 

To quantify the sharpness of the cliffs, we performed 
two runs with identical velocity fields but with K differing 
by a factor of 2. The cliffs from the two runs then super- 
impose well, and it is apparent that the height of the cliffs 

FIG. 6. Horizontal slices through Fig. 5(a). Note the ramp-and-cliff 
features which give rise to the net scalar derivative skewness. Plotted in 
gray is the full scalar, O= B+p* x. Ramps correspond to regions where 
the mean gradient has been expelled. 

is insensitive to Pe, while the distribution of the ratio of 
V 8, at corresponding points within’ the cliffs, is peaked at 
d. The scaling of the gradients with Pe”’ can either be 
interpreted as a simple consequence of (4) or, more mys- 
teriously, as an instance of Batchelor scaling [cf. Eq. (lo)]. 
While calculation of the RMS strain rate from modes with 
2<k 54 does make fi a reasonable estimate for the 
width of the cliffs, we do not yet understand the funda- 
mental reason for their sharpness. The same scaling with 
Pe*” for the width of the spikes in a time trace of the 
longitudinal scalar derivative was recently noted in exper- 
iments on the axis of a jet.14 

To further elucidate how the skewness arises, we at- 
tempted to collapse f(Vll f3)=(V,, 8)3P(Vll f3), for the 
four highest Pe’s of Fig. 2, onto a single curve by scaling 
VII 8. No single scale factor suffices, although the position 
of the positive peaks of f(Vll 0) scales reasonably well with 
Peln. Numerically, the positive peaks occur at 3-4 times 
the RMS value of VII CZ3* Inspection of numerous snap- 
shots of the scalar shows that the small-scale fluctuations 
on the ramps definitely increase with Pe but remain sym- 
metric so that they affect the skewness only through its 
denominator. A conspiracy of factors to which we do not 
have ready access, except through the skewness, is required 
to explain the nearly Pe-independent value of S in Table 
III. We estimate the skewness as 

r x (&w 3 
‘- Pe3j2 ’ (18) 

where gL/l is a typical value for the gradient in the cliffs, 
and J? is the area fraction of the high-skewness regions. 
Thus, once we accept that VII 8-Z- ’ -Pe”‘, the area frac- 
tion, r, occupied by such points must be Pe independent to 
give a Pe-independent skewness. Since the number and po- 
sitioning of the cliffs is controlled by the large scales of 
motion, the small-scale folding of the cliffs must increase to 
compensate for their decrease in thickness. 
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(4 

0)) V. RESULTS FOR RESTRlCTED EULER ADVECTION 
FIG. 7. (a) Contours of e(x) spaced by 0.4(gL/?r) for OU advection on 
a 256’ lattice with ~=5.04OX low3 (Pe=627*5). The region shown is 
78 mesh spacings (or -0.61L) on a side and contains a well-developed 
cliff. (b) Evenly spaced contours of the corresponding streamfunction. 

For the scalar itself, we need many integral scales to 
improve statistics and to mitigate artifacts of the periodic 
boundary conditions, while having enough resolution for 
adequate dissipation. We were able to balance these con- 
flicting requirements for model (16) on a 128’ lattice by 
choosing (k& , k,,,) = (4, 8), and by using a hyperdissi- 
pation, Fk448(k), instead of &e(k). The k4 diffusion 
should have no effect on the large-scale physics. The re- 
sulting stationary distribution is shown in Fig. 9. Exponen- 
tial tails are clearly evident and the kurtosis of K= 3.6 f 0.3 
and general shape of the PDF are consistent with what is 
seen experimentally. 9**o The transient PDFs, computed by 
repeatedly letting the scalar relax from 6(x) =0 for a fixed 
time t ;5 3T, have more pronounced tails than in Fig. 9, 
with kurtoses K-4.0-4.2. 

Because the high gradients are concentrated on the 
boundary of roughly compact integral volumes, (VII 8)3 
averaged spatially, should change on the integral time. As 
Fig. 8 shows, this is in fact what is observed not only for 
the third moment, but also for the dissipation and the 
fourth moment. Thus, we essentially get only one indepen- 
dent sample per integral time, which explains the large 
error bars in Tables I and III.3’ 

It is encouraging that our S( Pe) behaves roughly as in 
real experiments. 3-5~‘1 We believe that this is not due to the 

1000 m 
z- 
p 500 
- 

FIG. 8. Time series of (V,, 0)‘, (Vjl 8)3, and (VII 6)4 spatially averaged 
for OU advection at Pe= 1.54~ 10 . The moments of the instantaneous 
parallel-gradient PDF have large fluctuations on the scale of the integral 
time, T, and are clearly correlated (especially the third and fourth mo- 
merits) . 

pathologies of the OU model. In order to reduce the inher- 
ent sweeping effect, we have rerun the case of 
~=5.04Ox lOA and N=256 with y(k)-4y(k), keeping 
Y fixed at what is was before. This enhances the estimated 
eddy diffusivity, KJ~), [Eq. ( 14)] by a factor of 4 for all r 
by decreasing the autocorrelation time of the velocity and 
hence the sweeping. We find that the character of the spa- 
tial structure of the scalar remains unchanged and that the 
skewness remains d ( 1) although it is reduced by -40% 
to s=1.13*0.15. 
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FIG. 9. The PDF of the scalar for restricted Euler advection with (k,,,, , 
k,,,)=(4, 8) on a 128’ lattice. The scalar was dissipated by a &%k 
hyperdiffusion with Z=l.SX IO-“. The PDF shown has RMS value 
u/(gL)=O.74*0.01, kurtosis K=3.6*0.3, and was computed from 
B(x) after modes with k <4 were discarded. The dotted line indicates a 
Gaussian of the same variance. The filtering does not change the quali- 
tative shape of the PDF; for unfiltered data it has a/(gL) =0.83+0.01 
and K=3.4&0.3. 

Since the k-’ spectrum predicted by Batchelor” has 
proved elusive experimentally, we search for it numerically 
by moving the wave-number band (kmin , k,,,) back to ( 1, 
3 ) , which gives us ten independent velocity modes.39 Since 
no argument for the k-’ regime makes any demands on 
the form of the dissipation, provided it is strong enough, 
we again utilize a k4 hyperdiffusivity to maximize the scale 
range. Figure 10 shows that, on a 512’ lattice with 
8=3 X lo-*, we can push the peak of the dissipation spec- 
trum out to k- 30. The beginning of a k-i regime over 
about a decade of wave numbers is clearly evident for the 
scalar spectrum. Figure 11 shows a snapshot of the scalar 
and the corresponding streamfunction under the same con- 
ditions. The scalar has the same layered, streaky character 
as is observed in experiments on scalar mixing in axi- 
symmetric jet turbulence at high Schmidt number.’ Unfor- 
tunately, the scalar spectra are not available for those ex- 
periments. Except for the integral-scale jelly-roll-like 
structures, the scalar is in detail not well correlated with 
the instantaneous streamlines. We find that the scalar gra- 
dients still have a skewness of 0.44=1=0.22, which is less 
apparent than in Fig. 5 (a) since ((V,, 01)‘)/2 
=(1.7*0.2)X103, versus42+2inFig. 5(a). Becausethe 
k4 diffusivity does not allow us to attach much physical 
meaning to the gradient PDFs, especially for large gradi- 
ents, we merely note that they are rounded for gradients of 
order g although they appear cusped on the scale of their 
RMS value. 

It is interesting to study the derivative PDFs for what 
is effectively the large Pr limit. To obtain realistic values of 

k 
FIG. 10. The normalized dissipation spectrum (top curve) and scalar 
spectrum in the Batchelor regime. The scalar was advected by the re- 
stricted Euler model with (/&,, k,,,,) =( 1, 3) on a 512’ lattice and 
dissipated by a Kk48, hyperdiffusion with i?=3.OX IO-*. 

the gradient for large fluctuations, we return to the physi- 
cal Laplacian diffusion and also move the velocity band in 
( 16) out to (kti, km,,) = (4, 6) to improve statistics 
( ko= 5). We define a physical Pe= VUK with the RMS 
velocity V and L= 2rr/ko. The scalar gradients are re- 
solved with Pe-320 on a 256’ lattice or, via Eq. (lo), 
Pe- 1280 on a 5122 lattice. Figure 12 shows the scalar 
spectra obtained for Pe=62.8, 314, and 1257 on a 1282, 
2562, and 5122 lattice, respectively. Although there is a 
trend with increasing Pe toward a k-’ spectrum, we no 
longer have a sufficiently large range of scales to observe 
Batchelor scaling. 

The perpendicular-gradient PDFs corresponding to 
the spectra of Fig. 12, together with fits to Eq. (17), are 
shown in Fig. 13. In the concave region of P(VL Cl), the fits 
are reasonable down to gradients as small as -0.10. For 
gradients larger than about 5-6a, the stretched-exponential 
region crosses over to another functional form which is 
plausibly exponential. We ex ect the crossover point to be 
determined by p = 8 S/K, since the scalar cannot be P 
compressed by the strain s to distances less than ,/&. 
Using for s the RMS value for the strain in our model, and 
for i? the RMS value of 6 (which is roughly Pe indepen- 
dent), we indeed obtain a value of g* - 6a (e.g., for Pe 
=1257, we have a-8.5, s-2.6 and (13’) - 1.0, in units 
where g= 1) . 

The parallel-gradient PDFs, corresponding to Fig. 13 
are shown in Fig. 14. In Fig. 15, we have replotted their 
centers with VII 8 in units of g. Even on the scale of g, the 
PDFs have a very sharply peaked center, with the inter- 
mediate Pe curve being the sharpest. It is illuminating to 
look at corresponding snapshots of the scalar, which are 
shown in Figs. 16-18. Although more structure appears 
with increasing Pe, there is remarkably little structure 
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min = -16.4419, max = 12.4588 min = -16.4419, max = 12.4588 

(b) 
FIG. 11. (a) Snapshot of B(x) in the Batchelor regime under the same 
conditions as for Fig. 10. The mean gradient is applied in the horizontal 
and the gray scale is given in units of gL/n. (b) Evenly spaced contours 
of the corresponding streamfunction. 

across an eddy even at the highest Pe, and the gradients 
occur mostly in the high-strain regions around (instanta- 
neous) stagnation points (see, e.g., the top of Fig. 18). 
Thus, for the Pe studied, the velocity evolving on its nat- 
ural time scale is very successful at expelling the mean 
scalar gradient and concentrating it in clitfs. The sharpness 
of the gradient PDFs is attributable to the large areas with 
little variation in 8. 

FIG. 12. Normalized spectra of the scalar for restricted Euler advection 
with (k,,,, , k,,,,,) = (4, 6) as indicated by the dashed lines. The spectra 
have been offset vertically for clarity. Starting with the lowest curve, the 
corresponding Pkclet numbers and lattice sizes, IV, are (Pe, N) = (62.8, 
128), (314, 256), and (1257, 512). 

We have the following physical picture for these ob- 
servations. Since our velocity field is time dependent and 
has generally both strain and shear, we expect eddies to 
mix the scalar in a time - T log (Pe) (as opposed to the 

10° 

z 10-l 

a+ lo+ 
D 
- lo4 P-4 

104 

10* 

10d 
0 5 10 

FIG. 13. PDFs of the perpendicular gradients for restricted Euler advec- 
tion with (k,, , k,,,) = (4, 6)) natural time scale, and physical dissipa- 
tion. The curves have been “folded” as in Fig. 2 and are offset vertically. 
Starting with the lowest curve, they correspond to Pe=62.8, 314, and 
1257. The dashed lines are fits to Eq. (17) with parameters (a, 8) = (0.85 
AO.02. 1.7*0.1), (0.55+0.02, 2.9*0.1), and (0.46*0.01, 3.6AO.2) in 
order of increasing Pe. The inset shows a blowup of the center of the 
PDFs (without folding). 
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FIG. 14. PDFs of the parallel gradients corresponding to Fig. 13. The 
Pkclet number increases from bottom to top. 

much slower time - T Pe1’3 for pure shea?)). Thus, for 
small Pe, the scalar has time to get completely homoge- 
nized in the interior of an eddy during an integral time, T, 
whereas for large Pe, there is no longer sufficient time to 
mix the scalar entirely during an autocorrelation time of 
the velocity so that differential rotation begins to produce a 
jelly-roll-like structure (Fig. 18). The fact that the gradi- 
ent PDF is sharpest for Pe-300 suggests that, for this 
value of Pe, integral and mixing times are particularly well 
matched. Nevertheless, for all Pe studied the high correla- 
tion of the scalar with instantaneous streamlines indicates 

s 6 - 10-l e, 
/ 

min = -1.30313, max = 1.62033 

(a) 

(W 
FIG. 16. (a) Snapshot of 6(x) in the stationary state at Pe=62.8 on a 
128’ lattice. The scalar is advected by the restricted EuIer model on its 
natural time scale with (/&in, k,,,,) = (4, 6). The mean gradient is ap- 
plied in the horizontal and the gray scale is given in units of 5gL/(2n). 
(b) Evenly spaced contours of the corresponding streamfunction. 

-3 -2 -1 0 1 2 3 

FIG. 15. Same as Fig. 14 but with VI 0 plotted on the scale of the mean 
gradient, g, and without vertical offsets. The P&Jet number increases 
from top to bottom. 

that the mixing time was d ( T). For very high Pe, which 
was in effect achieved in Fig. 11 through the use of k4 
diffusion, random straining and differential rotation domi- 
nate giving rise to the k- * Batchelor regime. 

Figure 19(a) shows the PDF of the dissipation, 
P(z= 1 V81 2/o), for Pe= 1257. Since the PDF of the gra- 
dients is not lognormal, we do not expect P(z) to be log- 
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min = -2.57522, max = 1.67371 

04 (b) 
FIG. 17. (a) and (b) As for Fig. 16, but with Pe=314 on a 256’ lattice. FIG. 18. (a) and (b) As for Fig. 16, but with Pe=1257 on a 512’ lattice. 

normal. In fact, if both VI 6, and VII 0 were purely 
stretched exponential with the same p and exponent a [Eq. 
( 17)], one obtains for their convolution (assuming the two 
components of the gradient are statistically independent), 

Xexp[ -@&2(cosa S+sin” 6) 1. 

For small z this reduces to P(z) -?ro.Jy’?[l- (const)za”], 
while for large z, P(z) -~y/i- “’ exp ( -fiF’2). The latter 

expression fits the data over about 1-15~. It is worth not- 
ing that the small-z dependence of P(z) depends on dimen- 
sionality. In D dimensions, P(z) +z(~-‘)‘~ as z-+0, again 
assuming D statistically independent components of V8. 
Thus, in 3D, P(z) diverges like z-ir2 as z-0 (Ref. 14)) 
unlike in 2D, where P(z=O) is finite and nonzero. 

As a test of lognormality, we show in Fig. 19(b) 
p[log(zj]=zP(z) vs z on a log-log plot, as is 
conventional.i4 The discreteness of our bins prevents us 
from seeing pElog(z)] -+z as log(z) -+ - IX, but the PDF is 
not expected to be lognormal in this limit for the reasons 
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FIG. 19. (a) PDF of the dissipation, 1 VBI ‘, normalized by its variance, 
0; corresponding to the conditions of Fig. 18 (solid line). The dashed line 
is a fit to (const) IV81-‘exp[-P( ~V612/a)“* with (a/2, p)=(O.36 
AO.02, 2.93 +0.25) as derived in the text for large dissipation. (b) A 
log-log plot of the PDF of the logarithm of the dissipation showing a “tit” 
to a parabola as a test of lognormality (dotted line). For small dissipa- 
tion, the location of the histogram bins is shown by crosses, and the other 
curves are as in (a). 

noted above. For large z, the lognormal form falls less 
rapidly than a stretched exponential and therefore is a 
poorer fit. 

The white-noise limit of the velocity in the Batchelor 
regime is interesting because it facilitates theory’3*23 and 
allows one to quantify how the cusps in Fig. 15, and the 
sharp fronts in Figs. 16-18, depend on the persistence of 
the eddies. White noise is also the furthest removed from a 
frozen velocity, which in 2D has the undesirable property 
of closed Lagrangian trajectories. Thus, simulations in the 

FIG. 20. Approach to the white-noise limit (V- M ) at Pe,=62.8 of 
P(V, 0) for restricted Euler advection with (k,i,, k,,,,,)=(4, 6). The 
solid curve corresponds to n= 1, the dashed curve to n=5, and the dotted 
curve to 77=20. 

white-noise limit provide some indication of the possible 
systematic errors inherent in our model. We adjust the 
autocorrelation time of the velocity, r, by multiplying the 
advective term in (16) [but not in (2)!] by a speed-up 
factor r] cc r- ‘. The white-noise limit, q-+ CO, should be 
taken at fixed Taylor diffusivity,30 D- V%- VL/q, or, 
equivalently, at fixed Pe,= VL/( qrc) . With this definition, 
( 1 V612) has a sensible limit, (l/2) D.$/K, which follows 
from (4) since (VII 0) can be evaluated exactly for r-0 by 
using 

@x,(t>,t] =8[x,(t-AQ,t-At] 

+O* s ~~*~~[x,(t’),t’ldt’+d[(A~)~l, 

(19) 

where x, is a Lagrangian point. 
We approached the white-noise limit with a series of 

runs for r] = 1, 5, and 20, with V fixed and K a 71 --I, so that 
Per was constant and equal to 62.8. The PDFs of V1 0 in 
Fig. 20, and VII 0 in Fig. 21, normalized with their respec- 
tive RMS value, a, seem to converge to a limiting form. 
The convergence of 0 is surprisingly slow, e.g., for P( VL 6) 
we obtain a/g= 1.661~0.008, 3.65 fO.10, and 6.78 *to. 12 
in order of increasing q. Figure 22 shows the center of 
P( VII 6) on the scale of g. While the most probable value of 
the parallel gradient is -g in all cases, the centers round 
with decreasing r. This is also apparent in the snapshot of 
6(x) of Fig. 23, which shows that the scalar for ~=20 has 
more structure than for q= 1 and no correlation with the 
instantaneous velocity field. Despite the banded texture of 
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FIG. 21. Same as Fig. 20 for the parallel gradients, VII 8. 

the scalar in Fig. 23, its spectrum is virtually identical to 
that obtained for the same parameters but q= 1 (cf. Fig. 
12). 

Finally, to get an idea of the systematic dependence of 
the gradient PDF on Pe, in the white-noise limit, we show 
superposed in Fig. 24 three transverse gradient PDFs on 
the scale of g for r]=20 and Pe,=3.14, 15.7, and 62.8. 
While for small Pe, the most probable value of the parallel 
gradient is significantly larger than -g, the rounding of 
the centers of the PDFs is roughly Pe independent. 

Table IV summarizes the variance, skewness, and kur- 
tosis data for the numerical experiments of this section 

r- I I I 

I IJ 

&g 

1 2 

*: 
\ 

3 

FIG. 22. Same as Fig. 21 but with VII 0 plotted on the scale of the mean 
gradient, g. 

min = -1.84776, max = 2.4671 

(4 

FIG. 23. (a) Snapshot of e(x) in the stationary state at Pe,= 62.8 on a 
512* lattice when advected with the restricted Euler model [(k,, , 
k,,,) = (4,6)] sped up by a factor of q=20. The mean gradient is applied 
in the horizontal and the gray scale is given in units of 5gW(2rr). (b) 
Evenly spaced contours of the corresponding streamfunction. 

which were run with Laplacian dissipation and (k,i,, 
k,,,) = (4, 6). For advection on the natural time scale, the 
skewness is virtually Pe independent. When the autocorre- 
lation time of the velocity is decreased by a factor of 20, the 
skewness decreases by a factor of -224. 

For the Pe studied, we infer that the mixing time is 
sufficiently fast compared with T due to numerical factors, 
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FIG. 24. Centers of P(Vtl 6) for restricted Euler advection [(kmi,, 
k,,) = (4,6)] which was sped up by a factor of r]=20. Starting with the 
top curve, the P&let numbers and lattice sizes, N, are (Per, N) = (3.14, 
128), (15.7, 256), and (62.8, 512). 

so that the scalar is homogenized within eddies and the 
gradient expelled to the vicinity of the open streamlines. 
The correlation between the scalar and the instantaneous 
streamfunction is reminiscent of what occurs for a static 
array of ro11s,41 although the time dependence in our prob- 
lem ultimately means that the mixing time should scale as 
T log(Pe) rather than T Pe1’3. In our simulations, the 
cliffs appear to follow the time-dependent separatrices 
which emerge from the saddle points. Selected fluid par- 
cels, initially spaced by B (L) along Q, which converge in 
the hyperbolic regions, where the strain, sL, is high, spend 
sufficient time there so that the gradient can grow expo- 
nentially [like -exp( &,t)] to the maximum value, 
- J;c/sL, allowed by the diffusivity. This picture for the 

skewness production also suggests that the skewness will 
decrease with the velocity correlation time as observed. 

In the limit Pe+ CO, with the time scale for the velocity 
fixed, we expect the skewness to go to zero as Pe-1’2. This 
follows if the cliEs remain smooth as they thin, so that the 
area fraction, I’, occupied by the cliffs decreases as Pe-1’2. 
Because the characteristic value of VII 19 which enters both 
the numerator and denominator of the skewness scales as 
Pe”2, the Pe dependence of (gL/Z)3 in IQ. ( 18) cancels. 
The nearly Pe-independent skewness displayed in Table IV 
is likely due to a lengthening of the cliffs. [The dissipation, 
while not occurring uniformly in space, scales as Pet (Ta- 
ble IV).] Barring subtle effects not apparent for the Pe 
studied, we believe, however, that the length of the high- 
skewness regions stabilizes at asymptotically high Pe to 
give S- Pe =-1’2 when the k-’ spectrum is fully developed. 

VI. SUMMARY AND CONCLUSIONS 

The scalar spectra found numerically are consistent 
with the standard theoretical predictions in spite of the 
artificiality of our velocity fields. With the highest range of 
scales attainable in our simulations, we can identify for 
effectively small Pr a k-“3 scalar-inertial range followed 
by a velocity-inertial/scalar-diffusive k-‘7’3 cascade, while 
for effectively large Pr, we find Batchelor’s k- ’ spectrum. 
The scaling regions extend over about a decade in wave 
number. 

It is surprising how well the shape of our gradient 
PDFs compare with laboratory experiments in much more 
complicated settings.36’42 For instance in Fig. 25, we show 
a tit of the stretched-exponential form (17) to the time 
derivative of the temperature in the center of a helium 
convection cell at high Rayleigh number.36’42 The data is 
very similar for an off-center probe,3” where there is a 
mean tlo~~~ which allows the time derivative to be inter- 
preted as a spatial one. Note the striking similarity with 
Fig. 2 as well as the resemblance to Fig. 13 for 1 VL 8 j 5 5~. 

The scalar-gradient PDF has several regimes marked 

TABLE IV. Summary of the variances, skewnesses, and kurtoses of P(V, 6) and P(V,l 0) for Euler 
advection with the velocity restricted to the band (k,t”, k,,,,,) = (4, 6), L&h-/5. Errors were estimated as 
for Table I. 

Pe,= YL/(q) 
(K) rl N  VT ((V, ‘3%T2 ((V,, e)*>g-’ s G  Kll 

62.8 1 128 955 2.76aO.03 3.12+0.02 1.80*0.04 6.7kO.3 7.950.2 
(2.0X 10-y 

314 1 256 95.5 13.2kO.4 15.0*0.4 2.4kO.2 12*2 15&2 
(4.0X 10-q 

1257 1 512 24.6 51+2 53+2 2.3kO.3 19*4 20%3 
(LOX 10-Q 

62.8 5 256 23.9 13.3*0.7 15.4*0.7 2.5 +0.4 14*3 16*3 
(4.0X 10-q 

3.14 20 128 31.8 2.27hO.06 2.51 LtO.08 1.1AO.l 4.3hO.5 5.9*0.8 
(2.0X 10-s) 

15.7 20 256 7.96 11.6hO.6 12.8 *to.6 1.1*0.2 7*1 8+2 
(4.0X 10-q 

62.8 20 512 3.18 46*2 48+3 0.6j~O.2 7+=1 7+2 
(1.0X 10-q 
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FIG. 25. The left-right-averaged temperature-derivative PDF of Ref. 36. 
The temperature was measured at the center of a helium convection cell 
at Rayleigh number Ra=7.3XlO”. The inset shows a blowup of the 
center of the PDF. The dotted line is a fit to the stretched exponential 
form, F!q. (17), with (a, /3)=(0.347, 5.09). 

by characteristic values of the grad@. A break in the 
distribution is expected for 1 VB 1 - 8 fi, where s is the 
maximum sustained strain (on the order of the RMS), and 
8 is a scalar difference, of at most d (gL), over the length 
a. This is clearly seen in Figs. 13 and 14, but the break 

falls too far in the tail to be visible for OU advection, where 
we estimate the crossover point by - 6-8 (Lk,,/z-) 1’3 us- 
ing the RMS value of the strain and 8-gL. There is no 
change in any of the gradient PDFs at all for 1 V0 1 --a, 
which a priori was not obvious to us. Finally, there is the 
regime 1 V8 I 5g, where the PDF is rounded in the case of 
OU advection (Fig. 4)) whereas for restricted Euler advec- 
tion on its natural time scale, it shows no break and con- 
tinues into a cusp [Fig. 15). When the correlation time of 
the velocity is artificially decreased in the restricted Euler 
model, the center of the gradient PDFs becomes rounded 
(Figs. 22 and 24) .43 

Intermittency, in the sense that the scalar dissipation is 
either “on” or “off “, is manifested in the gradient PDFs as 
much by the sharpness of their centers as by the flaring of 
their tails. If there are large regions with uniform O= 8 
+g 9 x, then they must be interleaved with cliffs to main- 
tain the mean gradient. The statistically stationary state of 
our models, maintained by the mean scalar gradient, was 
essential to bring this out. If one were to run random large- 
scale initial data forward several correlation times,44 the 
gradient PDF would be rounded on a scale set by the 
variance of the initial distribution of gradients. 

We see no clear evidence for a lognormal distribution 
for V8 or the dissipation and, instead, fit both successfully 
to stretched exponentials. We do not feel that the published 
experimental fits45 to lognormal behavior are definite nor 

preclude a stretched-exponential form.44 There is certainly 
a compelling argument for lognormal gradients when there 
is no dissipation and the dynamics is integrated for a fixed 
time.28 However, this reasoning does not carry over to the 
statistically stationary case.23 

Although both our models generate a ramp-and-cliff 
structure and a 8( 1) skewness as in experiments,3-5711,26 
one must still inquire whether the mechanisms we have 
uncovered plausibly operate in real turbulence. In both 
models the cliffs organize approximately along instanta- 
neous streamlines transverse to g emanating from saddle 
points of the streamfunction, so one might suspect that we 
see some vestige of a static 2-D velocity. However, what is 
required is merely a mixing time shorter than the correla- 
tion time of the velocity, and in that respect recall that the 
mixing time is Reynolds independent within Kolmogorov 
theory. 

It is encouraging that a similar correlation between the 
cliffs and a conditionally averaged velocity emerged from 
experiments with a planar jet.26 The large-scale eddies, 
which are a well-known feature of two-dimensional free- 
shear flows, appear to be responsible for the converging 
flow which gives rise to the cliffs. It is noteworthy that we 
see the same mechanism at work for a simple Gaussian 
velocity field. 

The OU model suffers from a lack of Galilean invari- 
ance (the small scales are not advected by the large scales), 
so that saddle points, where v=O, and the separatrices 
connecting them, are indeed singled out. In the OU model, 
a Galilean transformation cannot be accomplished by sim- 
ply shifting the large-scale velocity by a constant velocity, 
vo. Because the model does not generate a corresponding 
coordinate transformation, x + x + vat, for the velocity field 
itself, adding v. merely creates bands of open streamlines 
which erode the ramps and broaden the cliffs. Neverthe- 
less, the OU model is not obviously a pathological repre- 
sentation of real turbulence in the appropriate frame, 
where (v) =O. A more quantitative theory than what we 
have at present is needed to make any precise connections 
between the OU model and real turbulence, and to explain 
at a more fundamental level the sharpness of the cliffs and 
their B(gL) height. 

The restricted Euler model (16) has reasonable invari- 
ance properties and is a physically sensible realization of 
the small-Pr limit in 2D. Although a trend toward a k- ’ 
spectrum can be seen in Fig. 12, for the Pe studied with 
physical dissipation, numerical factors suppress a k- ’ 
spectrum and lead to a d ( 1) skewness with gradient PDFs 
which are sharply peaked on the scale of g. With increasing 
Pe, however, as the mixing time becomes much longer than 
the integral time, T, we expect Batchelor scaling to de- 
velop, the skewness to scale asymptotically as Pe-1’2, and 
the gradient PDFs to become rounded on the scale of g. 
When high Pe is simulated via the use of a k4 hyperdiffu- 
sivity, a k- ’ spectrum indeed develops, the skewness de- 
creases, and the center of the gradient PDFs rounds. In 
JD, we expect a model analogous to the restricted Euler 
model to show similar effects46 although the PDFs should 
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always be rounded on the scale of g since in 3D the scalar 
can never be confined by streamlines. 

Note added in proo$ Recently Tong and Warhaft47 
have measured a scalar derivative skewness in grid turbu- 
lence comparable to the present work. Full 3-D numerical 
simulations of Pumir4’ also accord well with our results. 
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