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The properties of a single O hole, either localized or mobile, in a CuO, plane are studied for an
effective Hamiltonian derived from the extended Hubbard model in the strong-coupling limit. The
ground-state wave function for a 16-Cu-site cluster is found exactly and compared with a semiclassi-
cal variational treatment of the same problem. In the ground state, whether localized or mobile,
there is a long-range dipolar distortion of the Cu spin background around the O hole, as well as a
strong antiferromagnetic correlation between the spin of the O hole and the two adjacent Cu spins
(corresponding to the “3-spin polaron”). These correlations are forced by hopping and/or direct
Cu-O exchange and can be saturated by either one of them, suggesting that the two processes have
similar effects on the spin configuration and do not significantly interfere. The minimum of the
mobile hole band lies at k=(x7/2,+7/2) (at least in the presence of the small oxygen-oxygen hop-
ping). The bandwidth scales with the Cu-Cu exchange and not the bare hopping, when the former
is smaller. The ground state has spin % with the z magnetization residing in the canting of the Cu
spins, and the expectation value of the O spin vector being very nearly zero. Thus, both the quan-
tum numbers of the mobile vacancy ground state, as well as the far-field structure of the Cu spin
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configuration, are the same as those found for the vacancy in the single-band #-J model.

I. INTRODUCTION

The ubiquitous structural feature of all of the Cu-based
high-temperature superconductors' is the cuprous oxide
plane, and the theoretical description of these planes has
been intensely investigated.”? Anderson® first suggested
that the CuO, planes could be described by an effective
single-band large-U Hubbard model, where only holes in
the Cu d orbitals are considered. A more realistic model
for these planes, proposed by Varma et al.,* and Emery,*
is the extended two-band Hubbard model that explicitly
accounts for both the Cu and O orbitals.

For the stoichiometric composition, both the single-

band and two-band models describe antiferromagnetic
(hereafter denoted by AF) insulators if the Coulombic
repulsion between carriers is larger than their charac-
teristic hopping frequency. It is now established® that
La,CuQO, and YBa,Cu;04 are AF insulators, and magnet-
ic form-factor measurements,” and an x-ray-absorption
near-edge spectroscopy (XANES) study,® demonstrate
that the spins form strongly localized Cu?* configura-
tions interacting via superexchange.” The only
difference, in this case, between the two aforementioned
models is in the expression of the superexchange con-
stant.

The difference between a one- and two-band formula-
tion of the CuO, plane becomes important when one con-
siders (i) doping the stoichiometric AF insulator
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La,CuO, with a divalent ion, such as Sr, or (ii) adding
more oxygen to YBa,Cu;04. These modifications intro-
duce hole carriers into the Cu-O planes, and there is
strong experimental evidence!”© that the holes are
predominantly on the O sites. Thus, in general, an ex-
tended two-band Hubbard model would be required to
describe the behavior of the carriers. However, it has
been suggested by Zhang and Rice!! that in a certain lim-
it of parameter values the two-band model can be formal-
ly reduced to a single-band model, as proposed by Ander-
son.’

It is technically advantageous to pass immediately to
the strong-coupling limit>'?~!7 of the extended Hubbard
model and project onto basis states in which each Cu site
has a spin 1, and the holes (also with spin 1) are restrict-
ed to O sites. Virtual transitions then give rise to an AF
exchange interaction between nearest-neighbor Cu sites,
and between Cu sites and O holes,'® as well as processes
in which holes hop from O to O through the intervening
Cu sites. The analogous reduction of the single-band
Hubbard model leads to the so-called ¢-J Hamiltonian
(hopping and exchange). In either case, however, because
of the strong coupling between the hole and the sur-
rounding Cu spins, the problem remains highly nontrivial
even in the extreme dilution limit of a single O hole.
Thus, as a prerequisite for better understanding the phys-
ics of doped Cu-O layers it is important to achieve a
quantitative understanding of the ground state of a single
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mobile hole. This problem has been addressed by a num-
ber of recent studies of both one-band (or ¢-J) model'® ~ 2}
and the two-band model.!3 157 17.29-32

To motivate the present study we summarize several
key points that emerged in the earlier work. First, for
the ¢-J model in the interesting limit of ¢ >>J, one ob-
serves that while the hopping hole strongly modifies the
local Cu spin environment, the translational symmetry
guarantees that the states can be labeled by a Bloch in-
dex. However, in contrast with the free-carrier situation,
the bottom of the band lies at the zone-face centers, 2’2
and the bandwidth scales as J, not t. In addition, the
spins further removed from the hole display a coherent
long-range distortion?? with dipolar symmetry which is
induced by the hopping of the hole and can be associated
with the “backflow” of the magnetization current in the
spin background. The presence of such a distortion and
the implied coupling to the “twist” of the staggered mag-
netization order parameter has important implications
for the AF long-range order in the presence of the finite
density of holes.*?

Curiously, for the two-band model, Aharony et al.'®
have pointed out a dipolar distortion of the Cu spin
configuration arising from a very different process: For
the hole localized on a given bond the direct Cu-O ex-
change tends to align the two neighboring Cu spins, forc-
ing a distortion of the background. While the Aharony
et al. argument was purely classical, it appears consistent
with the presence of the quantum, “3-spin polaron” on
the vacant (i.e., occupied by the hole) bond, as proposed
by Emery and Reiter.!> The important question, howev-
er, concerns the effect of hopping on this structure. On
the other hand, the work of Roth® on the band structure
of the O hole moving in the Néel ordered Cu spin back-
ground suggests that the bottom of the hole band lies at
the magnetic zone boundary, but the analysis does not in-
clude the effects of spin exchange.

The competition of the hopping and exchange effects in
the two-band model can be investigated numerically for
small clusters. A study of this type has been initiated by
Shiba and Ogata'>?° who found the O hole ground state
on the 10-Cu-site cluster. The motivation for the present
study of the 16-Cu-site cluster is to obtain more con-
clusive results for the O hole band structure, compare the
structure of the spin distortion due to the hopping and
the one induced by the direct Cu-O exchange and, finally,
compare the results to those for the #-J model.

The reduction of the two-Hubbard model to a model
with effective hopping and exchange is useful since it at
least doubles the cluster size that can be treated exactly.
However, extracting useful information from the exact
wave function is entirely nontrivial. The wave function is
complicated since it describes the correlations amongst
the total magnetization, the spin of the hole, the AF or-
der parameter, various Cu spins, as well as the spatial
symmetries. Hence, we explore a number of correlation
functions, the choice of which is motivated by the semi-
classical variational wave functions, to which we resort to
gain insight.

The paper is organized as follows. In Sec. II we derive
the effective Hamiltonian. In Sec. III we give our numer-

ical results for small clusters, for both a quenched and
mobile hole. In Sec. IV we develop the perturbation
theory utilizing the semiclassical approximation, and
present additional numerical results that further charac-
terize the ground state, e.g., effective masses, and long-
range behavior of the distortion pattern. In Sec. V we ex-
plore the consequences of adding a direct oxygen hopping
term to our Hamiltonian. Section VI summarizes the re-
lation of the quantum and semiclassical calculations,
comments on the relation between the one and two-band
models in the strong-coupling limit, and mentions the
possible relevance of this work to experiments.

II. EFFECTIVE HAMILTONIAN
The extended Hubbard model’ is given by
7y +

H=73 eja,,a,,+13 Uijait;aiaaja‘aja' ) (1)

i,j,0 ij,

o,0
where i,j label the Cu and O sites, and the creation (de-
struction) operators a,-t, (a;,) explicitly refer to holes with
spin ¢ in the 3dx2_y2 and 2p, (2p,) orbitals (note that we

will only consider the p, orbitals). The diagonal parame-
ters (i=j) are the site energies ¢; and ¢,, and the in-
trasite Hubbard repulsion energies U; and U,. The off-
diagonal terms (near neighbor only, for now) are g;; =+t
(the p-d hybridization), and the Coulombic repulsion be-
tween holes on neighboring sites U;;=V. The vacuum
state for this Hamiltonian is the electronic configuration
3d'°2p®. From now on we shall take €=g, —g, to be
positive, and thus for a density of one hole per cell the
lowest energy state has a hole residing on each Cu site.

In this paper we shall always restrict our attention to

the Hilbert space with singly occupied Cu 3dx2_y2 orbit-

als, as well as one additional hole. As pointed out by Em-
ery,5 if U;>¢€+2V, the extra hole must reside on an O
site. For this restricted Hilbert space we have derived an
effective Hamiltonian including all terms that are of or-
der t2, as well as the Cu-Cu superexchange interaction,
which is of order t*. We find that the effective Hamiltoni-
an'?~ 16 is given by
He=4J,3' (S,'S;—1)+4J, 3 (S;'S,—1n))
(i) (i)
‘+'(ta +tb ) 2 [S, .(blta'?a'abla)—'—H'c‘ ]
(rit)
go
] S (b),b,,+H.c.) . %)
2 gm
In Eq. (2) we have denoted the Cu and O sites by i and /,
respectively, and (ii’) and (il ) represent neighboring
Cu and neighboring Cu and O sites, respectively. The lo-
cal spin operator is given by §,=1b; 7 b, for either
Cu or O, where the 7 are Pauli matrices, and the b, are
projected fermionic operators b;,=a,,(1—n;_,) that do
not allow double occupancy of any orbital. The number
operator for site i, spin o, is denoted by n,,, and
n=n;,+n_,.
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The first term in Eq. (2) represents the antiferromag-
netic Cu-Cu Heisenberg superexchange, where the
primed sum indicates that the Cu—Cu bond possessing
the additional O 2p hole is to be omitted. (We estimate
that the Cu-Cu superexchange of this omitted interaction
has an energy that is an order of magnitude less than J,.)
In the large-U limit one may expect

1 2

U,  U,+2

t4

~— . (3)
(e+V)

1

The second summation in Eq. (2) is the superexchange of
the O hole with its neighboring Cu spins, for which

1 1
+
Uj—e—2V  U,+e

. 4)

2
The hole on an O site may hop to any of its six neigh-
boring O sites through the intervening Cu. These pro-
cesses (lowest order, only) are shown in Fig. 1, and corre-
spond to the last two terms of Eq. (2). The expression
(Il) denotes an O-Cu-O near-neighbor triplet (see Fig.
1) of sites. One may estimate ¢, and ¢, using Rayleigh-
Ritz perturbation techniques and find

t2
L~ (5)
Ud_E"'ZV
t2
t, ~— . (63)
b €

However, as pointed out by Emery and Reiter,'” a better
estimate for ¢, is obtained via Wigner-Brillouin perturba-
tion theory (which is necessary if ¢ is of the same order of
magnitude as €). They find
2

+212

12
£

2 (6b)

Using the fitting of the extended Hubbard model parame-

INITIAL INTERMEDIATE FINAL
+ + — | — # —|— + +
Oy Cy O tq
+ + — |+ = + | — + +

+y
+ + —|— # —|— + +
and ta+ 1y
+ — =+

FIG. 1. Three hopping processes of order ¢? in the two-band
model. Site I’ is the initially occupied O orbital, site i the inter-
mediate Cu orbital, and site / the final O orbitals, in which the
O hole resides.

ters suggested by Schluter®* (viz., e=1.5 eV, U;=9 eV,
Up=6 eV, t=1.4 eV, and V=1.6 eV), one finds the fol-
lowing estimates for these terms:

J,~0.13,
J,~0.36,
t,~0.46 ,
t,~0.68 ,

7

all in eV. This set of values is close to that obtained using
other determinations of the extended Hubbard model pa-
rameters,'® and thus we consider Eq. (2) with the above
set of values to be typical of a doped CuO, plane. How-
ever, in order to ensure that our results do not depend
sensitively on this choice, we have used other values of
Ji»J4, t,, and t, (and also included a direct O-O hybridi-
zation, viz., t,,: See Sec. V) for completeness.

Last, implicit in Eq. (2) is the transformation given by
Emery and Reiter!® that produces a purely s-wave char-
acter of both the Cu and O orbitals.

III. Quantum Cluster Studies

The exact quantum ground state of small clusters (16
or 18 sites) proved to be a valuable complement to more
analytic and approximate treatments of the properties of
one hole in the ¢-J model. The same is true for the model
in Eq. (2). When the hopping is not much larger than the
exchange, 16 sites are quite sufficient to describe the
core,® i.e., the region in which the hole strongly scram-
bles the local spin arrangement. The numerical calcula-
tion will give the ground-state energy at several key
points in the Brillouin zone, the symmetry of the “far-
field” part of the wave function, and the relative
configurations of the Cu and O spins. The latter question
sheds light on the structure of the “quasiparticle.”

In this section we find the ground state of Eq. (2) by the
iterative product method for a 4X4 Cu-O cluster with
one hole and a total S* (to be denoted by S7) of 1.
Periodic boundary conditions are used. There is no bro-
ken spin-space symmetry in the ground state, in analogy
with the Lieb-Schultz-Mattis*® result for the Heisenberg
model, and the lowest total spin state is generally pre-
ferred (unless ¢, , /J, is too large). Translational invari-
ance then reduces the number of inequivalent O sites to
two, so there are 2(}’)=48 620 basis states in the SZ=1
sector. The numerical work involved, on average, is a
factor of 8 times greater than that of the corresponding
t-J cluster.

A representation of our cluster is shown in Fig. 2. The
Cu states form a square lattice i =m3X+n¥, and there are
two O basis sites at 21X and 1y in each unit cell. By con-
vention, we assume that the hole is always between site 1
and 2, or 1 and 8.

The mean-square AF order parameter is

<ﬁz>=yv‘12—< [ge,.s,. 12> (8)

where €; =1 for an A sublattice site, and €,=—1 for a B
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0 o 0 o
Cu(le) O Cu(l5) O Cu(l4) O Cu(l3) O
0] 0] (o) 0
Cu(9) O Cu(lO) O Cu(ll) O Cu(l2) O
0 0] 0 0]
Cu(8) O Cu(?) O Cu(6) O Cu(d) O
(0] 0] o) 0]
Cu(l) O Cu(2) O Cu(3) O Cu(4 O

FIG. 2. 4X4 CuO, cluster, and the labeling of the Cu sites,
used in the quantum cluster studies.

sublattice site (recall that a square lattice is bipartite).
For the classical Néel configuration this order parameter
is equal to 1. The value on a 16-site cluster is slightly
larger, 1.106, in spite of the quantum fluctuations, since
N terms in the square are just S?, which is three times the
corresponding value in the Ising limit.

There are a large number of parameters in this prob-
lem, and it is helpful to first consider the limit ¢, =¢, =0,
viz., a quenched hole in Sec. III A, before turning on the
hopping in Sec. III B. Since the relation between the to-
tal spin, the AF order parameter, the O spin, and the Cu
spins near the hole is quite complex, we organize our nu-
merical output by stating in each subsection a semiclassi-
cal model that reproduces qualitatively our quantum
measurements. In Sec. IV this model is developed more
deductively and quantitatively.

A. Quenched hole

When ¢, =t, =0, the O 2p hole will reside on a single
site which we take to be (1-2). Its spin is not conserved,
however, and there is just one relevant parameter in Eq.
(2), J,/J,. This limit may be of some experimental in-
terest since a small amount of doping leaves the parent
superconductivity compound insulating.’” If the disorder
tightly localizes the extra hole to a single O site, then the
considerations of this section should apply.

Aharony et al.'® have considered the classical x-y ver-
sion of this problem. Far from the hole, imagine that the
spins on the two sublattices are along ¥, S(L_ p==11y. By
symmetry the optimal configuration for the O spin is the
x direction. Then observe that the J, Cu-O exchange
forces the two adjacent A4,B Cu spins to develop com-
ponents antiparallel to the O spin. This distortion then
perturbs the remaining spins so that the ground state is
described by S ;5 ~S% 5 x[pTf(7)1X, where p=p1i, r
is the location of S ,p, relative to the hole, f decreases

with » and behaves like r ! for large r, and g =x,y corre-
sponds to the two inequivalent locations of the O hole in
a unit cell (which result in two distinct distortion pat-
terns). The far-field distortion then has a dipolar form
with the dipole moment p=pfi, which is aligned along
the occupied bond and has a magnitude p depending on
J,/J,. The spin distortion occurs in direction X in spin
space, which one notes is parallel to Sy and perpendicular
to the far-field staggered magnetization 2 =¥. Hence in
the coordinate independent form the distortion can be
parametrized by an antiferromagnetic dipole moment®
defined as P, =p,S,X Q, where a =x,y is a real-space in-
dex. Clearly, P, is a bivector in the lattice and spin
space. The far-field spin distortion can then be expressed
in the form

ra A
8(S,=85)~3 5P, x4 9)

a

We have found that when suitably interpreted, this
classical picture is essentially correct in the quenched
limit. Significant elaboration is necessary since the quan-
tum ground state is rotationally invariance around Z, and
only the magnitude of the order parameter is defined, not
its direction. More complicated matrix elements are
therefore necessary to uncover the correlations we seek.
We first enumerate and discuss the relevant correlation
functions and symmetries, and then turn to their evalua-
tion.

Spin overlaps (S;-S;.) and z components such as (S5 )
are all easy to compare with the classical limit. The
correlation between the hole and the two adjacent Cu is
clearly trivial for J,=0, while for J, >>J,, as observed
by Emery and Reiter,' it follows from diagonalizing

H;=4J,80"(Scyn) +Scu2)) - (10a)

The so-called 3-spin polaron is the doubly degenerate, to-
tal spin 1, ground state of this Hamiltonian. The
S%=+1 state has the form

I _ _
l%)—ﬁ,(zIm) [TTL)—=1Li1t)), (10b)

where each of the kets refers to the spins occupying the
Cu(1)-O-Cu(2) bond. It will evidently be of interest to
project the complete density matrix onto the 2* basis
states relevant to H;, and then find the weight in the 3-
spin polaron as a function of J,/J,. (For the mobile
hole, we will also examine the weight in the spin singlet
state proposed by Zhang and Rice.)

A convenient measure of the relative orientation of Cu
spin is {(S,; XS;.), ), where only the z component survives
by rotational symmetry. In the classical configuration
given in Eq. (9) this cross product is along Z, and has di-
polar symmetry.?>3® Its physical interpretation is a bond
spin current, as follows from the equations of motion:
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S,
?=—4J2(80XSI+SOX82) y
dS,
—=—4J,8, XSo—4J, 3’ S;XS§;,
ar ie(i,1)
(11)

as,
_'_‘2—4-]282)(50‘_4]1 2’ SzXS[ ,
ot i€41,2)
B _w 3 S, XS
, W i i
at e ii')

i#1,2

The prime on the second and third sums indicates the ab-
sence of the term corresponding to the occupied Cu(l)—
O—Cu(2) bond. The sum of the right-hand sides of the
four lines in Eq. (11) is, of course, zero, since the total
spin is conserved, and the expectation value of any time
derivative in the ground state is zero. Thus the presence
of the O spin acts as a “source” for S; XS, which would
otherwise be zero.

Although ((S;XS;.),) will be useful in characterizing
the distortion due to a mobile hole, additional symmetries
make this expectation value zero in the quenched case.
Specifically, because (i) there is no broken AF symmetry,
and (ii) the total spin is along Z, the product of a spin ro-
tation by 7 around ¥ followed by time reversal is a sym-
metry of the ground state. It has the effect of reversing
just the y components of the spins, thus {(S; XS;),)=0.
The same argument implies that all triple products, such
as (So-(S;XS;))=0. To circumvent this problem we
must refer (S;XS;.) to some other vector in spin space.
Two obvious correlations are ((QX(S;XS;)),) and
((SoXQ)-(S;XS;)), which are not required by symme-
try to vanish.

In Table I we display several matrix elements that mea-
sure, in various ways, the AF correlations as a function of
increasing J, /J;. The two Cu spins adjacent to the hole
(1,2), even for J, =0 decorrelate slightly with respect to
the Heisenberg AF model, since the corresponding Cu-
Cu exchange term is absent. For large J,, (S,'S,) ap-
proaches its ferromagnetic limit of +4. For more
reasonable values of J, the destruction of AF correlations
is quite localized, as is seen from the values®® of (S,-S;)
and (Q?).

The value of (SZ ) is suggestive as to where the total
spin resides, and is indicative of how the system would

respond to a magnetic field. When J, =0 the ‘“excess”
spin 4 is all on O, (S§ ) =1, and the 16 Cu spins are in a
total spin singlet. For large J,/J,, (S§) is nearly —,
which is the value expected for the 3-spin polaron with
S#=+1 [cf. Eq. (10b)]. In other words, the O spin is
forced down by the adjacent Cu spins, which are becom-
ing parallel, and prefer to be up. For intermediate J, /J,
we have found a jump in (S ) from positive to negative
values due to a level crossing; this may only be a finite-
size effect. The evolution of the total probability in the
two spin states of the 3-spin polaron is much smoother,
as the last column of Table I shows. For a random wave
function this probability would be 25%, so that the value
of 92% found for J, /J, =3 is quite appreciable. Hence,
for J,/J, >3 one may think of the three Cu(1)-O-Cu(2)
spins as forming a single effective spin-J object. This po-
laron has six nearest-neighbor Cu spins, three from each
sublattice, and with each of which experiences an ex-
change interaction of J4=2J,. From simple perturba-
tion theory we therefore expect the weight in the polaron
state to converge to 1 as J, /J, —0.

The value of {S% ) is more subtle and can deviate from
—1 because of the finite probability that the 14 remain-
ing Cu spins have (SZ%)=+1. The latter is related to the
singlet-triplet gap for a Heisenberg QAF lattice versus
the effective exchange J.;. There are no obvious factors
of J,/J; in this comparison which makes analytic esti-
mates difficult.

To measure the dipole moment we display in Table II

((SoXQ)-(S, XS,)) /{(So X Q)*)!"?

for the bonds (1,2) and (2,3). For the spins which sur-
round the hole, this correlation is maximum at J, /J | ~2,
and then decreases; in semiclassical terms, the two Cu
spins are becoming parallel and the cross product van-
ishes. For the bond adjacent to the hole this quantity sat-
urates with increasing J,/J, in analogy with the classi-
cal behavior.'® When other values of (ii’) are examined
the dipolar symmetry becomes obvious, with the spatial
direction of AF dipole moment parallel to the bond occu-
pied by the hole. Finally, {((2X(S;XS;)),) adds little
that is new since it is roughly proportional to

((SoXQ)(S,XS,;)) /(S ) .

The signs of these correlation functions, as well as a ra-

TABLE I. Various measures of the spin arrangement around a quenched hole. The polaron weights
include both polaron states. The O hole is localized on the (1,2) bond (see Fig. 2 for site labeling).

3-spin polaron

o/, ($,-S,) (S,'S;) (Q2) (53) occupation (%)
4X4 QAF —0.3509 —0.3509 1.106
0 —0.2051 —0.3821 1.095 +0.5 18.2
1 —0.1246 —0.3590 1.065 +0.438 44.7
2 +0.0420 —0.2933 0.990 +0.290 73.1
3 +0.1793 —0.1371 0.945 —0.162 92.1
6 +0.2278 —0.0896 0.909 —0.160 97.6
25 +0.2485 —0.0483 0.877 —0.158 99.8
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TABLE II. Two measures of the spin twist around a
quenched hole, as defined by the -correlation function
((SoXR)-(8S, XS,:)) /{(So X Q)*)'"2, for (i,i')=(1,2),(2,3).

((SQXQ)'(S]XS;)) ((Soxﬂ)'(SIXSJ))

i ((SoX Q)?)172 ((So X Q)*)'172
1 +0.1853 —0.0852
2 +0.2824 —0.1541
3 +0.2609 —0.2417
6 +0.1977 —0.2422
25 +0.1232 —0.2383

tionale for those which vanish, follow from the semiclas-
sical spin arrangement in Fig. 3. All spins, including S7,
are coplanar, and the figure must be averaged around Z to
restore rotational symmetry. From the figure it is then
evident that (Sy:(S;XS;))=0 and ((S;XS;),)=0,
while {(SqXQ)(S;XS;)) captures precisely the twist in
S, from site to site.

B. Mobile hole

We now consider the full Hamiltonian given in Eq. (2),
viz., t,70, t,7-0. By virtue of the periodicity, the exact
many-particle wave function has a Bloch index k, and it
acquires the usual phase factor when translated by one
lattice site. The hole can occupy any site, but to mini-
mize the number of basis states in the numerics we can
exploit the translations to place the hole on either the x
bond (1,2) or the y bond (1,8).

Due to the finite size of the cluster, and the periodic
boundary conditions that we impose, there are only six
independent |y, ), modulo spatial symmetries, that may

® 0 spin 2
O Cu spins

a

FIG. 3. Semiclassical spin configuration in the neighborhood
of the quenched hole. All the spins are coplanar, and the total
spin is in the z direction. The entire picture must be rotational-
ly averaged around the z axis in order to compare to our quan-
tum cluster studies.

be studied: k=0, (7/2,0), (m,0), (7,7/2), (w,7), and
(m/2,7m/2). A further finite-size effect (particular to 4 X4
clusters: see Appendix A) leads to a degeneracy of the
k=(m,0) and (7 /2,7 /2) states.

The correlation functions, in particular, {(S;XS§;),)
for the mobile hole are very different from the previous
case. The symmetry argument in the quenched limit em-
ployed a global spin rotation plus time reversal to show
that ((S;XS;),) vanishes. Now time reversal sends
k— —k. The states (7,0) and ( —,0) differ by a recipro-
cal lattice vector and are therefore identical, hence
((S;X8,;),) remains zero. However, (7/2,m/2) and
(—m/2,—m/2) are not identical since there is no broken
magnetic symmetry and (7,7) is not a reciprocal lattice
vector; therefore, the corresponding bond spin current
need not vanish. The same result follows alternatively by
realizing that a spin current must have both a spin and a
spatial index. For the (,0) state no spatial vector exists,
while for other values of k, one does. One is therefore
able to observe that the bond spin currents may have a
dipolar dependence on space, with a dipole moment
determined by k. Identical reasoning was employed for
the ¢-J model.??

The total spin of the lowest energy state for all k is 1.
Our 4X4 calculations for Eq. (2) show unambiguously
that the bottom of the O hole band lies on the zone
boundary. However, an accidental symmetry of the 4 X4
cluster (see Appendix A) makes the (7/2,7/2) and (,0)
points of the Brillouin zone degenerate, and the exact lo-
cation of the energy minimum along the zone boundary
remains undetermined. While the semiclassical study (see
Sec. IV) shows that the long-ranged distortions of the
spin field favor (7 /2,7 /2) over (m,0), this by itself could
not produce a necessarily correct conclusion. The direct
0-0O hopping considered in Sec. V breaks the special 4 X4
symmetry, and definitely places the minimum energy at
(/2,m/2). This conclusion is consistent with the study
of the 10-site cluster by Shiba and Ogata.?

To test the sensitivity of these results to the specific pa-
rameters in Eq. (7), we have recalculated the ground state
for a sequence of values of J,, J,, t,, and ¢,, assumed to
be independent, i.e., ignoring Egs. (3)-(6). To be specific,
we have individually varied each of these parameters by a
factor of 2 up and down (e.g., for J, we have studied the
values 0.065, 0.13, and 0.26, eV, while keeping the values
of J,, t,, and ¢, fixed). No change in the above-stated
characteristics of the ground state was found.

The width of the lowest energy band (which in practice
was the energy at k=0 versus zone boundary) is 0.98 eV
for the standard parameters in Eq. (7). In Fig. 4 we show
this width as a function of J, as well as y¢,, vt,, vy =1, 2,
3. In the regime J, <<t the bandwidth is a linear func-
tion of J,, and is independent of ¢, and ¢,. Analogous be-
havior was found in the one-band model.??~ %

We now look at the local O-hole quasiparticle struc-
ture in our system. We have calculated (S%) for all
states studied. Recall that for a quenched hole this ex-
pectation value varied from +1 to approximately —¢
(for J, being varied from O to o), as shown in Table I.
However, for the mobile hole and standard parameters
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FIG. 4. Variation of the bandwidth as a function of J,, as
well as ¥ =1, /0.46 eV, where the ratio ¢, /¢, is fixed.

we find the interesting result'”3! (SZ%)=0+0.003 (see
Table III). Clearly large hopping is necessary to force
(S§) to zero (and some amount of Cu-O exchange
enhances this process). We also observed this behavior in
a study of the one-dimensional version of Eq. (2), for
sufficiently long chains. The extra Z magnetization is tak-
en up by the canting of the Cu spins, as is shown on Fig.
5(b) [cf. the Cu spin expectation values for the quenched
hole are shown in Fig. 5(a)].

In Sec. III A the 3-spin polaron was found to be the
dominant configuration around the hole for J,/J, %3,
and one would want to know whether it is compatible
with the hopping. Table III shows the relevant projec-
tions. The addition of the hopping for J, /J, =3 changes
the weight negligibly, from 92% in the quenched case, to
90% for Eq. (7). Moreover, comparing this value with
the weights for the J, =0 and J, /J, =10 states show that

(a)

-0.0242 -0.0242 0.0374 0.0374
0.0374 0.0374 0.0024 0.0024
-0.0242 -0.0242 0.0374 0.0374
0.2889 0.2889 -0.0242 -0.0242
(b)
0.0351 0.0354 0.0479 0.0233
0.0236 0.0236 0.0219 0.0220
0.0354 0.0350 0.0233 0.0179
0.0489 0.0489 0.0422 0.0422

FIG. 5. Expectation values of Cu spins (S?) are shown. In
(a), the results for quenched hole at J, /J, =3 are shown, while
in (b) we present the results for mobile hole at k=(7/2,7/2),
for the parameter values of Eq. (7). In (b), the expectation
values are taken with the complete Bloch state, where projec-
tion operators are utilized which project the hole onto the O site
on bond (1,2) [see Eq. (2) for Cu-site labeling].

the hopping itself favors the polaron. However, it is
difficult to increase the polaron occupancy to 100% just
by increasing the hopping. (Recall that in Table I, the
weights in the nonpolaron states decreased more rapidly
than J, /J,; as the latter tended to zero.) The weights in
the individual S*==1 polaron spin states are 53.6 and
36.4 % for the standard parameters. They become more
nearly equal when the hopping increases, but (S%)
remains a factor 10 closer to zero than these probabilities
would suggest. Another open question is why (SZ ) is of
order a few percent when k#0 and not on the zone
boundary. Hence the 3-spin polaron is not capturing all
the physics we find in the ground state.

The polaron was the obvious ‘“‘quasiparticle” in the
limit of J,/J,— o« with no hopping. Another simple
limit is to restrict the hopping to the four O sites that
surround a common Cu site, and diagonalize Eq. (2)
within this cluster.!! The ground state is evidently sym-
metric under rotations about the central copper, and is a
spin singlet. One can again take the full wave function
and project onto the 2* states describing this cluster. In
Table III we show the weight in the ground state which is
dominant, as well as the weight in the next most probable
state, a spin triplet with p-wave symmetry. This nearest-
neighbor Zhang-Rice state (not their Wannier state) is

TABLE III. Several measures of the spin arrangement around a mobile hole for the standard param-
eters [see Eq. (7)], and k=(m/2,7/2), except as noted. The polaron weights include both spin states.
The remaining two columns show the weights in the spin singlet, spatially symmetric state of a CuO,
cluster (Ref. 11), as well as the spin triplet spatial p-wave states. [The p states include just the one state
proportional to (1,1,—1,—1) for k=(#7/2,7/2), but all three for k=0. ]

Parameter 3-spin polaron Zhang-Rice singlet Triplet, p-wave
values (S%) occupation (%) occupation (%) occupation (%)
J,=0 0.015 859 63.7 22.7
J,=0.13 0.010 87.6 64.3 21.5
Eq. (7) values 0.003 90.1 65.1 19.9
J,=1.3 —0.010 95.2 66.1 16.2
1,=1.38 s
6 =2.04 <10 91.8 67.0 15.9
k=(0,0) <1073 90.6 65.4 19.9




not as good an approximation to the exact ground state
projected onto its subspace as is the polaron for the cor-
responding projection subspace, but the two descriptions
are somewhat complementary. Further, one expects a
larger projection onto such a singlet with next-nearest
neighbor sites included. We shall return to this point in
the conclusion.

In order to further illustrate the distribution of spins in
these states, we can examine the partitioning of the total
spin between oxygen and all the coppers taken together.
We have seen that the states have total S;y=1 and
(S5 )=0. We then calculated the total copper spin
(S%,)=((3)%,S8,)?). For all k, and for the parameters
given in Eq. (7), we find (S%,)=1.5+0.01. These three
numbers, S;=1, (S§)=0, and (S§,)=1.5 are not in-
dependent, and may be understood as follows. The total
Cu spin must be O or 1 to give Sy =1. For those com-
ponents of the ground state for which S = —0.5, the to-
tal S7 of the Cu spins, SZ,, must be 1, along with the total
Cu spin S¢,. For the components of the ground state for
which SG =0.5, S%, =0; so it can be a linear combination
of S¢, =0, and S, =1 states. In order that the S, =1
states (the SZ, =0,1 states) combine with the O hole’s
spin to form a S = state, the required linear combina-

tion of [Scy, S&u 2 culSo,S5 Vo states is
(11,0 culd, D) o= V2I1, Dyl =)o) /V3 . (122)

Further, since {SZ ) =0 is observed, consistency requires
that a 3:1 ratio of the S, =1, and O states be present in
the ground state. To be specific, we predict that the
ground state |/ ) may be written as

|¢’G)=%|O’O>Cu|‘;"%>0
+ei¢_‘/_§ |1)O)Cu %’%>O—\/§|171>Cu %,—%>0
V73 ’
(12b)

where ¢ is an undetermined (real) phase. Note that for
this state

(¢c|561¢c>:0 )
(g |8T|¢6)=0.75,
(Yg|SElve)=1.5,

precisely what we find numerically. For parameter
values other than Eq. (7), e.g., J,=0, (cf. Table III),
(S%,)=1.460, showing that when (S%) is larger than
zero {SZ,) decreases.

We have found two reasonable measures for the distor-
tion of the background Cu spins: {(SgXQ)-(S,XS,))
that we studied in Sec. III A, and {(S, XS;.),) which is
now nonzero for k0, (7,0). They will be examined sys-
tematically as a function of J,/J, and (z,+1t,)/J,, but
mainly for k=(m7/2,7/2). In general, we find the same
tendencies as for the 3-spin polaron occupations, namely,
that either the hopping or the Cu-O exchange will satu-
rate the dipole moment.

In Fig. 6(a) we show the bond

(12¢)

spin currents
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((8,;XS;.),) for the standard parameters given in Eq. (7)
and the wave function with the hole occupying any four
of the O sites adjacent to Cu-1 site (cf. Fig. 2). The
currents are even when reflected across the lines running
diagonally from site 1, either parallel or perpendicular to
k. The magnitudes and signs of the bond currents have a
clear quadrupole component. This demonstrates the di-
pole symmetry of the Cu spin distortions. It is necessary

+0.003 -0.047 +0.020 +0.02|

Cu -0.047 Cu +0030 Cu +0042 Cu +002I

+0.09I +0.030 +0.027 +0.042

Cu -0020 Cu +0027 Cu +0027 Cu -0020

+0.09I +0.042 +0.027 +0.030

Cu +0.021 Cu +0.042 Cu +0030 Cu -0047

+0.003 +0.02I -0.020 -0.047

Cu +0.003 Cu +0.09I

(a)

+0.022

Cu +0.091 Cu +0003

+0.058 +0.096 -0.036

Cu +0096 Cu -0022 Cu -0026 Cu -0036

-0.095 -0.022 -0.022 -0026

Cu +0022 Cu -0022 Cu -0022 Cu +0.022

-0.095 -0.026 -0.022 -0.022

Cu -0036 Cu -0026 Cu -0022 Cu +0096

+0.058 -0.036 +0.022 +0.096

Cu +0.058 Cu -0095 Cu -0095 Cu +0.058

(b)

FIG. 6. Correlation functions based on vector products
(S§,X8S,) for i and j being near-neighbor Cu sites, at
k=(m/2,m/2), for the parameter values of Eq. (7). In (a)
((S,XSJ ),> are shown, while in (b) we present
((SoX0)-(S,X8,)) /{(SoXN2)*)'/2. The expectation values
are taken with the complete Bloch state, where projection
operators are utilized which project the hole onto the four O
sites surrounding the Cu-site 1.
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TABLE IV. Several measures of the spin twist and dipole moment for a mobile hole. Parameters are standard, except as noted.
The second and third columns denote the same correlation function as in Table II, while the next two are the bond spin currents for
the same two bonds. The hole is projected onto the bond (1,2) by the operator fi, so as to compare with Table II. The dipole moment

P, is defined in Eq. (16) below.

Parameter (0,(SoXN)(S,X8S,)) (1, (So X N)(S;XS3)) (1,(S,X8S,),) (1,(8,X8;),) P,
values (71, ) ((So X Q)2)1"2 (A, ) (S xQ)?)172 (i) (1)

J,=0 +0.304 —0.155 —0.093 +0.096 +1.02
J,=0.13 +0.296 —0.157 —0.086 +0.097 +1.34
Eq. (7) values +0.281 —0.160 —0.076 +0.098 +1.77
J,=1.3 +0.236 —0.166 —0.050 +0.100 +2.73
t,=0.016 3 3

. =0.010 +0.271 0.210 0.103 +0.115 +1.44
t,,i0.0S +0.276 —0.199 —0.106 +0.115 +1.54
t,=0.03

fa—0.10 +0.283 ~0.185 —0.103 +0.112 +1.69
1,=0.16

fa iO. 20 +0.283 —0.173 —0.095 +0.108 +1.74
t,=0.29

fa i0'26 +0.283 —0.167 —0.087 +0.104 +1.85
t,=0.52

to run the lines of reflection through site 1 in order to
respect the occupations of the O sites. In Fig. 6(b) we
show the bond spin currents projected along (Sy X Q).

In Table IV the bond spin currents for (i,i’)=(1,2) and
(2,3) are shown for a variety of parameters. If either the
hopping is reduced at fixed J,, or vice versa, the spin
twist is largely unaffected.

The limit ¢, , —0 is, of course, singular, both because
certain correlation functions, e.g., {(S;XS;:),) vanish by
symmetry, but also since so long as hopping is permitted,
both O sites in the unit cell will be occupied and the di-
pole moment in the far field is governed by the wave vec-
tor k rather than the bond direction fi. However, we can
also recompute our correlation functions conditioned on
the location of the O hole, in which case, for (¢, +¢,) <J,
and near to the hole, they resemble what we found in the
quenched hole case. Far from the hole, its location
should not matter to the bond spin currents; however, the
small-t limit is manifest by a long healing length

J

A (t,+1t,)
J,;=4J,8; X8, +J,(S;,—S,;)X(b/Th;)+ ————

4 (rili')

(t,+1¢,) t, +t

——"—4—”—( b ) S, X (b} #b, +b/%b,)—i~——2 [
ili'r

.tb L,
-1
8

Cili'l') (riti)

Here we have a fixed Cu—O—Cu bond (ili’), and I’ is
the only O-site index summed over. The subscripts on
the sums merely show where the [’ sites are located with
respect to i and i’. For example, if the summation index

S (b}7b,—b[7b)— S (bi7b,—b[7b,)

I~[J/(t,+1,)]'? (cf. Sec. IV) which characterizes the
crossover from near- to far-field behavior.

The dual origins of the Cu spin distortion, hopping and
Cu-O exchange, can be displayed by generalizing Eq. (11)
to include the effects of hopping and employing the same
reasoning as before. To be specific, we define a spin den-
sity only on the Cu lattice by assigning half of the O spin
to each of its adjacent Cu sites,

M,=S;+1 3 bl 1T | by. (13)
1eil) 2 aB
Commuting M; with the Hamiltonian (2), we obtain
M, _ ] (14)
a2 i

i'e(ii')

where J;;. is a magnetization current “flowing” on the
bond (ii’), and which is given by

S S, X(b}7b,+b,7b,)

( h> ) Sblb;—b[b)— 3 S, (blb,—b]b;)
ili'r’

(i)

] . (15)

f

is (I'ili"), we sum over the three O sites I’ that are adja-
cent to Cu site i, and that are distinct from a fixed O site
I, which is located between i and i’.

Whereas before only the J, term was present as a



41 GROUND-STATE PROPERTIES OF A SINGLE OXYGEN HOLE. .. 359

source driving the large-scale Cu spin distortions, there
are now hopping contributions to the current. However,
we exclude the last line from what follows, since it
represents the O spin transport due to the noninteracting
hole motion.

It is of some interest to define a quantum operator
whose expectation value gives the measure of the AF di-
pole moment directly. If we are interested in primarily
the bond spin current, then a reasonable definition is [cf.
Eq. 9]

((a,,3::1)

P,= )
(1) I=i+3/2

1

«= 2, (16)
where J is given in Eq. (15) with the (z,—¢,) term
dropped, 1, is the operator for the O density on site /,
and /=i+2a/2 is the O site lying between (i,i’). The
operator in Eq. (16) is a vector in spin space but has also
a spatial index, x or y, from the two possible bonds that
the O hole can occupy. For example, (i,i’)=(1,2) for
pn=x and (1,8) for u=y (refer to Fig. 2). The factor of J,
in the denominator makes the dimensions of Eq. (16) con-
sistent with our earlier correlation functions.

Only the z-spin component of P, is nonzero by the ro-
tational symmetry around Z. Furthermore, the a depen-
dence is determined just by k in the manner expected by
symmetry. At k=0 and (#,0), P vanishes; for
k=(7/2,0), P,_,#0 while P,_,=0. Finally, for
k=(n/2,m/2), P,—x=P,—,. The last column of Table
IV shows P, for this value of k as a function of various
parameters. In spite of the fact that we do not include
(So X ) in the matrix element of Eq. (16), the dipole mo-
ment is independent of ¢, +1¢, once it exceeds a fraction
of J,, provided J,/J, is large enough, e.g., 3. Thus the

® O spin y

O Cu spins

A
FIG. 7. Semiclassical spin configuration in the neighborhood
of a mobile hole. Quantum mechanically, the total spin is to be
thought of as directed out of the page, and the entire figure must
thus be rotationally averaged around this direction in order to
compare to the quantum cluster studies.

dipole moment P, can be saturated by J, for modest hop-
ping, although it must vanish for ¢, , =0.

To conclude, we anticipate Sec. IV and give the semi-
classical spin configuration (see Fig. 7) that reproduces
the correlations among the total spin, O spin, and Cu
spins. Of course, Fig. 7 must be understood as being
averaged due to a rotation around Z, and should be com-
pared with Fig. 3 (quenched hole). The Cu spins are now
predominantly in the x-y spin plane so that
((S;XS;), )70, but they are not coplanar and various
products such as {Sq-(S; XS;))7#0. The local structure
is still that of a spin polaron which is now oriented in the
x-y plane to make (S%)=0. Other insights into the k
dependence of the quantum wave function can also be ex-
tracted semiclassically, and are contained in Sec. IV.

IV. SEMICLASSICAL APPROXIMATION

As previously mentioned, the quantum-mechanical
wave functions for the 4 X4 CuQ, clusters are linear com-
binations of 48 620 states, and are difficult to interpret
analytically. We attempt to gain some insight into the
structure of the fully quantum-mechanical state by devel-
oping a semiclassical approximation. In this approxima-
tion we factorize the wave function into a product of spi-
nors, and thus treat the exchange energy classically. Fur-
ther, the hopping matrix elements between two such
states may be evaluated exactly, and then the energy is
minimized using the spinors as a set of variational param-
eters. This procedure supplements the quantum cluster
studies in that much larger lattices may be studied. For
8 X8 clusters, or 12X 12, etc., more wave vectors along
the magnetic Brillouin zone boundary, viz., |k,|+|k,|
=1, may be studied than for the 4X4 cluster. The de-
generacy (see Appendix A) of the k=(m,0) and
(/2,7/2) states is lifted. This approximation worked
well in a study of the one-band model*? in that a reason-
able analytic understanding of the exact quantum cluster
numerics was obtained.

A. Quenched hole

The spin of a hole occupying the jth site may be
represented by a spinor,
o i

Y= g
e

cos(6;/2)

(17a)
)% sin(8,/2)

Then, the simplest wave function that may be formed is a
product of such spinors, viz.,

W) =9o(R)IT ¥(i—Ry) , (17b)
J

where 9y(R) is the spinor representing the O hole at site
R, and the Cu sites are denoted by {j}. If t,=t,=0,
the O hole is quenched, as in Sec. IIIb. Then, evaluation
of (W|H ;|¥) reduces the exchange interactions to a
purely classical form, viz., §;-S; becomes a scalar prod-
uct of two classical Heisenberg spins.

The variational ground state is planar, and outside of
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TABLE V. Bond spin currents for two semiclassical varia-
tional wave functions. The first column gives the values of
((8,X8;),) for the ground state of Eq. (17b), arranged so that
the spins are in the x-y plane. The second column gives the
same correlation function for the ground state of Eq. (18a),
which includes some of the quantum fluctuations of O hole’s
spin.

((8,Xx8;),) ((8,XS5),)

Jy for Eq. (17b) for Eq. (18a)
1 +0.065 +0.077
2 +0.107 +0.114
3 +0.132 +0.130
6 +0.166 +0.146
25 +0.198 +0.160

the core corresponds to a classical Néel configuration
with a dipolar distortion, e.g., Eq. (9) with f(r)~1/r.
The long-range behavior of f(r) follows from solving the
Laplace equation for the angle defining the spin and
matching onto the core region for small r. The dipole
moment and hence the distortions depend on the ratio
J,/J;. To compare quantitatively with Sec. III in Table
V we show {8,XS;) (cf. Fig. 2) for these wave functions.
This correlation function is one of several possible mea-
sures of the dipole moment.

cos 3 cos 3
Rt 172 8 1 3
=17 . 3m 0lo|. 37
sin — sin —

8 Jcumn 8 Jcu2)

and has an energy of —(4)(0.96)J,. By comparison, the
classical ground-state energy is —2J,, while the exact re-
sult for Eq. (10b) is —4J,.

We have numerically determined the ground state as a
function of J,/J, using Eq. (18a). The dipole moment
and hence the spin distortions are changed by no more
than 10% in comparison with Egs. (17a) and (17b) (cf.
Table V). However, the ground-state spin configuration
is no longer planar close to the O hole. By that we mean
that the spin vectors corresponding to individual spinors
in Eq. (18a) are not coplanar, unlike in the case of Eq.
(17b). Further, the expectation values of all the spin vec-
tors in the system are still coplanar, resulting in the pat-
tern of spins similar to that for Eq. (17b). In fact, the
staggered magnetization, the dipole moment [cf. Eq. (9)],
and (Sg), are all mutually perpendicular. The quantiza-
tion axis, Z in Eq. (18b), is parallel to the dipole moment.
In Appendix B we show analytically that the distortion in
the third dimension of the spinors in Eq. (18b) decays ex-
ponentially with a length scale given by V' J,/J,. This
length defines the characteristic size of the core region.
Far from the O hole we still find a planar distortion that

decays as r ..

We also found from the classical variational solution
that the O spin is perpendicular to the direction of the
staggered magnetization (defined at » — =), a feature that
persists in all of our semiclassical studies. This can be
understood in terms of the alignment of the staggered
magnetization perpendicular to the “local field” pro-
duced by the O hole’s spin.

The above discussion was purely classical, and to im-
prove the solution near the hole, we include both O-spin
states so as to more closely approximate the 3-spin pola-
ron,

W) =ayq(Ro) [T 47U —Ro)
j

+BYo (R ¥ i —Ro) - (18a)
i

The O spinor ¥g(R ) is chosen to have its spin o in some
direction, say, +Z, and ¢¥5%(Rg) is the time-reversed
state —o, say, —2. Thus, ($&(R¢)|¢¥5°(Ro)) =0 and
the two spinor products in Eq. (18a) are orthogonal to
one another. Consequently, all of the spins in ¥°(j —R)
and ¥~ ?(j — R ) may be taken to be completely indepen-
dent of one another.

The utility of this form of a wave function is seen by
consideration of a Cu-O-Cu cluster interacting according
to Eq. (10a). The ground-state configuration is

cos
(18b)

[2 ooy

sin

o[y |3y

8 Jcu2)

B. Mobile hole

We now develop a simple variational approximation
for the mobile hole. We incorporate a broken AF sym-
metry into our wave function, so that there are now four
inequivalent O sites, denoted by u, and two Cu spins in
each magnetic unit cell. We introduce (see Fig. 8 for our
labeling of the unit cell)

0(2)

0(3) Cu(+) o (1) Cu(-)

0 (4)
FIG. 8. Labeling of the magnetic unit cell used in Sec. IV.

The four O sites, as well as the two Cu (up and down) sites are
shown.
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|w)= ﬁ vy =3 i v I ¥4 —re™ . (19)

n=1 r u=1 i

Here, the vy, are coefficients, the ¢%; are the four O hole
spinors, and ¥*(i —r) is the spinor for the Cu spin at site
i, when the O hole is at site g in the unit cell r. Note that
lyﬂlz is the probability for the O hole to be on site i in a
unit cell, if the spinors are all normalized.

1. Classical Neéel limit

To gain some insight into the lowest band of states of
this variational wave function, recall the results of
Roth.° She essentially treats the wave function Eq. (19)
with the constraint that the Cu spinors are frozen in a
Neéel configuration, say, S,-=i{z\. Under these assump-
tions no spin flip is possible, viz., there is no hopping pro-
cess denoted by ¢, +1, (see Fig. 2), and the O hole’s spin
is “conserved.” This implies at least doubly degenerate
bands, and insures that we can label the band states by
the O spin. The Cu and O spinors have thus been fixed.
The only nontrivial variational parameters that are then
left in Eq. (19) are the v, and we can then project Eq. (2)
onto this subspace.

In terms of the two vectors

e
|1>=% s |k>=—;' —ik, (20)

bt b

the new effective Hamiltonian can be exactly written as

Hegpp=—41,110) (11 +42, [k 1) (k1
—4t, |k 1)k L +4e, 1111 . 21

The J, and J, terms have been dropped since they do not
change with v, or with the O spin’s value.

In order to understand how Eq. (21) is obtained, con-
sider t, =0. Then, the only process allowed is the hop-
ping of an O hole through a Cu site that has an antiparal-
lel spin, with an amplitude —¢,. Choosing, say, the O
spin to be up, the hole can only hop through the Cu spins
in the Néel state that are down. Thus, the system entire-
ly separates into cages*®!! of four O sites around each
down Cu spin. These cages do not communicate due to
the absence of f,, a hopping process through a parallel
Cu spin. A single 4-site cage yields four solutions, three
degenerate ones with energy ¢,, and one with energy
—3t,. The wavefunction of the nondegenerate state is
state |1) of Eq. (20). When all but one of the eigenstates
of a given operator (in this case, the ¢, part of the
effective Hamiltonian) are degenerate, a single projection
operator is sufficient to exactly represent it. Choosing the
origin of energy as t,, we obtain a —4¢, term (with spin
up) in Eq. (21). A similar calculation can be done with
t,=0, 1,70 (still for the O spin up). In this case, the
noncommunicating cages are formed around the up Cu
spins. However, the four sites in any of those cages all

belong to different unit cells. Translating those four sites
into a single unit cell, we obtain that |k ) of Eq. (20) is
now the appropriate nondegenerate state, which is used
to represent the ¢z, term in Eq. (21). The same is done for
the down O spin, and the exact representation [viz., Eq.
(21)] of the mean-field effective Hamiltonian is thus ob-
tained.

We stress again that O spin up and down states do not
mix, as explained above. The O spin flip followed by the
interchange |k )<>|1) is a symmetry of this effective
Hamiltonian. One can then see that in the four-
dimensional y,, space (for a given O spin value) there are
two eigenstates of Eq. (21) with energy zero, viz., the ones
orthogonal to both |1) and |k ). These are the nonbond-
ing states. Two more eigenstates are obtained by solving
a 2X2 problem in the space spanned by |[1) and |k)
[note that 1|k ) =1(cosk, +cosk,)]. Solving this 2X2
problem yields®

E=2{(t,—1,)£[(t, +1,)?
—t,ty(cosk, +cosk,)?]'2} ,  (22a)

and the spin up and down eigenstates corresponding to
the lower of these two energies are

allt)+Blkt),
alkl)+Bl11),
where (up to a common normalization factor)

a=(t, +t,)+[(1,+1,)*—t,t,(cosk, +cosk, 2112,
(22¢)

(22b)

B= —ty(cosk, +cosk,) .

The band minimum in this calculation lies on the Bril-
louin zone boundary |k, |+ |k,|=m, and the energy is de-
generate along the zone boundary.

Especially simple answers are obtained in two special
cases. On the zone boundary, ie., at |k, [+|k,|=m, we
have (1|k)=0, and the lowest energy states for both
values of the O spin are simply |11) and |k!l), with
E=—4t,. At k=0, we have |[1)=|k), so the space
spanned by |1) and |k) is now only one dimensional.
There are then three degenerate states with E =0, and
one state with energy E = —4t,+4¢t,. If t,>¢,, this is
the minimum energy state at k=0; otherwise there is a
three-fold degeneracy (besides the spin degeneracy) of the
minimum energy state at that point.

This simple calculation is unfortunately inadequate.
Clearly we have to allow for Cu spin distortions. For ex-
ample, this solution is misleading in that it predicts a
bandwidth of order —4 min(¢,,t,), rather than of order
J,, as we found in Sec. III. However, the Roth solution
will be useful in untangling the results of the variational
calculation.

2. Exact numerical variational results

We next evaluated Eq. (2) for the trial wave function in
Eq. (19), and have treated all of the spinors and the
coefficients v, as variational parameters to be minimized
numerically. The resulting band is no longer degenerate
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along the zone boundary, and the minimum is at

=(xmw/2,£m/2). Ignoring an additive constant, this
energy band can be approximately parametrized by the
formula

E(k)=a(cosk, +cosk,)*—2b(sin’k, +sin’k,) .

For an 8 X8 lattice, using the values of parameters given
in Eq. (7), we obtain

a~0.30,
b~0.05 .

(23a)
(23b)

Note that the (sin’k, +sin2ky) term breaks the degenera-
cy along the zone boundary. From this, we can estimate
the transverse and normal masses at k=(x+#/2,+7/2),

1

=1 072,
LT 4 a +b) 2

1 (24)
m“=zg~49

Thus the ratio of the two masses is m /m | ~6.8.

Next, we look at the O hole’s spin and the four
coefficients y,. There is an O spin vector S§ for each of
the four O sites in a unit cell. In our numerical studies on
the zone boundary, as well as at other k points close
enough to it, we found that all four O spin vectors S lie
in the plane that is perpendicular to the asymptotic Néel
order parameter £} away from the hole. As we approach
k=0, the S{ no longer lie in that plane, unless either
t,=0 or t,=0. The exact location of the crossover re-
gion in k space, separating the states with a planar O spin
configuration from nonplanar ones, depends on the exact
values of the parameters. In general, the S vectors point
in different directions. Most interestingly, we obtained
that on the zone boundary 34_,S$=0. We also ob-
tained that the four coefficients y, have the same magni-
tude on the zone boundary. These two results mean that
the expectation value of the O spin operator S0 vanishes
on the zone boundary, viz., { ¥|So|¥)=0. (The spin ex-
pectation value includes averaging over the four locations
p in the unit cell.) Besides the zone boundary, the
coefficients have the same magnitude on the line(s)
|k, |=1k,|, but are different elsewhere. We will see that
many of these results can be derived from Roth wave
functions.

Now consider the distortions of the AF Cu spin state.
For each location u of the O hole in a unit cell, there is a
different Cu spin configuration S*(i —r) [cf. Eq. (19)].
However, far away from the hole the Cu spin pattern has
to be the same regardless of u (see Appendix C for a
proof). We thus find it useful to characterize the Cu spin
distortion around the hole by taking the average of the
four patterns,

Sti—r)=3 |y, |*$*(i—r) .
u

Computing such quantities, we obtained that at
k=(xm/2,+7/2) the nonuniform twist of the staggered
order parameter has a dipolar symmetry. At k=(m,0),
the distortion is quadrupolar in character.

These results agree qualitatively with the quantum
cluster studies of Sec. III B. Thus it makes it all the more
imperative to develop an analytical understanding of the
variational solutions in order to have a simple way of un-
derstanding the qualitative behavior of the quantum
states.

3. Large-J; perturbation theory

Our numerical results are predominantly for the physi-
cal limit {z,,7,,J,}>>J,. The only apparently simple
starting point for a perturbation theory is the Néel state,
which requires that J,>>{t,,1,,J,}. It is somewhat
surprising, however, that the perturbation theory in this
limit actually gives a rather accurate representation of
many of the properties of the small-J, results, as we now
demonstrate.

We develop a perturbation theory by starting with the
Roth solutions [Eq. (22b)]. The Cu spins are exactly in
the Néel state in the Roth wave functions, and there is a
double degeneracy due to the O hole’s spin. We know
numerically, however, that this degeneracy is broken in
our variational states. We thus choose a correct zeroth-
order Roth solution, by combining the up and down O
spin solutions at a given k in a way that assures that the
O spin vectors S§ lie in the x-y plane (assuming the Cu
spins are in the *+Z directions), as required by the exact
numerical answer at and near the zone boundary. (The
analogous construction for k near 0 is more complex and
less interesting physically.)

The most general combination of the two degenerate
Roth solutions with the desired properties is

(W) ~(al11)+Blkt))+e®Bl1L)+alkl)), 25

where e'? is a free phase, corresponding to rotations
around the O direction, that can be set to 0. Note that
the symmetry |1)— || ) [1)—|k), ensures that the spin
is in the x,y plane and perpendicular to Q. This solution
assumes a particularly simple form on the zone boundary,
yielding

(W)~[11)+|k!)

ik,
1 e
) o
~ e+ ] —a [ell), (26a)
e
1 ok
which implies for the four O spinors ¢4,
1
1/}(1)~ i ’ ¢%)~ ik, ] ’
e e
(26b)
3 1 4 1
Yo~ | ik, |» Yo~ | —ik, | -
e e
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More compactly,

1
eik~p

=

>

where fi is a unit vector (i==*X,*¥) connecting a down
Cu spin of the Néel state with one of the four neighboring
O sites in the same unit cell (see Fig. 8). As one can see,
each of the four corresponding O-spin vectors lies in the
x-y plane making angles k,, k,, —k,, —k, with respect
to the x axis. Since |k, |+ |k,|=m on the zone boundary,
the sum 2;’;=IS‘5=O. Since the coefficients y, can be
seen to be equal in magnitude on the zone boundary, this
implies that the expectation value of the O spin operator
vani/s\hes when averaged over the four O sites, viz.,
(W¥[So|¥)=0 on the zone boundary. This very impor-
tant result is confirmed numerically in the full variational
calculation, and we have seen in Sec. III B that this is also
observed for the quantum cluster.

For other points in k space away from the zone bound-
ary we no longer have =0 [cf. Egs. (22b) and (22¢)].
The directions of S, now depend on the ratio a /S, which
in turn depends on ¢, /t,. The corresponding S§ pattern
is easy to obtain, and we do not write down the corre-
sponding formulas. We note that the result agrees ap-
proximately with the angles between various S in the
full numerical calculation with parameters given in Eq.
(7.

The next issue to address is the Cu spin distortion. In
the case when the Cu-Cu exchange interaction J is the
largest energy in the problem, the Cu spin state in our
variational wave function is going to be nearly Néel.
That makes it reasonable to start with the Roth solutions
given above, and try to generate Cu spin distortions per-
turbatively.

Firstly, we modify the Roth solution by allowing for
the distortions of the two Cu spins adjacent to the O hole
in each of the four components of the wave function
given in Eq. (19), while keeping Eq. (26b) values for O spi-
nors and the coefficients y,. The Cu spinors next to the
O hole become

0
1

1
0

1
p*
(27a)

g
1

1
- (1+l€u|2)1/2

1
(1+][p**)1

’

We expand changes in energy from the Roth solution due
to hopping and Cu-O exchange to linear order in €, p#,
and expand the Cu-Cu exchange energy to quadratic or-
der. Minimizing the resulting expression when the hole
is on site u, for the nearest-neighbor Cu spinors we obtain

—ge ik
1

1
P —ge

where ¢ =1[(3)(¢,+1,)+J,]1/J,. Recalling that the cor-
responding O spinor was

et 1

1

= = ; (27b)

ik

’

1
eik-y

1
V2

’

we see that the two Cu spins are tilted in a direction that
is opposite to the O spin located between them. (This is
because direct Cu-O exchange J,, as well as hopping with
exchange (¢, +1t,) are antiferromagnetic exchange pro-
cesses.) Qualitatively similar distortions of these nearest-
neighbor Cu spins are found in the exact wave function.
This simple calculation is, however, not sufficient to
break the degeneracy along the zone boundary.

We are interested in the distortions of all of the Cu
spins, especially in the asymptotic region away from the
O hole. It is quite hard to extend the above analytical
method to other Cu spins, and still obtain a tractable cal-
culation. Thus we resort to describing the Cu spins away
from the hole by four continuous vector fields, one for
each of the four components of Eq. (19), and then derive
a system of four coupled differential equations for those
fields. Then we study the far-field behavior of the solu-
tions. These four fields are defined by the following con-
tinuum limit:

(—1VSE—QH(r) . (28)

First, we expect that far enough from the hole the Cu-
spin configuration Q*(r) is independent of the hole loca-
tion in a unit cell, i.e., Q¥(r)=€Q(r) for all u. An ordered
Néel Cu spin configuration is characterized by Q*(r) be-
ing a constant vector field, say, Q(r)=2. The distortions
from the Néel state are then characterized by
8Q(r)=Q(r)—Z. We show that for small deviations from
Néel order, a condition always fulfilled far enough from
the hole, this field obeys the two-dimensional Laplace
equation. The leading term in the expansion of 8Q(7) is a
dipolar term, which can be generally represented as

80 ~ Pr'—’sQ , (29)

where p and S, are vectors in real and spin space, respec-
tively, defined in Appendix C.

We show in Appendix C that the Cu spin pattern away
from the hole contains such a dipolar distortion, with
p~(sinkx,sinky ), when k is on or near the zone bound-
ary. Note that [sink,|=|sink,| on the zone boundary,
and thus the dipole moment is maximized at
k=(xw/2,xmw/2), and vanishes at k=(,0).

In Appendix C, we also derive the contribution to the
total energy due to the Cu spin distortion in the asymp-
totic region. It generates a term —2b(sin’k, +sin2ky) in
the energy, and b varies as b~J, when J, <<(z,+¢,),
and as b~(t,+1,)?/J, when J, >>(t,+1,). One must
qualify this result in that while this calculation serves to
motivate this particular term which breaks the symmetry
along the zone boundary, we cannot be sure from this
crude calculation alone that the core region’s contribu-
tion to the coefficient of such a term may not be of the
opposite sign.

V. DIRECT OXYGEN HOPPING ¢,,

It has recently been suggested that the magnitude of
the direct O 2po-2po hopping frequency (to be denoted
by t,,) is not small,*' and thus could be an important
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feature of the doped CuO, system. Here we examine this
possibility.

In Fig. 9 we have shown our choice of the 3dx2_y2 and
2po ., phases. The sign of the t,; overlap is unimpor-
tant since (i) after a transformation,'® all such overlaps
are of the same sign, and (ii) in our formulation of the
effective Hamiltonian [Eq. (2)] all energies are of order tpzd
or t,fd. The situation for the t,, overlaps is quite different.
If we assume that the sign of the ¢,, overlap shown in
Fig. 9 (viz., between the O orbitals located at 1% and 13)
is negative, then after the transformation mentioned
above'® all #,, overlaps are of the same sign, and will be
negative. Thus, we append the effective Hamiltonian
[Eq. (2)] with

H'=—|t

ol S (b} b, +H.c.), (30)

a, (LI')

where (I,/') denotes the four (direct) neighboring O sites
of each O site. Present estimates*' suggest that |z,,|~0.7
eVv.

The simplest way of realizing the possible importance
of this effect is by repeating the mean-field calculation
that was given by Roth*® including typ» Viz., freeze the Cu
spins in a classical Néel configuration, and then allow for
a hole to hop, i.e., including only —t,, t,, and —|t,,|
processes. The four energy bands that result are shown
in Fig. 10, where t,=0.46, t,=0.68, and |z,,|=0.7 eV
have been used. Note that k=(7/2,7/2) is now the
minimum energy state, in contrast to the degenerate mag-
netic zone boundary minimum found for It,,,,|=0- How-
ever, one may show that for |tpp |=2t,, for t, being arbi-
trary, the ground state is degenerate and corresponds to
Ik, |= Iky[. If Itppl >2t,, k=0 becomes the ground state.
Now recall that the arguments presented in Sec. III for
the existence of an AF dipole moment in the ground state
of a single hole depended on the minimum energy state
being at k=(7/2,7/2). If the t,, hopping process does
produce such a ground state, clearly it can have a very
important effect.

Therefore, we have redone our quantum cluster studies

FIG. 9. p and d orbital phases adopted in Sec. V.

r X S r
-
k
FIG. 10. Mean-field band structure for the parameters given

in Eq. (7), including ¢,,=—0.7 eV. The special points are I':
k=0, X: k=(m,0),and S: k=(7/2,7/2).

of Sec. III for the parameters given in Eq. (7) with the ad-
ditional A ' processes. When one includes the t,, hop-
ping, the arguments given in Appendix A are no longer
correct, i.e., the k=(7,0) and k=(7w/2,7/2) states are
nondegenerate, in general. We find that the ground state

still corresponds to a S =% state, with momentum
k=(m/2,mw/2), and

E k=

>

NI
SR

—E(k=(m,0)) ‘z0.3 ev,

E k=

(SYE]
SYE

—E(k=0)|=1eV.

’

Further, if we denote the minimum energy states deter-
mined for 7,,=0 by |¥}), to better than one percent at
all k, we find that

E(K)=(¥)|(A+H"¥) , (31)

i.e., one simply adds the H' energy, evaluated with
respect to the 7,, =0 ground-state wave function, which
suggests that the effect is perturbative. The wave func-
tion is only weakly affected: Evaluating the various

TABLE VI. Minimum energies, in eV, for different wave vec-
tors, of the quantum cluster when Eq. (30) is appended to our
effective Hamiltonian for the standard parameters of Eq. (7).

Ly E(k=0)  E[k=(m0]  E[k=(7/2,7/2)]
0.0 —16.268 —17.246 —17.246

-0.7 —17.936 —18.707 —18.941

—14 —19.96 —20.43 —20.85

—2.1 —22.06 —2233 —22.79

—2.8 —24.39 —24.38 —24.83

—35 —26.81 —26.54 —26.97
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TABLE VII. Expectation value of the O hole’s spin as a
function of ¢,, for the standard parameters of Eq. (7).

Ly (8%)

0 +0.001
—0.7 —0.005
—14 —0.010
-2.1 —0.023
—-2.8 —0.035
—-35 —0.049

correlation functions discussed in Sec. III, we find that to
within a few percent they do not change. For example,
the dipole moment is unaffected by this value of z,,.

Because of some uncertainty in the magnitude of ¢,
we have also produced minimum energy wave functions
for larger values of this hopping frequency. The energies
of the three aforementioned states are shown in Table VI.
It is seen that even for five times the anticipated value
(—3.5 eV) the minimum energy state still corresponds to
k=(m/2,m/2). The principal effect of increasing the
direct O hopping is the shift of k =0 energy downward
relative to the zone boundary. Asymptotically for large
ty, /{1, +1,) one expects the band minimum at the zone
center, and the bandwidth scaling with Lop-

From the set of k= (/2,7 /2) ground-state wave func-
tions for each value of 7,, we have also calculated the ex-
pectation value of S%. Our results are shown in Table
VII. Clearly, as t,, increases the O hole’s spin deviates
strongly from zero, thus raising a question about the ade-
quacy, in this case, of the Zhang-Rice reduction.!' This
behavior has also been found by Schuttler et al.!’

VI. CONCLUSIONS

Here we shall summarize our present understanding of
the O hole ground state in the two-band model, and con-
sider it in comparison with the ¢-J model to the extent
possible. Indeed, taking into account that the two-band
model has many more parameters, the similarity of the
key results for the two models (in the physically interest-
ing parameter range) is quite striking.

First, in both cases the bottom of the vacancy band is
found at the face centers of the magnetic Brillouin zone
and the bandwidth appears to scale with J (or J,) in the
large t/J [or (t,+¢,)/J;] limit. There is a difference,
however, in that in the two-band model the hole band-
width is finite already in the Ising limit,’* with the energy
minimum degenerate along the zone boundary (for
t,, =0), while for the ¢-J model in the corresponding lim-
it the bandwidth is essentially zero.>* The finite band-
width in the 7-J model is due mostly to the spin-flip pro-
cess needed to relax the ““string” of overturned spins left
in the wake of the hopping hole. The physical reason
behind the scaling of the bandwidth with J is likely to be
the same for both models: In the large ¢ /J limit there is
a large distortion of the spin background near the hole
(created by its virtual excursions) which can only drift
coherently at the rate determined by J. Finally, the exact
location of the energy minimum along the zone face, in

general, is a difficult question to answer using small clus-
ter calculations, because of the scarcity of Brillouin zone
points available, and accidental symmetries (see Appen-
dix A). For the 7-J model the zone-face-center location
of the minimum (at least for ¢/J <10) was obtained by
studying the 18-site cluster. For the two-band model, it
turns out that the inclusion of the direct O-O hopping
lifts the accidental degeneracy of the 16-site cluster and
places the band minimum unambiguously at the zone-
face center. (This conclusion is consistent with the result
of Shiba and Ogata®® obtained for the smaller cluster.)
We note that when the direct hopping rate becomes a few
times larger than Cu-O hopping, the bottom of the hole
band shifts back to k=0. The considerable anisotropy of
the mass appears to be quite sensitive to 7.

Another common property of the two models is the ap-
pearance of the dipolar distortion of the spin back-
ground. For the 7-J model this dipole moment is due en-
tirely to the hopping of the hole. For the two-band mod-
el the physics is somewhat more intricate with both Cu-O
exchange and hopping contributing, apparently without
significant competition. In essence, the effect is due to
the appearance of the 3-spin polaron structure on the va-
cant bond. This local configuration of spins for a local-
ized hole would be forced by Cu-O exchange,!>!® but is
also favored by the hopping which is facilitated by the
overlap of the two neighboring copper spins.!>?? Hence,
provided (z, +¢,)/J, is large, the 3-spin polaron has ap-
preciable weight even if J, is zero. Semiclassical ideas
then imply that there will be a long-range dipole distor-
tion comoving with the hole. The spatial direction of the
AF dipole moment that can be naturally associated with
the hole is determined by the hole wave number. It fol-
lows by symmetry that the magnitude of the moment is
maximal at the zone-face centers and vanishes at the
center and the corners of the zone. We found that the
moment can be saturated by both large J,/J, and
(t,+t,)/J,. The spin direction of the AF dipole moment
is determined by the spin of the vacancy state and in the
semiclassical sense is perpendicular to both the O hole
spin and the direction of the staggered magnetization.

A similar picture'®?? emerged for the t-J model, al-
though it was less straightforward, due to the absence of
a locally defined hole spin. The dipole direction and the
staggered magnetization were interpreted together as
defining an SU(2) order parameter, and hence a triad of
vectors. These operators were conjugate, in the quantum
sense, to the magnetization, precisely as occurs in the
nonlinear o model, except that now rotations about £ act
on the dipole direction and are physical. The semiclassi-
cal interpretation of these vectors is thus identical to that
given for the two-band model.

A most obvious superficial distinction between the one
and two-band models is the presence of the 1 spin on the
O hole site. However, the sharp distinction disappears
for the hole ground state. Clearly, for both models the
ground state on the lattice with an even number of Cu
sites has the total spin . The vacancy in the ¢-J model
appears to acquire spin from the existence, in the pres-
ence of AF order, of two inequivalent sites per unit cell:
Specifying the sublattice of the vacancy fixes the spin (in
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the semiclassical sense) provided that the local direction
of the staggered magnetization is specified. On the other
hand, for the two-band model we found the O hole spin
to be quenched (a similar observation was made by
Reiter’! and Schuttler and Fedro!?), i.e., {(S% ) =0, with
the z component of magnetization taken up by the Cu
spins. This can be understood as the tendency of the
hopping to mix equally the states with opposite O spin in
the unit cell doubled by the presence of AF order (the
hole spin also tends to be perpendicular to the staggered
magnetization). Finally, we note that the issue of the
hole spin is quite important for understanding NMR ex-
periments.

We have seen that the long-wavelength properties and
E (k) in the Brillouin zone for the one- and two-band
models are qualitatively similar. However, Zhang and
Rice have suggested!! that in a certain parameter range
the two models are equivalent on the operator level. This
being a rather strong statement, we have examined the lo-
cal spin structure by projecting the exact ground state
onto several reduced Hilbert spaces, the CuO, cluster of
Zhang and Rice, and the Cu-O-Cu configuration pro-
posed by Emery and Reiter.!> However, in the former
case we are only using the localized, nonorthogonal sing-
let structure, not the delocalized, orthogonal Wannier
state structure which appears in the effective ¢-J model
proposed by Zhang and Rice. Our numbers, in Table III,
are suggestive of a very complicated fluctuating core re-
gion surrounding the O hole, one in which both the sing-
let and 3-spin polaron approximate a quasiparticle, but
certainly in no fashion give credence to the concept of a
strongly localized entity whose quantum spin fluctuations
are unimportant. Furthermore, one might expect that
the structure of the singlet quasiparticle, if identified,
would depend nontrivially on the wave number. Unfor-
tunately at this stage our study does not reach any firm
conclusions on the issue.

An intrinsic limitation of the small cluster study, of
course, are the finite-size effects, which limit the reliabili-
ty of the estimates of mass anisotropy and, even more
seriously, makes one worry about the results for larger
values of the hopping to exchange ratio. The potential
problem arises from the large size of the “core” region in
that limit. In the case of the ¢-J model rather dramatic
finite-size effects appeared for ¢t /J > 5.

Finally, insight into the ground state of the O hole is a
prerequisite for understanding experiments on doped
CuO materials. Apart from the obvious importance of
the hole band structure, the issue of O hole spin is
relevant for interpreting the NMR (Ref. 42) measure-
ments, while the presence of the long-range distortion of
the staggered magnetization due the hole may explain the
strong effect of the doping on the AF order.'%2%43
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APPENDIX A

The k=(m,0) and k=(7/2,7/2) states are degenerate
in a 4 X4 cluster with periodic boundary conditions due
to an accidental symmetry which is present for both the
one-2! and two-band models (the latter only when the top
hopping is omitted). For a one-band model cluster, the
simplest demonstration of the degeneracy is as follows.
Consider the labeling of the Cu sites shown in Fig. 2, and
suppose that an extra hole resides on site 7. At
k=(m/2,7/2), when this hole hops to one of the four
neighboring sites, the following phase factors arise:
7—10, e’XT=i, 76, e®T=i; 72, e’*T=—j; 78,
e™®T=—j. Now consider the “checkerboard rotation” of
the cluster shown below,

16 15 14 13 9 16 13 12
9 10 11 12 10 15 14 11
8 7 6 5”7 2 3 6 (A1)

1 2 3 4 8 1 4 5.

Note that every site in the transformed cluster has near
neighbors that are identical to those in the original clus-
ter (recall our use of periodic boundary conditions). For
the same hole originally residing at site 7, and for
k=(m,0), the phases corresponding to the hole’s motion
are 710, e*'=—1;, 76, e’kT=—1; 72, e'kT=+1;
7—8, e'*"=+1. Thus, apart from an unimportant
overall phase of (—i), these are identical to the
k=(m/2,7/2) phase factors for the untransformed clus-
ter, necessarily leading to the degeneracy of these states
for this cluster.

The operation shown in Eq. (A1), to be denoted by C,
is also a symmetry of the two-band Hamiltonian of Eq.
(2), if we extend the definition of C to include the O holes.
The hole location is determined by two of the Cu sites
surrounding it. These two Cu sites will remain neighbors
under C, and the bond now connecting them is where the
transformed hole location is. In the two-band case the
hole can hop to any of the six bonds which include the
two Cu sites surrounding the occupied bond. After C is
applied, the hole can still hop to any of those bonds, since
these bonds are now connected to the two transformed
Cu sites, and these two Cu sites are still neighbors. The
t,, hopping term [see Eq. (30)], does not, however, obey
this symmetry, since the four Cu sites accessible to a
given hole location in the untransformed cluster are no
longer all accessible in the transformed cluster. For ex-
ample, for the hole initially on the (7,8) bond, the (9.8)
bond is (is not) accessible via t,, hopping processes before
(after) C is applied [see Eq. (A1)].

It remains to be determined how the crystal momen-



tum transforms under C. Denote translations of the clus-
ter by two sites as T % T 5 and the inversion operation

as I (under the inversion, 1«»13, 4516, etc.). One may
establish the following identity:
~1 _

C TnC——ITZy . (A2)
Now consider a wave function |¥) with k=(,0). Then,
using Eq. (A2),

T CIW) =CIT |¥)=CI|¥) . (A3)

Under inversion (m,0)—(—1,0), which is the same k
point. Hence, we must have I|¥)==+|¥). If the sign
here is negative, then Eq. (A3) means

TﬁCl\I’)I—Cl\P) (A4)

and similarly for T2?C|¢). In this case, C|¥) can only
be a linear combination of states
k=(xmw/2,x7/2).

We have no general proof that the parity of k=(m,0)
state has to be negative, but then we do observe the de-
generacy in energy of k=(m,0) and k=(x7/2,£7/2)
states for the two-band model.

with momenta

APPENDIX B

Here we consider a simple wave function that includes
the quantum fluctuations of the O hole’s spin, and then
solve for the distortions of the AF Cu spin state present
in the ground state. We begin with the wave function
given in Eq. (18a), written in the convenient form

W)y=|w)+|¥)=a

1
0 O[[;MR,)

J

+B (B1)

0 |
1| YR,

J

where ({)o and ({) are the O spinors. The 1, super-
scripts of the Cu spinors ¥(R;) refer to the O hole’s spin.
The energy expectation value has two diagonal terms,
viz., the spin-spin interaction energy of each of the two
components of the wave function, as well as the off-
diagonal spin exchange energy on the Cu—O bonds, the
latter being modified by an infinite overlap product be-
tween the two components of |¥).

The solution in a small region next to the O hole can be
found, e.g., numerically. To study the long-range behav-
ior of the ground state, we write down those portions of
the energy which depend on the Cu spins other than
those neighboring the O spin,
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[cos()/,-Tj)+cos(7/»-

(B2)

Here, y,j(yu) are the angles between neighboring Cu spin
vectors in [W')(|W!)), and K is the angle between Cu
spin vectors corresponding to P! (R;) and llil(Rj ). The
constant (—AJ,) is an off-diagonal exchange energy on
the Cu—O—Cu bonds, and it is modified due to the over-
lap product from the remaining Cu sp1ns For example,
for the 3-spin polaron [see Eq. (18b)], A=(2V'2+1). This
value is appropriate in the J, >>J, limit. For other
values of J,, the Cu-O-Cu spin structure is modified, but
A remains of order 1.
We are interested in the asymptotic region far from the
O hole, viz., where (—1 )jSJ — 1§ is very nearly the solu-
tion to the Cu spms in the ground state. The deviations
of (—1)’S; from § in the [w') and 1\1’ ) components of
|W) are parametrlzed by 6(pT 69T S(pj, and 80 [see Eq.
(17a)]. In the asymptotic region, i.e., far from the O hole,
we expand Eq. (B2) to lowest order in these variables, and
obtain the deviation of energy from the state where the
Cu spins are in the exact Néel configuration,

8E =1J, 3'[(86] —86] )2+ (80} —56})
(ij)
+(8p! —8¢) 2 +(8¢! —5¢})*]
+IAMT, 3 [(80] =860, +(8¢] —8¢})*].  (B3)
J
[A* is obtained from A as follows. We have expanded the
infinite product, and for this expansion to be valid we
have had to exclude the terms in the product which indi-
vidually significantly deviate from 1. We thus include
part of the infinite overlap product []; ¢ 1/;] ) from the
strongly distorted spins in A, viz., those spins close to the
Cu—O—Cu bond, thus obtaining a renormalized A*.]
Minimizing this energy deviation, and utilizing the
continuum limit, we obtain

50T+ 1 (B4)

1

AL ](60’—661)=0

1

J
v2A86H)+— [A* 22 |(86'—860")=0 (B5)

as well as two similar equations for 8¢, 8¢"*.

From the semlclasswal 3- spm polaron solutlon [see Eq.
(18b)], we expect 66 = ——69] , S(pj —8@1 Numerical
solutions on finite lamces confirm this symmetry. Using
this symmetry in Egs. (B4) and (B5) we obtain
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Jy
—V3(86)+ A*T (80)=0, (B6)

1
V2(8p)=0 (B7)
Thus, 80 goes to zero as e "'/l with a characteristic de-

cay length
J 1/2
' (B8)
A*J,

However, 8¢ is described by Laplace’s equation, and thus
beyond r~V'J \/A*J, we obtain an essentially planar
configuration, and the distortions induced are long
ranged and have a dipolar symmetry.

APPENDIX C

In Sec. IVC, in a perturbative calculation, we found
how the two Cu spins next to the O hole become distort-
ed from their Néel values [cf. Eq. (27)]. One can ask
which long-ranged AF Cu spin distortions are driven by
these nearest-neighbor distortions. As we know from our
quenched hole studies, if we could somehow turn off the
hopping terms while freezing the distorted nearest-
neighbor Cu spins, long-ranged dipolar Cu spin distor-
tions would have resulted in each of the four components
of the wave function of Eq. (19), viz.,

A

. )T . ‘T
ot~ (— 1y B T gu (Pl 1)
J r r

where r points from the O hole to the Cu site j, u labels
the four components of the wave function of Eq. (19), and
S4 are the oxygen spin vectors in each of the four com-
ponents of the wave function [cf. Eq. (9) and the preced-
ing paragraph; we use coordinate-dependent notation for
the dipolar distortions in this appendix]. These distor-
tions are strongly modified by the hopping. Hopping ma-
trix elements in the infinite system involve infinite overlap
products,

K
EEE (C2)

= IT’ cos
J

where K’j‘“' is an angle between spin vectors S% and Sﬁ-“ at
site j in two different components of the wave function,
and the prime on the product sign indicates that some of
the Cu spins near to the O hole are excluded from the
product. We claim that if the dipolar distortions in the
|W#) and |¥*') components of the wave function
W)= S.—1|W*) are different, the overlap P** is zero.
To prove this expand,

P H [1— L(k#* 2]
— 3w
i

3 (885—88))’
J

~exp

~exp [-—% (C3)

If 3’ (88 —8S#)? diverges, the infinite product will be
zero. Deﬁne Q{‘ =(—1)/S%. Then, employing the contin-
uum approxlmatlon

3 (884—88¢)— [dr[5QH(r)—
J

5O0#(r) ]

[(p,T)S6—(p,

r2

TS5 12

=frdrd9

TISET.

(C4)
While the integral f dr /r should be cut off at the lower
limit, it still diverges at the upper limit. To avoid diver-
gence, we have to have p,=p,,, S—85.

To avoid this “overlap catastrophe,” the dipolar dis-
tortions have to be the same in all four components of the
wave function, at least asymptotically. It is clear from
the above, however, that the nearest-neighbor distortions
in different |W*) attempt to create different dipole mo-
ments, and it is only hopping, acting through overlap in-
tegrals, that brings them into correspondence. We now
analyze how the different dipolar distortions, driven
within each |¥*) component, approach a common solu-
tion.

Similar to the approach used in Appendix B, we as-
sume that we somehow know the solution in a finite re-
gion around the O hole, either numerically or perturba-
tively. Let @*(r) be the far-field solution that results
from relaxing the Cu-Cu exchange alone, with the local
solution [e.g., (27b)] frozen and used as a boundary condi-
tion, i.e., an equation similar in form to Eq. (Cl). Also,
let the hopping matrix elements (to be modified by over-
lap products) on this finite lattice be H, h"P Then the en-
ergy functional in the Q*(r) fields (to be varied outside
that finite region) becomes

AE=11,3 [d¥([3,(Q4(r—w )]
N

= [ 4 [a6t(p, 2135,

—1 [d¥ Q4 —0¥ (]

+3 ZHﬂZP exp
bon

(C5)

Here, we have expanded the overlap product as above.
Upon expanding the exponential in Eq. (C5), the varia-
tion of AE with respect to Q*(r) gives
ho
—Vor— 3 - (Qr—QF
=

)=0. (C6)

Here we used the result that «*(r) obeys the two-
dimensional Laplace equation. Now define

r=1% Qr) ((e3)]
I

Summing over the four relations given by Eq. (C6), we

obtain

Vig(r)=0 (C8)

Thus, the average Cu spin order parameter obeys the La-
place equation.
We now want to see how this averaged solution is ap-



proached by the individual Q*(r). While this step is
inessential, to simplify further presentation, let
H:‘lf}’ =const=—1t. Then, from Eq. (C6) we obtain
—v20#+—1’—[a#—g(r>]=o : (C9)
1
Thus, all Q* approach g(r) exponentially, with a charac-
teristic length scale

l~'\/J1/l .

Except at special k points, g(r) is expected to have a
dipolar term; it is, however, difficult to determine its
specific functional form. In order to obtain a rough idea
of what g(r) is in the remainder of the appendix we use a
crude approximation and set all Q*(r)=g(r). Then the
integral in the exponential in Eq. (C5) is zero, and

AE=1J, 2 [ a?r(d,(g(r—a#(r)2+const .

(C10)

(C11)

This is minimized when g(r)={ 3, @"(r). Thus, in this
rough approximation, the long-ranged dipolar distortion
is just the average of those that would have occurred in
the four components of |¥) if the hopping only affected
the Cu spins next to the O hole. Since we obtained, un-
der these conditions, 0*(7)~[(f-T)/r]SE, we find

g~ 3 EEst
u

~+ | ELsh—sy+ L <s0—s4) (C12)
At k=(,0), we had (cf. Sec. IV C) S}, =8} and S} =S¢,
Then g(r) 0, and there are no long-ranged dipolar dis-

tortions. At other points on the zone boundary, we recall
(cf. Sec. IVC) that S5—S3=sink,§ and S3—S§
=sink, ¥, up to an overall rotation in spin space around
2. So,

(sink, X +sink, §)-T

glr)~ ; Sa

(C13)
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where we replaced §—S, to emphasize that this is a
spin-space vector, of unit magnitude. The strength of di-
pole distortion is given by (sink,X+sink,§), which is
maximized at k=(m/2,7/2), and vanishes at k=(,0),
as expected.

We now return to the expression (C11) for AE, drop
the constant, and rewrite it as

AE =2J, 2 fal2 “a, [g—%zw#(,)Hz
! I
3 3 [8;04(r
I

(C14)

- Pzaﬂﬂmﬂ .

This is minimized when g(r)=1+ 3 , ©*(r) and equals

m

AE=2J, [d*

}z[aiw“(r)]z—[a,-g(r)]z]. (C15)
I

Only the second term is k dependent, and we study its
contribution to the energy. First, we note that this con-
tribution is of the form

8E = —2b (sin’k, +sin’k, ) , (C16)
and we are interested in knowing the behavior of the
coefficient b at various values of the parameters. Recall
that g(r) is made up of the individual @*(r). The latter
are just the long-ranged deviations from Néel order
driven by the distortions of the Cu spins next to the O
hole. As we saw in Sec. IVC, in the limit
{t,,tp,J, <<J .}, those Cu spins were tipped by an angle
~ty, /J,. So, g(r) is also ~t, /J,, and thus we obtain
b~J(t,/J)*~(t,4)*/J,. In the opposite limit, viz.,
{t,,t5,J, >>J ], the @*(r) saturate, and then the integral
corresponding to the second term in Eq. (C15) is of order
O(1). Then we expect b~J,.
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