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We study analytically the problem of convection in two-dimensional porous media,  in the limit where a sharp interface 
develops between the hot and cold fluids. We propose a first approximation which is found to be "pole conserving" and 
displays a rather smooth  dynamics with an asymptotic growth of the interface width linear in time. We then reconsider the 
initial value problem and solve it exactly at short times. A new nonlocal mechanism is pointed out, by which algebraic 
singularities and critical points of  the map' describing the interface shape may proliferate. Prospects for further work are 
discussed in the conclusion. 

1. Introduction 

Convection in two-dimensional porous media 
has received until now much less attention than 
the relation problem of viscous fingering in a 
Hele Shaw cell (for reviews see ref. [1]) #1. How- 
ever,  from a theoretical point of view, it can be 
seen as the minimal model in fluid mechanics 
incorporating both advection and incompres- 
sibility, two ingredients at the heart of Euler 's 
equations. Indeed,  in the absence of any viscosi- 
ty or thermal diffusivity effects, the problem 
describes the advecation of an active scalar 0 
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#~Hele Shaw flows with two fluids of different density and 
same viscosity, a situation very close to ours in the limit of a 
very sharp interface, were studied numerically by G. Tryg- 
vasson and H. Aref  [2], however with a nonzero interface 
tension. While complet ing the writing of this paper,  we 
became aware of a recent convection exper iment  done by P. 
Tabel ing and G. Zocchi at the Ecole Normale Superieure 
(Paris) and theoretical work by M. Ben A m a r  (private 
communicat ion) .  

(a properly nondimensionalized temperature 
variable) 

00 
- - + v . ~ O = O  (1.1) 
Ot 

in a two-dimensional incompressible velocity 
field 

v=Oy-Vd~, V . v = 0 .  (1.2) 

Without the gradient (or pressure term) in the 
definition of the velocity, (1) and (2) are nothing 
but the 2D-inviscid Burgers equation which is 
known to develop shocks in finite time. Here  the 
physics is seriously complicated by the incom- 
pressibility constraint. 

Recently two of us [3] have solved (1.2) nu- 
merically for 0 initially a smooth function of 
space. In certain regions, the contour lines of 0 
bunch together such that the thickness of the 
" interface"  thus formed remains smaller than, 
but of order  of, the radius of curvature of an 
individual line. Of course the area between any 
two contour lines of 0 is constant so that if they 
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pinch together in one region, they must either 
elongate or balloon out elsewhere. Define the 
center of the interface by where ]IV0[ has a local 
maximum for fixed x. The interface continues to 
thin and fold leading to a finite time divergence 
in the global maximum of I l Y 0 1 - 1 / ( t * - t ) .  In 
the vicinity of where [~0] is maximum, the inter- 
face never develops noticeable overhangs as 
would occur for Kelvin-Helmhol tz  rollup. The 
radius of curvature always remains larger than 
but of order  of the thickness. The " jump"  in 0 
across the interface remains nearly constant in 
time, but its shape varies considerably and 
roughly periodically as a function of - In( t*  - t). 

The differential statement of area preservation 
implies that the local stretching diverges like the 
inverse thickness, iV0 I, or curvature. Although 
the numerics can only follow the collapse at one 
point, it is clear that an infinity of points along 
the interface become singular all more or less 
independently.  

Motivated by these findings, we decided to 
study the problem analytically in more detail. 
When the thickness of the interface is small 
compared to its radius of curvature, one may 
consider that the vorticity to = ~ ' x  v =0~0£ is 
concentrated on a line with a density per unit 
length equal to sin c~ where cr is the angle be- 
tween the local tangent to the interface and the 
horizontal and the jump in 0 across the interface 
is scaled to one. The Biot-Savart  law then gives 
the following equation for the evolution of the 
interface, 

1 f+~ (3y/ay)(y', t),dy' 
O,zT(y, t ) =  ~-~ PV -~ z ~ , 0 - - - z ( y ' O  ' 

(1.3) 

in which z = x + iy is the complex position of the 
interface (Z its complex conjugate), y is a Lag- 
rangian variable and the integral is a principal 
value integral. Equation (1.3) is the starting 
point for the analysis carried out in this paper, 
and no further use of eq. (1.1) and (1.2) is 
made. 

The relation between the singularities of (1.3) 
and (1.1), (1.2) is far from evident. For instance, 
according to (1.3) the spectrum of linearized 
modes for the straight interface amplify at a rate 
proportional  to wavenumber with no short dis- 
tance cutoff such as would be supplied by the 
interface thickness. It is not even evident that 
(1.3) errs in the direction of enhancing the blow 
up, since some spurious singularity that leaves 
IO~z] bounded (n.b. the stretching diverged for 
(1.1), (1.2)) could intervene and limit the times 
for which (1.3) is a sensible model of (1.1), 
(1.2). Presumably if the solutions of (1.3) remain 
smooth,  then they will agree with (1.1), (1.2) 
with suitable initial conditions, for some period 
of time. Less obviously, a solution to (1.3) for 
which the cumulative stretching exceeds the cur- 
vature may be promoted into a solution of (1.1), 
(1.2) since at least the premises on which (1.3) 
was derived remain valid. 

Unfortunately,  we see no way of ascertaining 
the behavior of (1.3) short of actually solving it. 
This is an exercise of some interest because (1.3) 
is nonlocal and it is the presence of a solution to 
the Poisson equation, 05, in (1.2) which makes 
the continuous problem more complex than a 
simple hyperbolic system. There is no obvious 
way to "localize" (1.3) when the distortions of 
the interface are large. 

In section 2 we approximate the denominator 
by the first term in its Taylor expansion which 
turns (1.3) into a Hilbert transform: still nonloc- 
al but more tractable. The tangential discontinui- 
ty of the velocity is also preserved. Using x and t 
rather than y and t as independent variables, we 
show that this approximation leads to a pole 
conserving dynamics where meromorphic initial 
conditions remain meromorphic at all time. 
Since the interface remains smooth, whereas 
solutions to (1.1), (1.2) do not, we tend to 
believe that the approximation is in error. 

In section 3 we solve exactly the initial value 
problem at small times and find that eq. (1.3) 
may generate an infinite number of singularities 
and zeros of the derivative maps O~z or 0~£, even 
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for simple meromorphic  initial conditions. The 
nonlocal mechanism we shall point out is rather 
unusual for hyperbolic systems and might be 
considered as an intrinsic source of chaos missed 
by our first approximation. The appendix illus- 
trates, in the particular case of a cubic shape of 
the interface at the initial time, the mathematical 
notions we are forced to introduce and manipu- 
late in section 3. Finally the conclusion summar- 
izes the unanswered questions which should be 
addressed in the future. 

2. A pole conserving approximation 

In order  to remove the weight, (0y/03")(3", t), 
in the numerator  of the integral in eq. (1.3), it 
would be tempting to parameterize the interface 
by y rather than with a Lagrangian variable 3'. 
However ,  as soon as the interface is folded, z is 
not a single-valued function of y anymore,  which 
makes the choice of this parameterization of 
little interest to study a folding instability. The 
choice of x as an independent  variable is more 
reasonable since overhangs were not observed 
numerically and it is selfconsistent to assume that 
z is a function of x at later times if it is so 
initially. Of course, this can only be asserted 
within our approximations and for a limited 
period of time. We rewrite the equation of mo- 
tion as (an overbar  denotes complex conju- 
gation), 

1 f '=  dz 
0,£(3', t) = - ~  PV ~ z(3', t ) -  z(3", t) 

1 f f ~  (Ox/O3")(3' ' , t!d3" 
+ ~ P V  ~ z ~ - ~ ; ~  , 

(2.1) 

1(  
+ ~ log 

z(~, t) - z(3", t) z ( y - ,  t) Z z(3", t ) ]  
z(~/ , t) - z(3' ,  t) z ( - ~ ,  t) - z(3' ,  t) / " 

(2.2) 

Provided z(_+% t) are both infinite with a well- 
defined limiting argument, the expression above 
is independent  of y and equal to 

1 
2--~ [Arg z(~, t) - Arg z ( - ~ ,  t) -+ rr I . (2.3) 

The sign of "rr inside the brackets of (2.3) is 
entirely determined by the requirement that the 
whole quantity be between --rr and rr. Therefore  
we get zero for an asymptotically flat interface or 
a cubic like curve and ½i sgn(p) for the parabola 
y = x2/2p. In any case, this boundary term just 
gives rise to a uniform velocity along the vertical 
direction which does not affect the shape of the 
interface and we shall ignore it in the following. 

We now have 

1 f dx'  
d,£(x, t)l ~ = ~ PV z(x,  t ) - - -z(x ' ,  t) 

= ig(x, t ) ,  (2.4) 

where the  left hand side is the Lagrangian ve- 
locity, (d, is a total time derivative at fixed y ) ,  
and the last equality defines g(x, t). Henceforth,  
z will be a function of x and t. But 

d,Y(x, t)[r = O,£(x, t) + d,xl~ axe(x, t) , (2.5) 

whence follows, since 0xZ7 + O~z = 2, 

O,z(x, t) = ½ (d , z (x ,  t)l~ Oxz(x, t) 

- d,z(x, t)l~ axY(x, t ) ) .  (2.6) 

Using (2.4) and the complex conjugate equation 
d,z = - i ~  we finally obtain 

where dz is a short notation for (Oz /Oy) (y ' ,  t) 
dy ' .  The first term in the right hand side of (2.1) 
is integrated exactly as 

1 
o,y(x, t) = ~ o,(z - ~) = --k(gOxz + gOxe). 

(2 .7 )  



314 T. Dombre et al. / Interface dynamics for convection in porous media 

Until now the series of transformations leading 
f rom (2.1) to (2.7) were exact, though not obvi- 

ously useful. We now propose an approximate  
t rea tment  of (2.7) where the denominator  enter- 
ing the definition of g(x, t), z(x,  t) - z(x' ,  t), is 
simply replaced by the first term of its Taylor  

expansion,  O,z(x',  t ) ( x -  x ') .  Note that this as- 
sumption leaves some nonlocal features in the 
problem.  It was previously used by Caflisch and 
Semmes  [4] for the Kelvin Helmholtz  instability 
as the first step in their reduction of the Birk- 
h o f f - R o t t  integral to a nonlinear wave equation. 
They were able to justify this approximation for 
the isolated curvature singularities they were in- 
terested in, which did not involve strong distor- 
tions of the vortex sheet. The singularities perti- 

nent here are stronger,  as already noted in the 
introduction,  and our assumption is merely an 

uncontrolled first approximation.  Quite amusing- 
ly, we shall find a pole conserving dynamics, 
some what reminiscent of the one known to 
govern the Sa f fman-Tay lo r  instability without 
surface tension [5]. It should be emphasized,  
however ,  that in the latter problem conformal 
mapping  techniques can be used and that the 
resulting dynamical equations for conformal sin- 
gularities are exact. 

As announced in the last paragraph,  we re- 
place in (2.7) g and ~ by the Hilbert  transforms 
of - 1 / O x z  and +l/Ox£,  respectively. Differen- 
tiating (2.7) once with respect to x, allows one to 
close the equation for O,z or 0,~ as 

1 
2-[ ° ' ( °xz  - Ox£) 

(2.8) 

Let  (ay/Ox)(x)  be a rational function of the form 
( P / Q )  where P and Q are two real polynomials 
in x of degree m and n. Then P -  i Q and P + i Q  
are two polynomials of degree p = sup(m, n) 
which can be parametr ized as 

P 

P -  iO = a o [-[ (x - ai) , 
i 1 

P 

P + iQ = d 0 I J  ( x -  d~). (2.9) 
i ~ l  

For this restricted class of mappings,  the geome- 
try of the interface is entirely specified by thc 

positions of the p zeros of P - i Q and the phase 

of a 0, while the amplitude of a 0 disappears in the 
ratio P/Q.  For m > n, a 0 is real and imaginary 
for n > m; its phase is arbitrary when m = n. 

Zeros  of P - i Q  and P + iQ are poles of 1/a , z  
and 1/Ox£, respectively, and the exact computa-  
tion of H(1/Oxz  ) and H(1 /O,£ )  in the r.h.s, of 
(2.8) is straightforward. One obtains 

(2.10) 

where R is a polynomial in x of degree not 

greater  than p - 1 given by 

R = ( P - i Q )  

( , ~  Q ( a , ) ,  1 ) + c . c .  
x = Ei P'(ai-)~TO (ai) x-a i 

(2.11) 

with E~ = sgn(Im a~). We ignore the nongeneric 
case where P + i Q  has a double zero. In the 
following we shall denote  

Q(ai) 
~i = P'(ai)  - iQ ' ( a i )  ' (2.12) 

which is nothing but the residue of the map i/Oxz 
at the pole a i. 

Integrat ing (2.10) along a closed contour,  
which does not contain any new zeroes of Q, one 
can easily show that the residues of P/Q are 
constants of the motion. As a consequence,  no 
new zero of Q can appear  as a function of time, 
and thus, the degree of Q (and therefore the 
number  of poles of O~z or Oxz* ) is conserved. On 
the other  hand the degree of P determines the 
behavior  of the interface at the infinity. Letting x 
go to infinity in (2.10), we find that m does not 
vary unless m < p - 2. We conclude that n and p 
are preserved by the dynamics and it suffices to 
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establish now the equations of motion of the 
zeros a s and the phase of %. Multiplying both 
sides of (2.10) by Q2 we get 

1 
25 [ ( P - i Q )  O,(P + i Q ) -  (P + i Q )  O , ( P - i Q ) ]  

= ¼[QoxR- RaxQ]. (2.13) 

The absence of the monomial X 2p and X 2p l on 

the r.h.s, of (2.13) implies 

d,(d0/a0) = 0 ,  (2.14a) 

P 

d, ~ (a s -  as )  = 0 ,  (2.14b) 
S=I 

which shows that a 0 is a constant of motion (its 
magnitude does not enter P / Q ) ,  as is the imagi- 
nary part of the "center  of mass" of the a i. Much 
more algebra is required to find the dynamics of 
each ag. We indicated here a few intermediate 
steps in the computation and quote the final 
result. Dividing both sides of (2.13) by P - i Q  
and equating the residues of the pole ai, one 
obtains 

,{ 1 
dta i = 

+ 

a o 1-[ (a i - aj) 
j ~ i  

F " " a , >  - - -  

_R(a~) } 

4 , 1 - [  (., - 

*)] 
ai dk 

(2.15) 

Equation (2.11) yields 

R(ai)  = E i ~ i a o H  (a s - aj) 
j ~ i  

+ ~, ekfik P(ai) + iQ(as) 
k as --  a k  

(2.16) 

R ' ( a , )  = 7~ (e, fi s + ej[3j)a,, [ I  ( a , -  ak) 
j~'i k # i , j  

+ ~ Ek~k P(ai) + iQ(ai)  

k a i  --  a i  

1 , )  
X -- . 

a i --  a j  a i d k (2.17) 

Inserting (2.16) and (2.17) into (2.15) one is led 
after some straight-forward algebraic manipula- 
tions to the equation 

1 £ (~-i~i + ej~j) 1 1 dtai =- ~ - -  + ~-i 
j~i a i - -  aj 

+¼~ 1 ( Ejfifls) 
i a i ~  " j ~ j -  Ei f i s -2 i  a i - f f ,  , 

(2.18) 

where it should be understood from the defini- 
tion (2.12) that the/3j are entirely determined by 
the aj according to the formula 

l~ ( a j -  a k ) d  0 
1 k (2.19) 

/3, = [I  ( a j -  ak)a0 
k # j  

As in the Saffman-Taylor  problem the non- 
linear and nonlocal evolution equation (2.8) has 
been reduced to a set of ordinary differential 
equations (2.18) for the dynamics of zeros of the 
map O,z. In the former case, it is known that 
zeros of the derivative map can hit the physical 
axis in finite time, corresponding in that case to 
the formation of a cusped interface [5]. We do 
not find such events here,  at least for simple 
enough initial conditions. In fact eq. (2.18) does 
not allow a zero to reach the real axis in finite 
time while remaining beyond some nonzero dis- 
tance from the others. Indeed for an isolated 
zero ai, close to the real axis, (2.19) gives/3 i 
ei~(as - ds) to leading order in the small quantity 
(a s - a s )  and one gets from (2.18) 

( ) d,a s = 41 ~'~ eJ/3i + c.c. - sin 
j#i a i - -  aj 4 q~ 

and upon differentiation with respect to x, + U(a s - as).  (2.20) 
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The terms of order  one in the r.h.s, of (2.20) 
turn out to be real and we conclude that a i 
cannot  approach the real axis more rapidly than 
exponentially.  The argument  breaks down for 

zeros which approach each other and the real 
axis together.  In any event, rational functions of 
x will not describe the cusps characteristic of roll 
up. (Certainly algebraic singularities are re- 

quired).  
The dynamics contained in eq. (2.18), though 

approximate ,  may deserve further investigation. 
We conclude this section by discussing a few 
examples  which illustrate well the physics behind 
the pole conserving approximation,  while lend- 
ing themselves to easy computat ion.  For all the 
simple polynomial  maps we shall consider, it is 

more  convenient  to work directly with eq. 
(2.10). We start with the parabola  y =xe/2p; 
then P = x/p,  Q = 1, P -  iQ has a single zero at 
x = ip and R = 2 sgn p. Therefore ,  the parabola 
has a stationary shape and taking into account 
the boundary  term discussed at the beginning of 
this section, we find that it moves with constant 
velocity - s g n  p along the vertical axis. The re- 

sult is exact and correctly captured by the ap- 
proximat ion of this section. In this case the zero 

of Oxz is not moving at all. 
Next,  we consider the cubic y = ~x 3 + cx; then 

P =  ½x~-+c, Q = I  and P - i Q  has a pair of 

zeros at x = -+x 0 = + - ~  c) (these points are 
also introduced in the appendix). From the defi- 
nition of R one gets R = x (1 /x  o + 1/2o) which 
upon insertion in (2.10) leads to 

1 ~ / - c + ~ / l + c  2 
d , c -  4 ~/1 + c 2 (2.21) 

The  slope at the origin, c, is continuously de- 
creasing with t, very slowly at large positive 
values of c, more rapidly at modera te  values of 
c. A pair of folds appears  on the interface for 
c < 0  corresponding to the two roots -+x 0. At  
large negative values of c, (2.21), simplifies to 

1 (2.22) d,c = - ¼"X/2 ~ 7 [  ' 

which shows that Ic{ behaves asymptotically like 
t 2/3. This means in turn that the height of the 

folds grows like t at late times, a sensible result 
for the convection in porous media. As for the 
zeros of O,z, it can be checked that they first 

move towards the real axis and then asymptote 

to it at infinity. 
The case of a nearly flat, periodically pertur- 

bed interface is particularly revealing. We take 
y = 6 sin kx with k, d > 0 .  Then P = k6 cos kx, 

Q = 1 and the zeros of P - i Q  satisfy 

ka+, = + ½"rrT-iArgsinh(~--~)+ 2 n v ,  (2.23) 

whence follows the expression of R, 

R _ 
1 

2~/1 + (ak)  2 [cot ½k(x - a+o ) 

+ cot l k ( x -  a 0 ) ] ( P -  iQ)  + c.c. (2.24) 

which simplifies to 

26k 
R - sin k x .  (2.25) 

V l  + ( ak )  2 

Equation (2.10) then yields 

1 8k 
d,6 - 2 ~/1 + (•k) 2 

(2.26) 

The Mui l ins-Sekerka  instability is recovered for 
small amplitudes with an amplification rate of 
disturbances scaling like their wave vector. How- 
ever,  the instability saturates for large am- 
plitudes and we find within our approximation 
that the width of the interface in the y direction 
grows asymptotically like ½t. 

3. Beyond the pole conserving approximation 

Within the approximation developed in section 
2, meromorphic  initial conditions remain 
meromorphic  at later times and as a consequence 
the number  of zeros of a~z and a,£,  i.e. the 
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critical points of the maps z and zT, is conserved. 
In the few simple examples we examined,  we 
found that these points, generally far from the 
real axis ( Im x = 0), move towards it, initially, 
though never  reach it in finite time. If the scale 
of Oxy(x, t) is large compared  to 1, then these 

critical points are associated with folds of the 
interface, whose scale along the vertical direction 
grows like t in the final stages of evolution. This 
picture of the interface dynamics is a rather 
smooth  one, difficult to reconcile with the nu- 
merical observations,  which point to a finite time 
blow up of the interface stretching, preceded by 
some seemingly chaotic folding [3]. We therefore 
believe that some qualitative aspects of the prob- 
lem have been lost in our first t reatment  and in 
this section we solve (2.7) more precisely for 
short times. 

Let us consider again the case of a cubic curve 
at the initial t ime, y(x ,  t = 0 ) =  ~ 3 ~x + cx. The 
right-hand side of the equation of motion (2.7) 

can be calculated exactly, using standard contour 
deformat ion techniques. This yields, at t = 0, 

/ \ x 
O,y= ~ / 3 I m {  , 7 ) -  (3.1) 

" V x- + 8(c - i) 

The velocity field has a much richer structure 

than what was obtained in (2.21), using the pole 
conserving approximation.  The most notable fea- 
ture of (3.1) is the appearance  of inverse square 
root singularities at x = - + 2 V ~ ( i -  c) = -+x~ (and 
at complex conjugate positions). On the other 
hand the critical points of z are at x =  

- + ' ~ / ~ i -  c ) =  -+x 0 and one quickly realizes that 
x 0 and x~ obey the relation z(.+x~) = z(~-xo).  We 
shall say in the following that x 1 and - x  0 are 
co-preimages under z since they share the same 

value of z. In the same way £~ and - £ 0  are 
co-preimages under £. 

Equat ion (3.1) suggests the formation of 

square root singularities at co-preimages of criti- 
cal points. This richer analytic structure may in 
turn contain new critical points in the vicinity of 
the co-preimages,  allowing then the process to 
repeat .  This section is devoted to a thorough 
analysis of this problem in a general situation. 
We shall see that the formation of a singularity 
from smooth initial conditions is described by a 

local nonlinear equation, which can be solved 
exactly at short times. The possibility of a cas- 
cading process and the overall pattern of singu- 
larities which should result f rom it, depend solely 
on the initial interface shape. We discuss this last 
mat te r  in an appendix,  in the particular case of 
the cubic. 

3.1 Analyt ic  continuation o f  the equation o f  
mot ion  

Since we are a priori interested in the 
dynamics at points x which are not necessarily on 
the real axis, we first need to analytically con- 
tinue the function g(x,  t) in (2.4). For x on the 

real axis, g(x,  t) is defined as half the integral of 
the function 1/[z(x ,  t ) - z ( x ' ,  t)] on the two 
contours  displayed in fig. 1. Suppose that we let 
x move,  say, in the upper  half complex plane, on 

X 

X i ~  - 3 ~  "~ 

Fig. I. The various deformations of contours used to derive eq. (3.3). 

x 
® 

@ 
xi  
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a path avoiding any singularity of z. The upper  
contour  is deformed in such a way that it still 
encircles x clockwise, while remaining on the 

same Riemann sheet as x (i.e. avoiding also any 
singularity z). The lower contour is left un- 
touched and by using the Cauchy formula to 
est imate the first contribution, we get the usual 
analytic continuation of a principal value in- 
tegral, 

1 f+~ dx' 
g ( x ,  t) = 27g ~ z (x ,  t) - ~(x ' ,  t) 

1 
_+ ~ (3.2) 

- o ~ z ( x ,  t )  ' 

where the -+ depends on whether  x is in the 
upper  or lower half complex plane. 

However ,  more  needs to be said. As soon as 
the interface is not flat anymore,  we know that 
the inverse map is multi-valued. Let w~ be the ith 
inverse of z: to each point x we can associate a 
countable set of co-preimages x~ = w,(z(x)). The 
x~ are functions of x and t but very often we shall 

drop the two arguments to simplify the nota- 
tions. Since the xi move together with x, some of 
them may cross the real axis either downwards 
or upwards during the analytic continuation pro- 

cess. Each time this happens,  the residue at xi 
should be subtracted from or added to the right- 
hand side of (3.2), in order that the first term in 
(3.2) is always defined as the integral along the 
real axis (see again fig. 1 for an intuitive picture). 

The final results reads 

1 f~] dx' 
g ( x ,  t) = 27g~ ~(x ,  t) - ~(x ' ,  t) 

+ ~  1 1 

- "- a x z ( x ,  t) + ~, +- o x z ( x , ,  t) " (3 .3)  

The residue at x i gets a weight +_1 because both 
contours  are pushed up or down with xi. Note 
that not all x~ obeying z(x~)= z(x) appear  in 
(3.3) but only those which cross the real axis an 
odd number  of times during the analytic con- 
t inuation towards x. 

Before continuing the evolution equation (2.7) 
we must clarify the meaning of the "conjugate"  
to be denoted by " * "  for functions of complex 

x. We define, z*(x) =- x - iy(x) =- z(£) ,  and simi- 
larly for g*. Clearly this agrees with complex 
conjugation for x real and allows us to write 
Oxz + O x z * = 2 .  Therefore  (2.7) follows from 
(2.4) as before with overbars replaced by stars. 

The integral expression for g* is continued to 
complex x as above. We define the co-preimages 

of x under  z* as x, i = w*(z*(x)) where w,* is the 
ith branch of the inverse of z*. Note that the set 
{x,~} is not the complex conjugation of the {x,} 
unless x is real. An expression analogous to (3.3) 
is then obtained for g*(x, t), which leads to the 
desired analytic continuation of the equation of 
mot ion (2.7) 

l 

25 a , ( z  - z * )  

1 f a x '  1 fax' 
- 4iv a z z-~z' +~O~z* z 

, a x z ( x , )  , a , ~ * ( x , , )  " 
(3.4) 

Equat ion (3.4) is exact, irrespective of the 
analytic structure of z and z*, since it was de- 
rived using only local deformation of contours. 
The right-hand side is now divided into two 
parts: the first two terms are nonlocal since they 
involve an integral on the real axis but for the 
same reason they have a rather regular behavior  
when Im x # 0. in particular, when z (respective- 
ly z*) are finite, the first, (respectively second) 
integral considered as a function of z, (respec- 
tively z*) can be Taylor  expanded in powers of 
z - z ( x )  or z* z*(x),  which shows that the 
nonlocal terms cannot be more singular than the 
spacial derivatives O~.z and Oxz*. The last two 
terms in (3.4) are much more surprising since 
they relate the dynamics at x to the properties of 
the maps z and z* at some of his co-preimages. 
We understand at once that singularities may 
occur when any of the x, or x,i gets close to a 
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zero  of  O~z or Oxz*, which is why "cri t ical" is an 

apt  te rm for these points.  

3.2. First generation singularities 

Let  us assume that  at the initial t ime the 

interface is descr ibed by some analytic funct ion 

Zo(X ). The  map z o has a countable  set of  critical 
points.  Critical points  are where  a pair  of  co- 

pre images  merge  together .  A r o u n d  such a point ,  

x 0' the Taylor  expansion of  z 0 starts at quadrat ic  

o rder ,  

Zo(X ) - z,,(x0) ~ ½a(x - X0) 2 as x--~ x 0 . 
(3.5) 

We do not  expect  anything spectacular  to happen  

for  x - x  0 f rom eq. (3.4). At  worst ,  one  of  the 

co-pre images  of  x crosses the real axis to create a 

double  roo t  with x at x 0, i.e. x i (x  ) ~ 2x 0 - x, but  
the local cont r ibut ion  to (3.4) thereby genera ted  
reduces  to a constant .  

A slightly more  compl ica ted  situation whereby  

a critical point  does induce a singularity in (3.4) 
is c rea ted  by letting x approach  x, where 

z o ( x l ) = z o ( x o )  and Oxzo(x , )~O.  A m o n g  the 
o ther  co-pre images  of  x there are two x~, x b say, 
which merge  when x = x~ and form the double  

roo t  at x 0. It is at this step that  we must  assume 

zo(x  ) is at least cubic, and as shown in the 
appendix  a cubic polynomial  is sufficient to gen- 

era te  all the complexi ty  which follows. 

A s s u m e  as x-->x~ f rom the real axis, one of  

the x a, x b to be called hencefor th  £, crosses the 
real axis an odd n u m b e r  of  times and thereby 
appears  in (3.4). ( I f  both  x~ and x b cross the real 
axis f rom the same side there will be two terms 

in (3.4) which cancel in the limit; but  this does 

not  happen  for the cubic.) We have therefore  

c rea ted  an intrinsic singularity in (3.4) since 
O,z (£)  in the d e n o m i n a t o r  tends to zero  while 
the n u m e r a t o r  approaches  O~Z(Xl)#O.  (Note  
O~z(£) is the x-derivat ive of  z evaluated at £; the 
x dependence  of  £ is immaterial) .  By retaining 
just the singular term,  the equa t ion  of  mot ion  

simplifies to 

oxz(x, t) 
o,z(x, t )= -½ioxz(£,  t) = -½i ox£(x, t) , (3.6) 

where  the last equali ty is a consequence  of  

z(x ,  t ) =  z(£,  t). The sign we chose in (3.6) is 

arbi t rary  and of  no impor tance  in the following. 

The  dynamics  of  z for  x near  x~ will turn out  to 
be singular in t at short  times ( - t2 /3) .  On  the 

o ther  hand,  z for  x near  x 0 is analytic in t and by 
compar i son  slow. Therefore ,  to a good  approxi-  

mat ion ,  we can consider  the local expansion of  z 

near  zo(xo) as being valid at t > 0 with x 0 and a 
in (3.5) unchanged .  In this way, we obtain the 

series of  equalities 

•/2 ) 7 -  x0  = a ( z 0 ( £ )  - z 0 ( x 0 ) )  

x fZ  t) - zo(xo)) 

= ( z ( x , t ) -  z o ( x , ) ) .  (3.7) 

The  last equali ty allows one to express £(x,  t) 
only in terms of  the propert ies  of  z for x near  xl 
and eq. (3.6) becomes ,  using (3.7) 

i oxz(x, t) 
a,z (x ,  t) - V z ( x ,  t) - Zo(Xl) (3.8) 

This Burgers-l ike equa t ion  is easily solved, 

using the H o d o g r a p h  me thod  [7]. Looking  for x 

as a funct ion of  z and t, one can rewrite (3.8) as 

i 1 
Otx(z, t) = 2 X / ~  ~/z  - Zo(X~) ' (3.9) 

whose  solution has the general  form 

i t 
x - x,  - 2X/-J-a ~/z - zo(x l )  + F ( x ) ,  (3.10) 

where  F(z)  is entirely specified by the initial 
condit ions.  Since x 1 is a regular  point  of  the map 
z at the initial t ime, in its ne ighborhood  one has 
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z0(x ) -  z , , ( x l )  ~ b t ( x -  x , )  where b I = Oxz, ,(x ,) ,  

so that our final result is 

X - - X l  - -  

i t z - z 0 ( x l )  
+ 

2v~-~ Vz - z,,(x,) b~  
(3.11) 

Note  immediately that for t > 0, x 0 no longer has 
a co-preimage in the neighborhood of x~ and in 
this sense the singularity in (3.4) has been reg- 
ularized. 

To  examine the local structure of z for x near 

x~ at short times, eq. (3.11), which is a third- 
order  polynomial  in h = ~ / z -  Zo(X~), can be in- 

verted explicitly. The three roots h k ( X - - x ~ ,  t), 

0<~ k--<2, are nothing but the same analytic 
function extended on three Riemann sheets [8[. 
We write them below in a way which makes their 
asymptot ic  propert ies  at infinity evident 

' ( ' ) h k ( x - x , , t ) = ~ / b l ( X - X , )  ~kU ~k U 

= I i X / - ~ t  1'3 f l k U - -  , 

(3.12a) 
with 

/~k ~ e 2 i k ~ / 3  

1 i ~1/3 
U=e ~'~/3(~/1 X3 X ~ !  , 

X --  X 1 3 12/3 
X -  , U l -  2 )1/3 " 

vl ( - 4 a b  t 

(3.12b) 

(3.12c) 

(3.12d) 

The  most  important  thing to notice in (3.12c) is 
the emergence of square root singularities at 
X 3 = 1 ,  i.e. at three points x - x  l = v l e  2~k~3 
which move away from x~ as  t 2/3. Let us make 

clear how the various algebraic quantities enter- 
ing (3.12a) are defined: we put three branch cuts 
between x 1 and x t + [3kV ~. If X~ lies in the lower 
complex half plane, we single out from these 
three branch cuts, one pointing in the direction 
of negative imaginary parts and extend it to 

infinity (see fig. 2). Then the phase of X is 
measured  with respect to this direction, so that 
the phase of X/X in front of the brackets in 
(3.12a) varies from 0 to "~ during an anticlock- 
wise 2w turn around x I and 1 / X  3/~ inside U from 

0 to -3~r. On the other hand we take the 
argument  of 1 -  I / X  3 between -Tr and ~r. For 

IX] >> 1, the argument  is zero. For Igl < l, the 
argument  of 1 I / X  ~ varies from + ~  to - v  
when one goes in an anticlockwise way from one 
branch to the other and it suffers a 2v jump at 

each branch. The argument  of ~/1 - 1 / X  3 is ,just 
the half of this quantity. 

With such conventions, it can be checked that 
the first root h 0 is indeed the solution on the 
physical sheet, for points approaching x~ from 
the real axis without encircling any singularity 
(see fig. 2). We recover, as required, h o ( x -  

x , ) -~ /b , (x  - x,) for Ix l  >> 1. The second root,  
hi ,  gives the solution on the second Riemann 
sheet and from (3.12a)-(3.12c) vanishes for 

IX I >> 1. On the third Riemann sheet h+ behaves 
asymptotically like - h  0. In fig. 3, we show how 
the roots are permuted  when one crosses the 
three branch cuts emanating from Xl. 

To  get more insight into this analytic structure, 
it is useful to ask how many new co-preimages 

R e x = O  

/ 

(3O 

Fig. 2. The  physica l  R i e m a n n  sheet  a round  x~ at t > 0: wiggly 
l ines  ind ica te  the b ranch  cuts  desc r ibed  in the text ,  l ines with 
a r rows  are the pa ths  of ana ly t ic  con t inua t ion  from the real  

axis  l ead ing  to the root  h,,. 
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X = e 2~i/3 

h2 

ho 

i 

~h 2 X=I  

eO 

Fig. 3. The  pe rmuta t ion  of roots h0, h t ,  h~ as x moves  
a round  x~ through branch cuts. 

or a critical point, then (3.4) implies an equation 
of the form 

O,z = A O x z -  A*  O, z* + B , 

where A, A* and B are smooth. Therefore,  for 

short enough times the square root singularities 
are simply advected. If they reach the real axis, 
physical singularities will appear  which are 
stronger than those associated with Kelvin-  

Helmhol tz  rollup. 
We now ask whether  new critical points have 

been generated as a result of solving (3.8). Re- 
writing (3.1) as 

itb~ 
h ~ - b ~ ( x - x , ) h  + 2 x / ~  - 0  (3.13) 

and differentiating with respect to x, we get 

each point x has acquired and where they lie as x 
explores the complex plane. We simply get the 
answer by coming back to eq. (3.11): the inverse 
square root at z = z()(x~) tells us that any value 
of z is now the image of two different values of 
x, which means the creation of one new co- 
pre image for any x. For x far from x~ (i.e. X>> 1 
in (3.12a) or t--->0 in (3.1l)) ,  the new co-preim- 
age is located in the third Riemann sheet (h 2 

- h  0 for X>>I ) .  It enters the second Riemann 
sheet when x approaches  x~; in particular the 
value Z(Xo) which equaled z (x~)  at t = 0  is now 
assumed at x equals infinity in the second 

Riemann  sheet (hi--~0 as IX[--> +~) .  This closes 
our  discussion of the content  of eqs. (3.11) and 

(3.12a). It should be ment ioned that the above 
analysis breaks down at a distance of order  G(t) 
f rom x~. The actual motion of x 0 (analytic in t) 
complicates the actual structure, very close to x~. 
Our  analysis correctly captures the outer  0~(t 2/3) 
region, which will only mat ter  in the following. 

Before  pursuing how other  critical points can 
nucleate additional singularities on top of those 
just found, we pause to consider the motion of 
the square root singularities just found. If they 
have no preimage under z or z* which is singular 

2b lh  2 
O,z = 2h Oxh = 3h 2 _ b ~ ( x -  x~) (3.14) 

Since h never vanishes except at x equals infinity, 
neither does Oxz. This clearly eliminates the 
possibility that new critical points of z are gener- 
ated within the regime of validity of (3.11), 
(3.12a) but this is emphatically not true for the 
map  z* which enters (3.4) on equal footing with 
z. Indeed,  from the definitions of z and z*, it 
follows that critical points of z* are points where 
Oxz = 2, a condition which is met  whenever 

Z --  Z 0 ( X l )  = h 2 _ _ _ b '  (x - X l )  ( 3 . 1 5 )  
3 - b  I 

according to (3.14). Inserting (3.15) into (3.13) 
allows one to solve easily for x - x 1, 

1 -- 1 ~bl 
X - - X I  ( 1 -  2161) 2/3 UIJ~i' ( 3 . 1 6 )  

with v~ ~ t 2 / 3  given in (3.12d), and/3~ = 1. 

Provided b~ is not too close to 2, the three 
points we find lie close to x I within the range of 
validity of our local analysis. R e m e m b e r  that 
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b~ = a z,,(x~) = 2 would correspond to x: being a 
critical point of z* at the initial t ime, a highly 
nongeneric situation. We should say that even 
with an explicit result for the positions of these 
new critical points of z*, it is much more difficult 
to ascertain on which Riemann sheet each of 
these points resides. We shall not a t tempt  to 

answer this question here because it does not 
affect the ability of these new critical points to 
act as sources of a second generation of singu- 
larities, (as we shall see in the next section the 

only thing we need is the existence of a path 
leading from the real axis to these points). How- 
ever,  this issue is clearly important  in under- 
standing whether ,  at later times, these new criti- 
cal points can eventually get close to the real axis 
and be observed as new folds of the interface. 
But this difficult problem is beyond the scope of 

the present  work. 
Let us summarize what has been done until 

now: a critical point of the map z at time t = 0 
(e.g. xo), emits at t ime t > 0 a self-similar struc- 

ture of the form z(x, t ) - z ( x  1, t = 0 ) =  
t2~3Z((x - x~)/t 2~3) in the vicinity of its co-preim- 

age x~ at t = 0. In the process, the co-preimage 
itself is destroyed and square root singularities in 
z are formed.  We have found that this self- 
similar structure contains also new critical points 
of z* and we are now in position of repeating the 
same analysis utilizing these new points. This, we 

do in the next section. 

3.3. Second generation of singularities 

The second generation of singularities is slight- 
ly different from the first one since the input in 
this problem is the self-similar structure obtained 
in the last subsection, to be contrasted with the 
almost  t ime-independent  input (3.5) used for the 
first generation.  That  is why this question de- 
serves some attention. Fur thermore ,  the analysis 
we shall present  here can readily be extended to 
subsequent  generations which do not raise any 

new difficulty. 
To be able to derive an equation equivalent to 

(3.7) in the last subsection, we first need to know 
the inverse map x(z*, t) for z* near z~(xl) and x 
near  x~. The subscript * on x that was employed 
in subsection 3.1 to distinguish inverses under z 
and z* will be omitted in this subsection because 
only z* is pertinent.  A nice algebraic expression 

can still be derived at the second-generation 
level. Inserting 

z(x, t) z . (xl)  = 2 ( x  x , ) -  (z*(x, t ) -  z;(x,)) 
(3.17) 

into (3.11), one gets 

z* - : ; ( x : ) )  -~ 

:+ - z;Cx,)  ) 
× (x x~ 2 + 

bl ~2 t 2 
b : - 2 /  l ~ a  = 0 "  

(3.18) 

The three roots of the third-order polynomial in 

( x -  x 1) are given by 

x - x ,  = L ( : *  - z ; ( x , ) ,  t) 

_ z * - z ~ ( x , )  [ b , - 6 + b , ( [ 3 , V +  1 ) ]  

(3.19) 

2~,~/3 O_  < k~<2, is a cube root of where /3 k = e , 
unity and 

( 2 +2i/  '3 (3.20a) V =  I- ~ . y3// , 

Z * - -  Z~(Xl) ~ ( b  1 - - 2 ~  1'3 
Y -  ?.~ -/~ = 2 \ ~ - - a  / (3.20b) 

y l t - -  

Therefore  any value z* near z~(x,) has three 
preimages near  (x~) in contrast to z which has 
only two. Both roots k = 1, 2 have the same 
asymptotic  behavior x - x  l ~ - [ z * - z ~ ( x : ) ] /  
(b I - 2 )  for [YI >> 1 and it is not easy to decide 
which one describes the solution on the physical 
Riemann sheet. Only a careful comparison of 
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(3.19) with (3.12a) could help to settle this point 
but which we will not a t tempt  in this work. 

The square root singularities in (3.19) at 
y 3 =  1 signal the critical points of z* in the 

ne ighborhood of x E at t > 0 which were found 
before.  The various quantities in (3.19) and 
(3.20) are defined as follows: we put three 
branch cuts between Y = 0 and Y = e 2~k~/~, 0 -  < 
k-< 2. The phase of 1 - 1 /y3  is chosen between 

- w  and +w, where both limiting values are 
reached,  respectively, on the right- and left-hand 
sides (as seen from the origin) of the three 
branch cuts. In the same way we ascribe to the 
argument  of the cube root in the definition of V, 
a phase between - w  and -rr (again these limiting 
values are reached only on the branch cuts). 
Finally we note that a ~v turn changes the 
quantity 1 / y3/2 inside of the cube root in V into 

its opposi te  and as a consequence V into 1/V. 
Therefore ,  neighboring branch cuts are not 
equivalent  but the symmetry  is restored by a 4~r 
rotation. The two-fold indeterminacy on the sign 
of I / Y  3/2 is related to the choice of the right 

solution on the physical space been h~ and h 2. As 
discussed before,  we must leave this issue open. 
Figure 4 indicates some possible permutat ions of 
roots deduced from (3.19) as branch cuts are 
crossed. Using the rules defined above,  it can 
also be checked that at each point Y = e 2i'~k/3 (or 
z t k ( t )  - z ~ ) ( x l )  = ")/1/2/3 e 2i~k/3) only two of the 

three roots fk are singular. From (3.19) and (20), 
the ampli tudes of the square root singularities 

2Ti/3 
Y=e  

Fig. 4. Some permutations of the roots f as X* moves 
around z*j(x,) through the branch cuts. 

are found to be equal to 

k x -  x, -- a , [ z *  - z~k(t)] '/z , (3.21a) 

bl tl /3 e i.rrk / 3Xf.~i k = + . (3.21b) 
c~l - 3 ( b  I - 2 )  

They are smaller by a t ~/-~ factor than the am- 
plitude of the square root singularities X/2/a, we 
started from in the first generation problem, (cf. 

(3.5)). 
Having clarified the analytic structure of the 

inverse map x(z*, t) near z~(xl) ,  we are now in 

position of asking 
the neighborhood 
time evolves. Let 

how it may affect z* for x in 
of co-preimages of x~ as the 

x 2 be a co-preimage of (xl) 
under  the map z* at t = 0  (i.e. z~(x2)=  zo(xl) ). 
As x approaches x~ from the real axis, only one 
of its co-preimages,  to be called henceforth ~, 
goes to x~ at the initial time, since x~ is unlikely 

to be also a critical point of z~. (For t > 0  this 
means that in the neighborhood of Xl there is an 
x obtained from (3.19) for z * =  z~k(t) (defined 
above (3.21)) where Oxz* =0 . )  Assume again 
that this co-preimage crosses the real axis an odd 
number  of times during the analytic continuation 
towards x: .  By continuity, this property still 
holds at short positive times. We know that other 

co-preimages of x appear  near (x~) at t > 0  but 
they reside on other Riemann sheets and are not 
able to cross the real axis of the physical sheet. 
Therefore ,  according to the dynamical rules es- 
tablished in subsection 3.1, they cannot inter- 
vene in the r.h.s, of eq. (3.4). Repeat ing the 
arguments  of the last subsection which led to 

(3.8) via (3.6) and (3.7) (we promote  xj to x 2, x 0 
to x~ and z to z*) we find £ induces a singular 
contribution in the equation of motion for x near 
(x2) of the form 

O,z* = -½iOxz*f'(z*(x, t) - z~(x2), t) ,  (3.22) 

where f '  is the derivative with respect to z* of 
the function f defined in (3.19) and the sign of 
the r.h.s, has been chosen arbitrarily. Note that 
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f '  has an inverse square root singularity as in x -  x~ 3. 
(3.8). Again, the Hodograph  method allows us /2/3- - - 5 1 -  
to t ransform (3.22) into 

t 1/3 F ( Y )  3", ,.~) 
3") y + ~ Y + ©(t " . 

(3.26) 

a ,x ( z* ,  t) : ½if '(z* - z~)(x2), t ) ,  (3.23) 

whose solution reads 

X - -  X 2 
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diverges at y 3 =  1. This constitutes an alterna- 
tive scenario through which divergences in the 
equation of motion (3.4) originating from the 
existence of critical points of z or z* are regular- 
ized. Since these new critical points of z* near x 2 
belong to the same preimage as their parents 
near x t of the first generation, it is not complete- 
ly obvious that they may generically induce 
themselves new daughter singularities of z*. 

Instead, to pass onto the third generation sin- 
gularities we revert to critical points of z. Using 

__ I the fact that O~z = 0  is equivalent to O ~ . x - 2 ,  
one deduces from (3.25) that this last condition 
is met for 

( 2b2 k 2 
z* = z~*(t)  = Z**(t) + \b~2-  2 a2 )  . (3.28) 

Thus, each critical point of z* near (x~) that 
appeared after solving the first generation prob- 
lem gives rise to a single new critical point of z 
near (x2) for the second generation. Whereas in 
(3.28) .zT~k(t) is not known to better than a t 2/3 
accuracy since we have neglected from the begin- 
ning regular terms in the r.h.s, of (3.22) which 
yield corrections of order  t, the t 4 /3  scaling of the 
relative position z ~ k ( t ) - ~ k ( t )  is meaningful. 
To leading order  in t 2/3, the location of these new 
critical points in the z plane follows from z = 
2x - z* with x from (3.26): 

2 -  b9 9/3 i2.rrk/3 
z~(t)  = Z,,(X:) + ~ 3'it-- e " . (3.29) 

u 2  

By definition the inverse map x(z )  near (x 2, 
Zo(X2) ) must display square root singularities for 
z = z~(t) .  To compute the amplitude of these 
square root singularities, denoted a ~, one could, 
in the spirit of what we did at the beginning of 
this subsection, derive a local expression of x ( z )  
from the inverse map x ( z * )  which was obtained 
(3.26). They can also be obtained from the 
definition: a~ = X/2(O2Z/aX:)-l /2(X(Z~k(t)))  and 

use the set of equalities: 

: 

( O2xl 2)(z 
: 8 ( o : x / o z * 2 ) ( z ~ * ( t ) ) .  

(3.30) 

The last quantity in (3.30) is easily deduced from 
(3.27) and (3.28) and leads to amplitudes hence- 

k ~ k  forth called a2,  which together with a2, scale as 
12/3. 

The third- (or higher-) order  generation can be 
studied by following exactly the pattern we have 
followed for the second-order generation. Con- 
sidering x 3 a co-preimage of x 2 under z at time 
t = 0 and assuming it to be under the influence of 
the critical point near x z (in the sense defined by 
Oxz(x 2 + G(t:/3)) = 0 we shall obtain an equation 
analogous to (3.22) with z* replaced by z and x: 
by x 3. A natural generalization of (3.27) allows 
us to calculate from z~(t) and c~, the leading 
order  position and amplitude ~?~(t), ~k 3 of the 
square root singularities appearing at t > 0  in 

x ( z ,  t) near (x3, z0(x3) ). We have then shown 
how to relate by simple algebraic manipulations 
the singularities of x(z ,  t) to the ones of x(z* ,  t) 
(eqn. (3.28)-(3.30)) .  Clearly, the procedure can 
be carried out further since to study the (n + 1)th 
step, one needs from the solution at the nth step 
only the position of the square singularity to 
order  t 2/3 and their amplitudes a~ to leading 
order  in t ( - tn /3) .  

It remains to see whether there exist initial 
conditions for which infinitely many singularities 
are produced by the mechanism discussed in this 
section. As shown in the appendix, the answer is 
yes for such a simple initial curve as a cubic. 

4. Conclusion 

We began by noting that the numerical solu- 
tion of (1.1), (1.2) revealed a significantly more 
subtle blow up problem than has previously been 
encountered.  There is no self-similar scaling 
form within which all time dependence dis- 
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appears  and no way to reduce the dimension of 
the problem.  

The interface equation for this problem,  (1.3), 
is very reminiscent of the B i rkhof f -Roo t  equa- 
tion for a vortex sheet. We found it useful to 
parametr ize  the complex interface position, z, in 
eq. (1.3) in terms of the variable x instead of the 
Lagrangian variable y, thus leading to eqs. (2.4) 
and (2.7). This is acceptable if no overhang 
develops which was found to be the case in the 
numerical  solutions of (1.1) and (1.2). 

As a first approximation to this problem,  we 
have carried over  for our parametrizat ion the 
simplifications which, for the B i rkhof f -Ro t t  
equation,  provided a consistent solution to the 
Ke lv in -He lmho l t z  roll-up problem. The result- 
ing equations are the least severe approximation 
to (2.4),  (2.7) which we can imagine, and were 
shown in section 2 to be completely inadequate.  
They failed to give any finite-time singularities 
for meromorph ic  initial conditions. 

There  are several caveats concerning the fideli- 
ty of our approximation to ref. [4]. Firstly, ref. 

[4] expands in the Lagrangian paramete r  y, as is 
natural  when the circulation is conserved. For 
our p rob lem this approximation was intractable 

though we could of course revert  to a y paramet-  
rization once we have solved with x as a parame-  
ter. Also, ref. [4] assumed complex square root 
singularities in their initial data and then proved 
that they propagated  intact and classified the 
singularity they induced upon reaching the real 
axis. We have only t reated meromorphic  initial 
data for (2.7) and have not examined how 

weaker  singularities propagate.  
Physically, one may ask if the curvature singu- 

larity indicative of a roll-up is present in (1.3). 
We are inclined to say no since it did not seem to 
develop in the numerical solutions of the con- 
t inuum equations (1.1), (1.2), even when the 
interface was thin and inclined at an appreciable 
angle to 2. In addition, the Kelv in-Helmhol tz  
instability is inertial and not expected for porous 
media  flow while it is present  in two-dimensional 
Boussinesq convection. One might object that 

the order  of the equations with respect to d / d t  so 
obvious in the continuum limit, (i.e. in (1.2), 
velocity, and not acceleration equals force) is 

obscured in (1.3) since if the numera tor  is re- 
placed by a constant,  the B i rkhof f -Ro t t  equa- 
tion results. We believe this is a dangerous re- 
p lacement  when the curvature diverges but we 
have no quantitative argument.  We do insist that 
for a singularity of (1.3) to be relevant to (1.1), 
(1.2) IO~zl ' must go to zero since this scales 
with the interface thickness by area preservation. 

In section 3, we showed how for short times, 
complicated branching structure develops in the 

complex x-plane for z ( x )  when (1.3) is solved 
more  exactly. We believe these singularities are 
correct for the exact solution to (1.3) for initial 
condition near to a cubic. That  being said, we 
have no idea whether  the same mechanism oper- 
ates for more general initial conditions, and 
whether  for longer times what we have found 
would reach the real x-axis and become a phys- 
ical singularity. 
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Appendix 

We investigate in this appendix the geometry 
of preimages in the case of a cubic curve. We 
show that such initial conditions can give rise to 
an infinite sequence of singularities, by the 
mechanism discussed in section 3 of this paper.  
This possibility is found to depend on the value 
of the slope of the profile at the origin. 

Without  loss of generality, we write the cubic 
in the canonical form, 

1 3 
y =  ¢~x + c x  . (A . I )  
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Fig. 5. The  c o m p l e x  x -p l ane  showing  the cri t ical  point  - x ,  and  its co -p re images  x] ,  x 2 , . . .  (sol id circles) u n d e r  z and  z* as 
1" 3 e x p l a i n e d  in the text  for z(x) = x + ~lx. D o t t e d  l ines r ep resen t  the curves  L÷ ,  L~ def ined  in the text .  Solid circles  a re  the i t e ra te  

po in t s  x m, 0 <- n -< 20 cons t ruc ted  f rom - x  o accord ing  to the rules  g iven in the text .  

The co-preimages of x under the map z are 
solutions of 

• 1 3 X + l ( g X  + C X ) = X ' + i ( I x ' 3 + C X ' ) .  (A.2) 

Besides x, this equation has two roots 

X+ = --  l X  -+" i ½ V ~ V x  2 - 4x,2j, (A.3) 

where xo = V ~ -  c) and - x  0 are the two critical 
points of the map z. For x on the real axis, (A.3) 
defines two curves in the upper  and lower half 
complex planes, to be called henceforth L+ and 
L which are drawn in fig. 5 for c = 0. We note 
that  at large Ix[, Arg x + -  ½~r(2w). The straight 
line joining the origin to -+x o plays an important  
role in the following discussion and we shall call 

it L o. L 0 crosses L .  at the points -+X/3x 0 which 
are nothing but the co-preimages of 0. From 
(A.3),  it is obvious that a point x on L 0 between 
- 2 x  o and 2x o has its two co-preimages on the 
same segment ,  a proper ty  which will be used 
later. 

Similarly, the co-preimages of x under the map 
z* are given by 

I + i l V - ~ x  2 4x~2 x_+ = --  2 X -- - -  . (A.4) 

This defines two curves L+* and L*,  respectively 
in the lower and upper  half complex planes, 

which are complex conjugates of L+ and L .  L+* 
and L (respectively L* and L+) are asymptotic 

to each other at infinity. The counterpart  of L 0, 
L~ can also be introduced, with the same prop- 
erties as L 0 with respect to z*. 

Let S2 denote the region in the complex plane 
between L and L . .  Useful insight into the 
geomet ry  of preimages is provided by the follow- 
ing lemma: 

Lemma. The preimages of any value of z consist 
of  one point w~(z) outside ~ and two others 
w2(z ) and w3(z ) inside ~Q. If I m w  1->0 
(respectively -< 0), then Im w2, Im w 3 -~ 0 

(respect ively->0),  and w2, w 3 lie on opposite 
sides of L o. A similar result holds for z*. 
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To p rove  the l e m m a ,  we first es tabl ish  the  

ex i s t ence  of  at least  one  p r e i m a g e  ou t s ide  ~Q. Let  

w2 be a p r e i m a g e  inside ~ (if  the re  is no such w~ 

we n e e d  not  go fur ther )  and  assume wi thou t  loss 

of  gene ra l i t y  w 2 has a nega t ive  imag ina ry  par t .  

Le t  now x a p p r o a c h  w~ f rom - x  o so as not  to 

cross  L or  the  real  axis. W h e n  x = - x  0 the  two 

c o - p r e i m a g e s  x , x+ are  respec t ive ly  at -xc~ and 

+ 2  x o. T h e r e f o r e  one  of  the  po in ts  is inside ,0, 

the  o t h e r  one  ou t s ide  (fig. 6). This  p r o p e r t y  is 

c o n s e r v e d  as x moves  f rom - x  0 to w~ on the 

pa th  de sc r ibed  be fo re ,  because  x+ ,  x are  for- 

b i d d e n  to cross  L+ or  L . (S imu l t aneous ly  x 

goes  to w 3 and x~ goes  to w~.) 

We wan t  to show now that  W l is un ique  and 

check  the  o t h e r  asser t ions  of  the l emma:  assume 

aga in  wi thou t  loss of  genera l i ty  w~ has a posi t ive  

i m a g i n a r y  par t .  We let x a p p r o a c h  w t by first 

go ing  f rom 0 to 2 x o and  then  f rom 2 x o to w 1. In 

the  pa r t i cu l a r  case  where  w~ lies on Lc~ b e t w e e n  

~/-3x 0 and  2 x 0, the pa th  is s t opped  at w~, be fo re  

r each ing  2 x o and we know that  w 2 and w 3 are  on 

WI • 

L÷ 

- X  0 

e W 3 ~  • W 2 

L_ 

Fig. 6. The geometry of the complex x-plane used to estab- 
lish the lemma. The lines with one (respectively two) arrows 
show how the three preimages of a given z move in the 
vicinity of the critical point, - x  o and its co-preimages 2x., 
and tend towards w, The lines L , . . o  are unchanged from 
fig. 5. The wiggly line is the branch cut of eq. (A.3). 

L o b e t w e e n  0 and -X/3x~ ,  t he r e by  sat isfying the 

l e m m a .  In the genera l  case,  when x passes  by 2 

x o, its p r e i m a g e s  a~ and £ get  close to - x ~  and 

fol low the t r a j ec to r i e s  d e p i c t e d  in fig. 6. F igure  6 

is u n d e r s t o o d  ana ly t ica l ly  by expand ing  (A.3 )  for 

x nea r  2 x o. If  x = 2  x~ ( l + e )  with • ~ 1  and 

0 -< A r g  • < 2-rr, one  finds indeed  

(A .5 )  

If x r e ma ins  ou t s ide  g) whi le  c omp le t i ng  the last 

pa r t  of  its pa th  f rom 2x 0 to w~, £+ a n d £  r ema in  

in ~2. O t h e r w i s e  x would  cross L+.  Fo r  the same 

r e a son .  £+ and £ never  cross  again  the  real  axis. 

which p roves  Im w 2, Im w 3 < 0. N e i t he r  do  they  

cross  L 0 be c a use  x would  then  be on L 0 be tween  

X/3x 0 and  2 x o, some th ing  we exc luded  f rom the 

beg inn ing .  T h e r e f o r e  w 2 and w 3 lie on oppos i t e  

s ides  of  L 0, as a nnounc e d .  

We are  now able  to give a geome t r i c  c r i te r ion  

for  the  p roduc t i on  of  new singular i t ies :  suppose  

tha t  at the  n th  s tep  new cri t ical  poin ts  of  z have 

b e e n  g e n e r a t e d  nea r  x,,. The  fo l lowing i te ra te  

po in t  mus t  be chosen  a m o n g  the two co-pre im-  

ages  of  x,, for  the m a p  z. D a u g h t e r  s ingular i t ies  

m a y  a p p e a r  near  x, ,+j ,  if and  only if as x ap- 

p r o a c h e s  x,,+, f rom the real  axis,  one  of  its two 

c o - p r e i m a g e s  goes  to x,, a f ter  cross ing the real  

axis once .  In o t h e r  words  x,,+l mus t  be ou ts ide  

Y), wi th  x + ( x , , + L ) = x , ,  for I m x , , + ~ > 0  or  

x ( x , , + l )  = x,, for  Imx , ,+ l  < 0 .  By the p reced ing  

l e m m a ,  x,, +, ou t s ide  g~ means  x,, inside ~(~, while 

the  s ame  cond i t ion  app l i ed  to the n th  s tep  re- 

qu i res  x ,  ou t s ide  S2*. The  resul t ing  cons t ra in t  on 

the  pos i t i on  of  x ,  is r a the r  severe  in the  case of  

the  cubic  since g / a n d  the c o m p l e m e n t  of  g2* do  

no t  have  a large  in te rsec t ion .  On  the  o the r  hand ,  

the  cond i t i on  that  x + ( x , , + ~ ) = x ,  for  ins tance  

when  Imx, ,+~ > 0 ,  is not  res t r ic t ive:  it just  de-  

fines how the pa th  to  x ,+  ~ should  enci rc le  2x 0, as 

is obv ious  f rom fig. 6 or  d i rec t ly  f rom (A.3 ) .  A t  

the  next  s tep ,  the  roles  of  the maps  z and z* are  

i n t e r c h a n g e d  and the cond i t ion  for  x ,  + t is that  it 

be longs  to  .(~* but  not  to ~Q. 
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In fig. 5 we have  p lo t t ed  the  first twen ty  i t e ra te  

po in t s  x,,  with the  ini t ial  po in t  - x  0 and  a ze ro  

va lue  of  the  s lope  at  the  or igin .  We obse rve  that  

the  c r i t e r ion  is o b e y e d  up to n = 20 (it  is so even 

up  to n = 40).  A l t h o u g h  we lack a m a t h e m a t i c a l  

p r o o f  of  the  resul t ,  the  figure suggests  tha t  the  

ca scade  does  not  end  in this case with,  a symp-  

to t ica l ly ,  i t e ra t e  po in t s  s lowly dr i f t ing  jus t  a b o v e  

L+ o r  L .  H o w e v e r ,  this p r o p e r t y  seems  to hold  

on ly  in a n a r r o w  range  of  va lues  of  c a r o u n d  

c = 0 .  F o r  nega t ive  va lues  of  c, the  ser ies  of  

i t e ra t e  po in t s  t ends  to get  be low L+ and L : we 

f o u n d  for  ins tance  tha t  the  cascade  b r eaks  at the  

fou r th  i t e ra t e  when  c = - 0 . 5 .  F o r  pos i t ive  values  

o f  c, the  t r e n d  is oppos i t e :  the  series  of  i t e ra te  

po in t s  ge ts  p rogres s ive ly  c loser  to the  u p p e r  

b o u n d a r i e s  L*  and L*+ and the  cascade  ceases  to 

exist  in any  case for  c ->  3. 
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