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Electrostatics of Lipid Bilayer Bending
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The electrostatic contribution to spontaneous membrane curvature is calculated within Poisson-
Boltzmann theory under a variety of assumptions and emphasizing parameters in the physiological
range. Asymmetric surface charges, either fixed with respect to bilayer midplane area, or with
respect to the lipid-water area both induce curvature but of opposite sign. Unequal screening layers
on the two sides of a vesicle (e.g. multivalent cationic proteins on one side and monovalent salt on the
other) also induce bending. For reasonable parameters, tubules formed by electrostatically induced
bending can have radii in the 50-100nm range, often seen in many intracellular organelles. Thus
membrane associated proteins may induce curvature and subsequent budding, without themselves
being intrinsically curved. Furthermore, we derive the previously unexplored effects of respecting
the strict conservation of charge within the interior of a vesicle. The electrostatic component to the
bending modulus is small under most of our conditions, and is left as an experimental parameter.
The large parameter space of conditions is surveyed in an array of graphs.

Keywords: membrane curvature, bilayer electrostatics,
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INTRODUCTION

The membranes bounding intracellular organelles are dy-
namic structures, whose morphology the cell can reg-
ulate. This happens most dramatically during mito-
sis, when the nuclear membrane disintegrates, probably
forming vesicles (Alberts, 1994). Proteins destined for
secretion or targeted to the plasma membrane pass from
the endoplasmic reticulum (ER) to the Golgi body and
thence to their target; at each step vesicles or tubular pro-
cesses with diameters in the 50-100nm range are involved
in the sorting and transport (Rothman, 1994; Schekman
and Orci, 1996). Similar remarks apply to endocytosis
and endosomal sorting and maturation (Gruenberg and
Maxfield, 1995; Trowbridge, et al., 1993). The ER cis-
terna itself has a large tubular component (Terasaki et
al., 1986) and there are tubular connections within the
Golgi body (Rambourg and Clermont, 1990). Various
treatments can enhance the tubulation of the membranes
of Golgi and other organelles (Lippincott-Schwartz et al.,
1991; Cluett et al., 1993).

Numerous plausible mechanisms have been proposed
for vesicle budding or tubule formation, but often there
is insufficient physical detail for a quantitative assess-
ment of their validity. For instance, are the building
blocks of the clathrin cages intrinsically curved, or do ki-
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netic processes during budding favor five membered over
six membered rings and thus effect closure (Shraiman,
1996). The phase separation of wedge shaped lipids or
membrane resident proteins, is also argued to play a role
in vesiculation (Schekman and Orci, 1996), as is line ten-
sion between the two phases (Lipowsky, 1993). Chemical
modifications to the lipids on one side of a bilayer, such
as phosphorylation of inositol lipids (de Camilli et al.,
1996), or cleavage of the acyl chains by phospholipases
(Brown, 1996), are known to occur biologically and will
promote membrane curvature. Less drastic modifications
such as changes in solution pH or ionic strengths can have
similar effects because many lipids are zwitterionic and
their effective charge varies with solution conditions. Fur-
thermore, since parameters such as pH, ionic strength,
temperature, phospholipid pKa are not independent, it
is impossible to separate and quantify all these effects.

It has long been recognized that when surface charges
on the two sides are unequal, electrostatics will induce
membrane curvature (Winterhalter and Helfrich 1989
and refs. therein). In this Article we quantify a number
of less obvious influences of electrostatics on membrane
bending. Symmetrically charged membranes (i.e., same
surface charge on the two leaflets) will bend in response
to asymmetrical screening. Thus membrane associated
proteins such as the adaptins which mediate between the
clathrin and the bilayer could cause bending, even if the
proteins are globular while free in solution. Various plau-
sible choices for the neutral surface with respect to which
the surface charge is conserved during membrane bend-
ing can alter even the sign of the preferred curvature
resulting from a given charge or screening asymmetry.
Uncharged membrane lipid components can define the
neutral surface and hence modulate the electrostatic re-
sponse. Finally, if the interior of a vesicle is truly electri-
cally isolated from the exterior, a small internal charge
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scaling with the area can define the spontaneous cur-
vature. The simple description of electrostatics we em-
ploy, the Poisson-Boltzmann equation, has been shown
to give quantitatively accurate results for the arguably
more complex problem of the binding energy between a
charged protein and a bilayer (Ben-Tal et al. 1996).

Even at the level of Poisson-Boltzmann theory, the
electrostatic contribution to spontaneous curvature par-
ticularly with asymmetrical (different on the two sides)
and multivalent electrolytes have not been fully quanti-
fied in the literature, and are potentially significant for
the concentrated electrolytes encountered in the cell. Our
interest was kindled by the ubiquity of tubules within the
diameter range noted above, and the possibility of get-
ting such sizes by simple electrostatics. More attention
has been paid in the physical literature to the electro-
static contribution to the curvature energy (we will gen-
erally take the total bending modulus as an experimen-
tally determined parameter) rather than the spontaneous
curvature. Low ionic strength (which enhances the elec-
trostatic contribution to the bending modulus) was em-
phasized when the spontaneous curvature was computed,
and symmetrical, typically monovalent electrolytes were
assumed (Mitchell and Ninham 1989; Winterhalter and
Helfrich, 1989; 1992; Duplantier et al 1990).

Our calculations are limited to the equilibrium radius
of a sphere or tube (with ends neglected), and we ig-
nore the more subtle problem of determining the overall
shape of a homogeneous vesicle with given volume, area,
and leaflet area difference (a surrogate for the sponta-
neous curvature) (Seifert and Lipowsky 1995; Mui 1995).
Biological systems are very inhomogeneous; present are
channels that span the membrane, and enzymes that cir-
cumvent kinetic barriers to lipid repartitioning that are
a feature of in vitro systems. In short, the electrostatic
effects we are considering may be the physical adjunct to
some of the biochemically defined actors, (wedge shaped
lipids, adaptins, coatamers etc.), involved in vesicle and
tubule formation.

It should not be forgotten that electrostatic effects
can be large in a biological context (Honig and Nicholls,
1995); for a surface charge of -0.2|e|/nm2 (corresponding
to 10% of lipids each of size ∼ 50Å2 possessing an elec-
tronic charge), a screening length of 1nm, and an aqueous
dielectric constant εw ' 80, the surface potential (rela-
tive to infinity) eϕ ∼ kBT , the thermal energy. Several
parameters that occur repeatedly in this paper are dia-
grammed in Figure 1 for a single tubule of radius R on
an isolated vesicle.

In the following section, we recapitulate the nonlinear
electrostatic free energy (there is no unanimity among
prior papers) and collect several formulae for the lin-
earized free energy, and the leading 1/R term in the
nonlinear free energy. We emphasize the effects of multi-
valent electrolytes and interleaflet coupling. The surface
charge is assumed to respond to the curvature in one of
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FIG. 1: Schematic of a tubular section of a vesicle. The struc-
ture is assumed cylindrical and has radius R and thickness d.
The interior and exterior screening lengths are κ−1

i
and κ−1

o ,
respectively. Our calculations assume L � R.

two possible limits; either not at all i.e., fixed charge
per midplane area; or maximally, with charge fixed per
area of each water-lipid interface (and separate reservoirs
assumed for each leaflet). Equilibrium radii are very dif-
ferent in the two cases.

We also take literally the isolation between the inte-
rior and exterior electrolytes effected by the membrane
of a giant lipid vesicle in vitro to motivate a calcula-
tion within a fixed number ensemble for the interior.
Theories which assume a thermodynamic reservoir (e.g.
Poisson-Boltzmann) are incorrect unless the total inter-
nal charge is set to a particular value to within O(ε`/εw)
times the total surface charge. Deviations from this value
can qualitatively change the conclusions. In the Results,
we compute various quantities using realistic parameters
and contrast the results and various assumptions. The
concluding section reviews pertinent experiments with a
view towards extracting values of parameters and sup-
porting the various assumptions we have made.

ELECTROSTATICS

In this study, we assume all structures are smooth on
atomic length scales and adopt the continuum limit. The
problem is that of a cylindrical or spherical shell of thick-
ness b − a = d = 4nm and dielectric constant ε` = 2
embedded in an ionic solution with dielectric constant
εw = 80. We assume that changing the aqueous buffer
ionic strength does not affect εw. These parameters ap-
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proximate a lipid bilayer membrane under in vitro and
in vivo conditions.

The total charge density ρ(~r) can be decomposed into
contributions from mobile and fixed ions of type i,

ρ(~r) =
∑

i

ρi,fixed +
∑

i

ρi,mobile, (1)

where the fixed charge contribution resides exclusively
at the lipid-water interface and can be characterized by
a surface charge σ. The surface charge results from ion-
ization of e.g. phosphate, amine, and carboxyl groups on
hydrophilic moieties of the lipids; these effective surface
charges are typically negative. We do not consider spa-
tially varying surface charges and lateral lipid phase sep-
aration; however, for dilute charge densities, and smaller
screening lengths, the interactions among charged lipids
are expected to be minimal (Hui, 1996) and the charged
component would be approximately a uniform 2D ideal
gas over the entire vesicle. Details of how σ is affected by
solution conditions, local membrane curvature, etc. are
deferred until after results are presented.

The mobile charge density is assumed to follow a Boltz-
mann ensemble

ρi,mobile(~r) = ρ∞i e
−eβϕ(~r). (2)

where ρ∞i is the bulk concentration of specie i and β−1 ≡
kBT . Substituting Eq. (1) into Poisson’s equation,

∇ · (ε(~r)∇ϕ) = −4πρ(~r), (3)

we obtain, for the electrostatic potential in the aqueous
phase for the cases we treat in detail,

`2∇2ψ = n1 sinhψ + n(z+) z+2
(

eψ − e−z+ψ
)

+

z−
2
n(z−)

(

ez−ψ − e−ψ
)

,
(4)

where ψ ≡ eβϕ, and n1, n(z+), and n(z−) are the con-
centrations in molar units of monovalent (1:1) z+-valent
(z+:1) and z−-valent (1:z−) salts (e.g. NaCl, CaCl2, and
Na2SO4 respectively) Note that z± are positive and the
concentrations refer to salt species, so the n’s are uncon-
strained variables. We have incorporated all parameter
dimensions (the concentrations are relative to 1 molar)
into `2 = εw/(8πβe

2N) = 0.0950 nm2 where N is Avo-
gadro’s number per liter and T=300K.

The electrostatic portion of the free energy for the
lipid plus buffer system follows most readily in the limit
where Eq. 4 is linearized. Thus if a surface charge is
prescribed, the free energy difference between the entire
lipid/solution system and the electrolytic solution with-
out lipid surfaces is via standard electrostatic formulas,

Ge` ≡ Gsystem −Gsolution =
1

2

∫

σϕdS. (5)

This prescription is not adequate for the nonlinear case
(Sharp and Honig 1990).

An alternative argument is then to use the expression
whose variation yields Eq. 4 (Dresner 1963; Sharp and
Honig 1990). Thus, with fixed surface charge,

Ge` =

∫

dSσϕ− εw
4π

∫ ′

d3r

[

1

2
|∇ϕ|2 + U [ϕ]

]

−

ε`
4π

∫ ′′

d3r
1

2
|∇ϕ|2,

(6)

where the primed integral is taken only over coordinates
in the aqueous solution and the double-primed integral
is taken over the bilayer region (a < r < b) occupied
by the lipid acyl chains. This equation reduces to Eq.
5 when U [ϕ] is expanded to second order in φ (linear
Poisson-Boltzmann equation) The equivalence between
Eq. 6 and the thermodynamic definition of Ge` [σ] in
terms of the internal energy and entropy (ignoring elec-
trostriction so that the “P − V ” term does not change)
was shown by (Dresner 1963) for ε` = 0, but his argument
readily generalizes to our case. The equivalence of Eq.
6 and an expression involving a parameter integral for
Ge` [σ], was shown by (Marcus 1955). We have checked
that Eq. 6 can be reduced to the frequently employed
charging integral Ge` =

∫

dσϕ (Sharp and Honig, 1990),
in the one-dimensional case and for all dimensions in lin-
earized theory. Furthermore, we have explicitly verified
that the 1/R coefficient in an expansion of Ge`(R)/2πRL
for a cylinder agrees with that found from the charging
integral when membrane leaflets are uncoupled.

The free energy with fixed surface potential is just Eq.
6 with the first term omitted, Ge` [ϕ(S)] = Ge` [σ] −
∫

ϕ(S)σdS. In all cases, Eq. 6 is understood to be eval-
uated for a stationary solution, i.e, Eq. 4.

The “potential” U [ϕ] is just

(`eβ)2U [ϕ] ≡ n1 (coshψ − 1)

+n(z+)
z+
2

(

eψ +
e−z+ψ

z+
− 1 − 1

z+

)

+n(z−)
z−
2

(

e−ψ +
ez−ψ

z−
− 1 − 1

z−

)

(7)

in the units of Eq. 4 and vanishes as ϕ → 0 to make Eq.
6 scale with the surface area. The surface value of ϕ is
also to be varied and the net coefficient of δϕ(S) is the
usual boundary condition

σ +
εw
4π
∂nϕw − ε`

4π
∂nϕ` = 0 (8)
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at all lipid-water interfaces. The normal derivative is
taken positive from the lipid outwards.

Linear Poisson-Boltzmann Solutions
For potentials eβϕ� 1, the Poisson-Boltzmann equation
(4), can be linearized. The equation to be solved with the
proper fixed charge boundary conditions is

∇2ϕ− κ2
i,oϕ = 0 (9)

where κi,o are the effective inverse screening lengths in-
side or outside the vesicle (z± > 0, c.f. Eq. 4),

`2κ2 = n1+
1

2
n(z+)z+(z++1)+

1

2
n(z−)z−(z−+1). (10)

Inside the bilayer (a < r < b), there are no charges,
U = 0, and Laplace’s equation holds. The cylindrically
symmetric solutions in all regions are also explicitly dis-
played in Appendix A. The corresponding linearized form
of the free energy (Eq. 6) is Ge` = 1

2

∫

dSσϕ and the free
energy per midplane area, 2πLR is

ge` =
1

2
σaϕ(a)

(

1 − d

2R

)

+
1

2
σbϕ(b)

(

1 +
d

2R

)

. (11)

Expressions in the decoupled limit ε`/(εwκd) = 0 have
previously been found (Winterhalter and Helfrich 1988).
We will analyze consequences of the expansion

ge` = C0 +
C1

R
+
C2

R2
+O

(

1

R3

)

(12)

for screening lengths appropriate to physiological condi-
tions.

Further expanding the coefficients Ci in powers of
ε`/(εwκd), we obtain

C0 =
2πd

εw

[(

σ2
a

κid
+

σ2
b

κod

)

+
ε`
εw

(κidσb − κodσa)
2

(κidκod)2

]

+

O

(

ε`
εwκd

)2

(13)

C1 =
πd2

εw

[

σ2
b

(κod)2
(κod− 1) − σ2

a

(κid)2
(κid− 1)+

ε`
εwκ3

iκ
3
od

3

(

σ2
a(κ

2
i κo − κiκ

2
o − 2κ3

o)+

σaσbκiκo(κo − κi) + 2σ2
bκ

3
o

)

+O

(

ε`
εwκd

)2 ]

(14)

and

C2 =
3πd3

4εw

[

σ2
a

(κid)3
+

σ2
b

(κod)3
+O

(

ε`
εwκd

)]

. (15)

With this notation, the total membrane bending stiff-
ness is 2C2 + km where km represents bending stiffness
from nonelectrostatic (such as mechanical) contributions.
When C1 < 0 the membrane spontaneously curves in the
sense we have assumed (b = out, a = in) and it is interest-
ing to understanding the physical origin of the effect. For
κd � 1 either σb > σa (κi ' κo) or κ−1

o > κ−1
i (σb ' σa)

favors bending. This prediction follows by replacing
each screening layer by cylindrical capacitors; the larger
charge, or thicker layer will prefer the exterior, i.e. the
screening charge cloud expands. In the opposite limit
(κd � 1), we can think of the two thin screening layers
as flat; here, the energy is minimized by making the layer
with the greatest energy/area be interior, i.e. occupy the
side with less area.

The influence of ε` is felt through the dimensionless
combination ε`/(εwκd) as expected from Eq. 8. This is
always small under our conditions. Note that it is in-
correct to estimate the energy as a triple of independent
capacitors of thickness κ−1

i , d, and κ−1
o , i.e. σ2d/ε` +

O(σ2/κεw) which would make the lipid contribution ap-
pear dominant. Also note that for ε`/εwκd → 0, C1 is
antisymmetric with the interchange σa ↔ σb, κi ↔ κo.
When coupling through the bilayer is not negligible, then
the antisymmetry exists only for κi = κo or σa = σb.

Finally, we consider a scenario in which the surface
charges are fixed with respect not to their physical in-
terface area, but with respect to an area defined by a
radius in the interior of the lipid. This radius defines a
“neutral surface” (Petrov and Bivas 1984). We consider
here the extreme case of conserved charge per midplane
area, A = 2πRL. The physical reasons for this choice as
opposed to fixed charge per area of membrane/solution
interface is deferred to the Discussion. The only change
to Eqs. 13, 14, and 15 is a redefinition of σa,b. In the
decoupled limit, upon replacing σa,b → σa,b/(1 ± d/2R),
the coefficients Ci for ge`(R) become

C1 ' πd2

εw

[

σ2
a

(κid)2
(1 + κid) −

σ2
b

(κod)2
(1 + κod)

]

(16)

and

C2 ' πd3

4εw

[ (

3

(κid)3
+

4

(κid)2
+

2

κid

)

σ2
a+

(

3

(κod)3
+

4

(κod)2
+

2

κod

)

σ2
b

]

(17)

with C0 remaining unchanged. Note in Eqs. 16 and 17
σa,b are now the fixed charges per midplane area. Al-
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though C2 changes only slightly in magnitude, the be-
havior of C1 is qualitatively different from Eq. 14.

Nonlinear Poisson-Boltzmann Equation: Solution
and Expansion
When the small potential condition eβϕ � 1 does not
hold, the full nonlinear Poisson -Boltzmann equation
must be considered. It is often noted (Mitchell and Nin-
ham 1992; Winterhalter and Helfrich, 1992) that the first
few terms of an expansion of Ge` in terms of d/R or
1/(κR) can be analytically obtained for the nonlinear
theory. The first order (1/R), is particularly simple to
derive because one is expanding a stationary functional
about its minimum and several terms cancel. The equa-
tion to be solved is

−∇2ϕ+
∂U

∂ϕ
= −∂

2ϕ

∂r2
− 1

r

∂ϕ

∂r
+
∂U

∂ϕ
= 0, (18)

with the boundary conditions given by Eq. 8. Let ϕ0

satisfy Eq. 18 without the r−1∂rϕ(r) term. Upon using
the boundary condition ϕ0 → 0 far from charged surfaces
and U(0) = 0, this equation for ϕ0(r < a, r > b) can be
integrated to yield

1

2
(∂rϕ0)

2 − U [ϕ0] = 0. (19)

For negatively charged interfaces, ϕ0(r = a, b) is nega-
tive and follows from Eq. 19 with the boundary con-
ditions [[ε(r)∇ϕ0]] = −4πσ. Here, [[. . .]] denotes the
discontinuity across the charged surface. The free en-
ergy per midplane area from Eq. 6 is the sum ge`(R) =
g+(R) + g−(R) + g`(R) where g−, g+, and g` are contri-
butions from the inner, outer and lipid portions of the
membrane system. One can readily show (Appendix B)
that g`(R) contributes only even powers of 1/R; the ef-
fect of bilayer coupling via ε`, however, is still felt through
the surface values of ϕ0 and ∂rϕ0 determined from the
boundary conditions. In Appendix B, we explicitly per-
form the calculation of ge`(R) to O(1/R) and obtain

ge` ' g(∞) +
εw

4πR

∫ ∞

0

(E− − E+)z dz +
d

2R

[

σbϕ0(b)−

σaϕ0(a) +
εw
4π

∫ ∞

0

(E− − E+)dz

]

(20)
where all inner and outer “one-dimensional” energies
E± ≡ 1

2 (∂rϕ)2 + U [ϕ] are evaluated with ϕ = ϕ0(z) and
∂r → ∂z. The second and third terms in Eq. 20 give
the 1/R dependence of the free energy. We have also as-
sumed that the inner radial surfaces of the tube (r = a)
are far enough apart such that a� κ−1

i .

Nonlinear Numerical Calculation
For smaller R, higher order terms in 1/R must be taken
into account or the full nonlinear solution for ϕ(r) and
the corresponding free energy must be found numerically.
The inner and outer solutions are matched via the sur-
face charge dependent discontinuous derivatives on the
lipid faces, R ± d/2. The two jump conditions furnish
the two parameters in the solution to Laplaces equa-
tion in the bilayer, ϕ(a < r < b) = C ln r + D. Inte-
grating from rmax − b � κo, we introduce a parame-
ter t such that ϕ(rmax) = tK0(κormax) and ϕ′(rmax) =
−tκoK1(κormax) consistent with the linearized solution.
The parameter t is then tuned until the solution at r = 0
obeys ϕ′(0) → 0. Solutions for ϕ(r) are then used in the
nonlinear free energy Eq. 6.
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FIG. 2: Electrostatic potential ϕ(r) (kBT/e) near negatively
charged interfaces (σa = σb = −0.2|e|/nm2) centered at
R = 100nm with 50mM monovalent salt solution inside.
The dotted and thin/thick solid curves are nonlinear Poisson-
Boltzmann theory for an exterior solution of 50mM monova-
lent and 33.3mM divalent anions/cations, respectively. The
long(short) dashed curves correspond to linear theory with
50mM monovalent(33.3mM divalent) ions comprising the ex-
terior solution. The linearised theory in the exterior region
does not distinguish between cations (z+ = 2) and anions
(z− = 2).

Figure 2 plots the electrostatic potential ϕ(r) calcu-
lated from both Eq. 4 and its linearized form Eq. 9.
For large radii (R � κ−1), both the linear and nonlin-
ear potentials ϕ(r) about the interfaces at R ± d/2 are
essentially those of a one-dimensional theory and are in-
sensitive to R. However, we will show that despite the
similar behavior of ϕ, the behavior of ge`(R) for the linear
and nonlinear cases are drastically different.

The nonlinear free energies are calculated for various
R and fitted for large R to polynomials in R−1. The
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1/R coefficients agree with those obtained by the analytic
method of the previous subsection. The 1/R2 coefficients
are found to be drastically different from that expected
from linear theory for all physiologically reasonable con-
ditions as previously found (see Figure 1 of Winterhalter
and Helfrich 1992).

Net Charge/Finite Volume Effects
Our calculations have assumed that the solutions on both
sides of the bilayer are in chemical contact with large
reservoirs. For a closed vesicle with a known interior
charge, the interior potential is determined by the bound-
ary conditions at the bilayer and the zero reference po-
tential at infinity (outside). Although it follows from
elementary electrostatics, it is not widely known that
the usual Poisson-Boltzmann solution when applied to
a closed vesicle imposes a specific nonzero net internal
charge; however, if the actual internal charge is different,
large differences in Ge` will result.

To illustrate the first assertion, use the linearized P-
B solution for a flat membrane (curvature effects are
unessential). Match the interior and exterior solutions
through the bilayer, using the prescribed surface charges
to derive the electric field within the bilayer. For a sym-
metric vesicle, Gauss’s law applied to a a surface inside
the bilayer (a < r < b) relates the electric field to the net
interior charge (all solution charges plus σa) per area.
Given our assumptions, this works out to,

ε`
εw

(

σa
κid

− σb
κod

)

[1 +O(ε`/εw, 1/κR)] (21)

for the vesicle. Even though on a per volume basis this is
very small, the consequences of imposing any other value
inside, with the same order of magnitude, are apprecia-
ble. These concerns are not simply academic for once a
vesicle is closed the interior charge may be fixed, so even
altering the exterior electrolyte (n.b. κo appears in Eq.
21) will lead to an imbalance between the charge present
and that required under the open reservoir assumption.

For a symmetric closed vesicle, the interior potential
can be found to within an additive constant from the
net charge in the solution; Gauss’s law on the aqueous
side of the bilayer (r = a−) gives the necessary boundary
condition. To generalize Eq. 6 for the interior aqueous
solution, we have only to use the expression given by
Dresner (1963)

U [ϕ] =
4πkBT

εw

∑

α

Nα `n V
−1

∫ a

0

e−qαβeϕ(r)d3r (22)

where we sum over all ions with charge eqα, number Nα,
and concentration cα = Nα/V , where V is interior vol-
ume. By demanding stationarity under variations in ϕ
we find the generalization of Eq. 4,

∇2ϕ(r) =
−4πe

εw

[

c+e
eβϕ(r)

〈eeβϕ〉 − c−e
−eβϕ(r)

〈e−eβϕ〉

]

(23)

where we have specialized to monovalent ions only and
〈. . .〉 denotes V −1

∫

. . . d3r. Eq. 23 implies Gauss’s law
and is invariant under constant shifts in ϕ. Upon redefin-
ing the potential ϕ(r) = δϕ + 〈ϕ〉 so that 〈δϕ〉 = 0, and
expanding for eβϕ� 1, we obtain

∇2δϕ(r) = κ2

(

δϕ− kBT

e

c+ − c−
c+ + c−

)

. (24)

where the definition of κ2
i = 4πe2β

εw(c++c
−

) was used to rear-

range the equation. The solution to δϕ(r) is similar to
the potentials derived from Eq. 9 except for multiplica-
tive factors and constant shifts,

δϕ(r < a) = − 2πa

εwκi

(c+ − c−)e

I1(κia)
I0(κir) +

kBT

e

c+ − c−
c+ + c−

,

(25)
where I0,1 are the conventionally defined Bessel func-
tions. It may be verified from Eq. 25 that 〈δϕ〉 = 0.

To illustrate most simply the order of magnitude en-
ergies involved when the interior charge is not adjusted
according to Eq. 21, consider the case c+ = c− i.e., the
electrolyte plus counter ions from the interior surface are
together electrically neutral. The net interior charge per
area as defined by a Gaussian surface interior to the bi-
layer as in Eq. 21 is then σa. Either directly from Gauss’
law or from Eq 25, the interior potential is constant and
δϕ = 0, a feature that persists in a nonlinear treatment.
The interior electric field is zero and the field in the bi-
layer can be found directly from the boundary condition
on the inner surface, E` = 4πσa/ε`. The interior poten-
tial is large because E` ∝ 1/ε` and the outer potential to
which it is matched is ∼ 4πσb/(εwκo) and substantially
smaller than E`d. Hence, 〈ϕ〉 ' 4πdσa/ε`(1+O(ε`/εwκd)
and is a factor of ∼ 40 larger than ϕ(S) calculated in the
previous sections because of the ε` in the denominator.
However, in the linear limit with c+ = c−, the free en-
ergy given by Eq. 11 still holds. The coefficients in a
1/R expansion are

C1 = −2πd2

ε`

[

σ2
a +

ε`
εwκod

(

(σa + σb)
2

2κod
+

3

2
σ2
a+

σaσb −
σ2
b

2

)]

(26)

and

C2 =
2πd3

3ε`

[

σ2
a +

ε`
εw(κod)2

(

9(σa + σb)
2

8κod
+

3σ2
a(1 + κod) + 3σaσb

)]

.

(27)
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Both C1 and C2 are a factor of ∼ εw/ε` larger than in
the conventional theory. This is no surprise since the
interior charge is larger than Eq. 21 by a similar factor.
For small ε`, the dominant term arises from σaϕ(a) and
its sign merely says that energetically, a charged shell
prefers to elongate.

RESULTS

In this section, we investigate the effects of charge asym-
metry, ionic strength and multivalency of the inner and
outer solutions on the linear and nonlinear electrostatic
energies. A free energy of the form (6) holds for each side
of the impermeable membrane. Energies and charge den-
sities will be expressed in units of kBT/nm2 and |e|/nm2

respectively. The numerical values we have chosen are
representative of either physiological conditions or those
used in vitro experiments with artificial vesicles, however
there are no commonly accepted standard conditions.

The form of ge`(R) is displayed in Figs. 3 (a) and (b).
Here we have for simplicity only considered the charge
per physical leaflet area ensemble with σa = −0.25, σb =
−0.15, and monovalent ions both interior and exterior to
the bilayer. In Fig. 3(a), (n1 = 10−2.5 ' 3.16mM), the
linear free energy ge`(R) = 1

2

∫

σ(S)ϕ(S)dS (dashed line)
is monotonically decreasing with increasing R, whereas
the nonlinear ge`(R) has C1 < 0. When ion concentration
is increased as in Fig 3(b), (n1 = 100mM), nonlinear
and linear results become similar in that C1 < 0. In
fact, for the parameters used, the nonlinear ge`(R) shows
no minimum in R implying that in the absence of other
forces, the lipid tubule will collapse until the “hard wall”
limit R ' d is approached and the inner surface charge
becomes a line.

However, in addition to ionic forces, other shorter-
ranged electrostatic and entropic interactions lead to me-
chanical bending rigidities km. The solid lines in both
graphs plot ge`(R) + 1

2km/R
2, with km = 12kBT . Un-

der realistic physical conditions, the electrostatic contri-
butions to the 1/R2 terms in the free energy, C2 > 0,
are small compared to measured mechanical km val-
ues, which in uncharged vesicles fall in the range km ∼
2 − 30kBT (Song and Waugh, 1990; Andelman 1995).
Therefore, the total free energy, for large R behaves as

gTOT (R) ' C0 +
C1

R
+

(C2 + km/2)

R2
+O

(

1/R3
)

, (28)

we will henceforth consider the 1/R2 coefficient, C2 +
km/2 ' km/2 as an independently measured stiffness,
of mostly nonionic contributions, and use an intermedi-
ate approximation, km ' 12kBT , where required. Any
nonionic contribution to C1 is ignored in the following,
but could be added back in. The balancing of the 1/R
and 1/R2 contributions controls the size scales in bilayer
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g(R)

[n ]=100mM
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1.92
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g(R)

[n ]=3.162mM

~C /R

~C /R

1
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(b)

σ  = −0.25, σ  = −0.15a

σ  = −0.25, σ  = −0.15

b

a b

1

1

1

FIG. 3: Linear and nonlinear free energies per area as a func-
tion of midplane radius for surface charges σb = −0.15, and
σa = −0.25. Dashed lines represent electrostatic contribu-
tions only, solid lines depict gTOT (R) = ge` + 6kBT/R2. Lin-
ear solutions are shown in the upper pairs of curves while
nonlinear Poisson-Boltzmann solutions are shown in the lower
pairs of curves (nonlinear ge`(R) are fits to the open triangles).
(a). 10−2.5M ' 3.16mM monovalent salt inside and outside
the vesicle. For plotting purposes, the nonlinear energies have
been shifted upwards by +0.8kBT/nm2. (b). n1 = 100mM
on both sides. The nonlinear energies have been shifted by
+0.01kBT/nm2.

bending and membrane structures, such that the free en-
ergy minimizing radius is

R∗ ' km + 2C2

|C1|
, (29)

for C1 < 0, and the gain in free energy (relative to the
flat state) at this radius is
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gTOT (∞) − gTOT (R∗) ' C2
1

2(km + 2C2)
. (30)

In Figs. 4(a), (b), and (c), we plot the dependence
of C1 on n1 for three different groups of surface charges;
(σa = −0.021, σb = −0.019), (σa = −0.21, σb = −0.19),
and (σa = −0.25, σb = −0.15), and both surface charge
ensembles.
In each figure, linear theory is represented by curves
which sharply increase for low n1. The behavior of C1

calculated from nonlinear theory is drastically different
for low ion concentrations, but approach as the linear the-
ory at high concentrations. The pair of curves (C1 > 0 at
large n1) corresponding to conserved charge per midplane
area remain positive. This is most easily seen in linear
theory from Eq. 16 and represents the dominant effect of
increasing total interior surface charge. In the charge per
midplane ensemble, the inner charge σa increases against
a deeper potential ϕ(a) than σb decreases; this electro-
static work maintains C1 > 0, thus biasing a negative
radius of curvature (invaginations). Nonlinearities, as
expected, mitigate these effects. Also shown is C1 in the
decoupled limit (ε`/(εwκd) → 0), with dashed curves.
We have checked that for all physically reasonable pa-
rameters, ge`(R) varies by at most only a few percent
when coupling between the two interfaces (at R − d/2
and R + d/2) is neglected.

The small effect of membrane coupling (for ε` =
2, εw = 80) is clearly demonstrated in Fig. 4 down to
n1 ' 0.1mM, especially at higher surface charges (com-
pare Fig. 4(a) with Figs. 4(b) and (c)) because the differ-
ence in surface potentials, ϕ(b)−ϕ(a), remains relatively
small as the surface potential increase in magnitude non-
linearly. Since the coupling induced contribution of the
bilayer enters through ϕ(b)−ϕ(a), its relative importance
diminishes as |σ| increases, particularly in nonlinear the-
ory (see Appendix B, Eq. 37). Also, note that since the
interior and exterior solutions are identical, a symmetry
exists, i.e. the interchange σa ↔ σb leads to C1 → −C1.
The open triangles in Fig 4(c) indicate the parameters
used in generating ge`(R) in Fig. 3.

Figure 5 explicitly shows R∗ and gTOT (∞)−gTOT (R∗)
based on Eqns. 29 and 30 with km = 12kBT . Thus,
a C1 of order 0.1kBT/nm is required to electrostati-
cally induce radii of curvatures in the ∼ 50nm range.
For example, in the nonlinear cases plotted in Figs 4(b)
and (c), at a 50mM monovalent salt concentration and
conserved charge per leaflet area, Eq. 29 yields mini-
mum free energy tube radii of 182nm and 37nm respec-
tively. The depths of these energy minima are given by
Eq. 30 as 0.2×10−4kBT/nm2 and 4.4 ×10−3kBT/nm2

respectively. Similar values are obtained when charge
per midplane area and the opposite charge asymmetries
are considered. Coincidentally, the magnitudes of C1 are
nearly equal for the two conserved charge ensembles when

−4.0 −3.0 −2.0 −1.0 0.0
log[n ]

−1.0

−0.8
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1.0 −0.3
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0.0

0.1

0.2

0.3

0.4

0.5−0.010

−0.005

0.000

0.005

0.010

0.015

0.020

(a)

(b)

(c)

C1

1

FIG. 4: C1 (kBT/nm) as a function of monovalent ion concen-
tration (log10 scale, equal both sides). (a). σa = −0.021, σb =
−0.019. (b). σa = −0.21, σb = −0.19. (c). σa = −0.25, σb =
−0.15. The filled circles and triangles indicate the approxi-
mations and parameters used in plotting ge`(R) in Figure 3.
Dashed(solid) curves show C1 under decoupled(coupled) ap-
proximations. The upper set of curves in each graph (C1 > 0
for large n1) correspond to surface charge per midplane area,
while the lower branches (C1 < 0 for large n1) correspond
to surface charge conserved with respect to area physically
occupied by charges.

σ = (σa +σb)/2 = −0.3; their magnitudes differ again as
σ > −0.3. Figure 5 shows that protuberances with radii
relevant to biological systems can occur under appropri-
ate conditions attainable experimentally in vitro and in

vivo.

The surface values, ϕ(S), where |ϕ(r)| is maximal, are
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*

FIG. 5: (a). Minimum energy radii R∗ (nm) (with the as-
sumption km = 12kBT ) plotted as a function of charge asym-
metry ∆σ = (σb − σa)/(σa + σb) for mean charge σ =
(σa + σb)/2 = −0.1, −0.2, and −0.3|e|/nm2. Solid(dashed)
curves represent fixed charge per leaftlet(midplane) areas.
For fixed charge per midplane area, R∗ > 0 corresponds
to charge asymmetries opposite of those plotted, i.e., ∆σ =
(σa − σb)/(σa + σb). (b). The associated free energy changes
∆g(R∗)(kBT/nm2) (Eq. 30). Monovalent salt concentration
is fixed at 100mM.

plotted in Figs. 6(a) and (b) as functions of n1 and
n2, respectively in order to assess the validity of linear
theory. Linear theory is expected to be accurate when
zeβϕ(r) <∼ 1, although the linear C1 calculated in the
charge per leaflet area ensemble seems to be more accu-
rate over a larger range of ionic strength than that calcu-
lated in the charge per midplane area ensemble (see Fig.
4). The effects of divalency on ϕ(S) are revealed in Fig
6(b). Effects of divalent anions are quantitatively simi-
lar to those of monovalent salts, especially if we compare
at the same concentration of monovalent cations which

do most of the screening. However, for divalent cations,
|ϕ(S)| is substantially reduced and linear theory is valid
over a wider range of concentrations. The z+ = 2 species
is more effective at screening because they will balance
more negative surface charge eβϕ(S) for the same penalty
in entropy of mixing incurred.

−4.0 −3.0 −2.0 −1.0 0.0
log[n ]

−6.0

−5.0

−4.0

−3.0

−2.0

−1.0

0.0

−6.0

−5.0

−4.0

−3.0

−2.0

−1.0

0.0

ϕ

ϕ

1log[n ]

2

FIG. 6: Surface electrostatic potential at a negatively charged
plane interface. (a). ϕ(S) as a function of monovalent salt
concentration. Long dashed, dashed, dotted, solid, and thick
solid lines denote surface charges of −0.02, −0.05, −0.1, −0.2,
and −0.3|e|/nm2 respectively. (b). Surface potential in the
presence of a divalent salt solution. Thick(thin) lines indi-
cate divalent cation(anion) solutions, and dashed(solid) lines
correspond to σ = −0.1 (σ = −0.2).

Differences in the inner and outer buffer solutions can
also affect membrane bending. By simply changing the
relative ionic strengths of the solutions, one can induce
different screening and hence bilayer bending. For sim-
plicity, we consider the extreme case of pure monova-
lent and pure divalent salt solutions. Bilayer bend-
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ing due to solution asymmetry is demonstrated in Fig-
ures 7(a) and (b), where C1 is shown as a function of
σ = −σa = −σb for both surface charge ensembles
(charge/leaflet area, thin lines; charge/midplane area,
thick lines) for interior monovalent ion concentrations of
1, 10, and 100mM from top to bottom within each triplet
of curves. The necessary concentration of multivalent
ions to achieve flaccid vesicles is assumed in the exterior
solution, e.g. 2n

(out)
1 = (z± + 1)n(in)(z±). Here, for di-

valents, n(in)(2) = 2n
(out)
1 /3 = .666, 6.66, and 66.66mM

respectively. Figure 7 shows that divalent cations (a), are
more effective at inducing larger curvatures (larger C1)
than divalent anions (b).

0.00 0.05 0.10 0.15 0.20 0.25
σ

−0.06

−0.04
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0.00
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0.15

0.20

C

(b)

(a)

1

FIG. 7: C1 (kBT/nm) as a function of σ = −σa = −σb for
various solution asymmetries. Monovalent salt concentration
in the interior is maintained at 1, 10, and 100mM (dashed,
dotted, and solid lines respectively) while an equiosmolar con-
centration (0.66, 6.66, and 66.6mM) of divalents make up
the exterior solution. Thick lines represent conserved charge
per midplane area ensemble. (a). Exterior divalent cations,
z+ = 2, (e.g. CaCl2). (b). Exterior divalent anions, z− = 2,
(e.g.Na2 SO4).

For small surface charges in the charge per leaflet area
ensemble, linear theory, (Eqns. 10 and 14) is expected to

hold and yields positive(negative) slope for C1(σ) when
n1 is less(greater) than (3/2 +

√
2)(`/d)2M ' 17.3mM

However, at larger surface charges the behavior of C1

crosses over to a negative slope for this ensemble, espe-
cially for higher salt concentrations (see Fig. 7). Here,
the nonlinear screening in the membrane exterior en-
hances the decrease in |ϕ(b)| relative to that of |ϕ(a)|
as σ is increased, thus increasing the electrostatic energy
of the interior charge layer relative to that of the exterior,
resulting in bending with C1 < 0.

0 5 10 15 20 25 30
n(z=2;out)

−0.10

−0.06

−0.02
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0.10

0.14

0.18

0.22

C

[n ](in)=50mM

1

1

FIG. 8: C1 (kBT/nm) as a function of n(z± = 2) in the
exterior showing how substitution of divalent for monova-
lent salt induces curvature. The interior solution is fixed
at 50mM monovalent salt and the solutions are equiosmolar.
Thin(thick) lines correspond to σa = σb = σ = −0.1(−0.2).
The four lower curves (C1 < 0) correspond to fixed charge per
leaflet area with solid(dashed) lines corresponding to divalent
cations(anions). The four upper curves correspond to fixed
charge per midplane area with other conventions unchanged.

The values of C1 corresponding to conserved charge
per midplane area (thick curves) increase quadratically
with σ agreeing with linear theory, until σ becomes large
enough that nonlinear effects become important and sat-
urates C1. The nonlinear effects are more prevalent for
anions (Fig. 7(b)) for the reasons discussed in relation
to Fig. 6.

Thus, we see that tuning the relative screening
lengths is an effective way of inducing membrane cur-
vature. Figure 8 shows C1 for surfaces of σa = σb =
−0.1(thin lines) and − 0.2(thick lines) as the screening
in the exterior solution is scanned. Here, the vesicle
interior is held at 50mM monovalent salt, while the
exterior has a varying proportion of monovalent and
divalent salt keeping the vesicle flaccid (this requires
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n
(out)
1 = 0.050− 3n(out)(2)/2). The various divalent mix-

tures required to induce positive curvature (C1 < 0, tube
growth), or invaginations (C1 > 0) and the sensitivity of
C1 to divalent concentrations are clearly shown. Since
σa = σb, exchange of the solutions on the two sides of
the membrane interchanges C1 → −C1.
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FIG. 9: C1 (kBT/nm) as a function of σ = −σa = −σb for ex-
terior cationic multivalencies, z+ =3(log dashed), 4(dashed),

5(dotted), and 6(solid) lines. (a). n
(out)
1 = 10mM. (b).

n
(out)
1 = 100mM.

Finally, in Fig. 9 we plot C1 as a function of σ =
−σa = −σb for vesicles with interior monovalent salt and
exterior higher multivalent ions (z± > 2). The influence
of higher valencies on C1 is modest except at high surface
charges or low total ionic strengths.

DISCUSSION AND CONCLUSIONS
In this paper we have presented calculations which sug-
gest that electrostatic forces can control lipid membrane
bending under realistic experimental and physiological
conditions. Membrane deformations can be induced by
an aqueous solution asymmetry between vesicle interior

and exterior as well as by charge asymmetry between the
two bilayer leaflets. Radii of curvature of the membrane
bending can be in the neighborhood of 50-100nm typi-
cally seen in biological processes such as vesicle budding,
tubulation of ER and Golgi bodies, and endo/exocytosis.

Tubulation and growth of necks from vesicles requires
the membrane to nucleate such protuberances. Elec-
trostatic changes in free energy alone can yield quali-
tatively reasonable conditions for the formation of tube-
like structures from a flat bilayer membrane. For exam-
ple, if ∆gTOT (R∗ ' 40nm) ' 0.0005kBT/nm2, the to-
tal free energy decrease is roughly 0.11kBT/nm length.
Therefore, a flat membrane is stable against tube fluctu-
ations of height L <∼ 10nm. This critical length will be
slightly greater due to the additional bending energy cost
at the tube base; however, from experimental electron
microscopy images (Mui et al., 1996), the base can be
approximated with a portion of a torus of cross-sectional
radius ∼ 10nm. Using a bending rigidity of km ' 12kBT ,
and the fact that this toroidal section has both positive
and negative curvatures, we find that the total mechan-
ical bending rigidity is qualitatively small and does not
affect the energetics appreciably such that once a fluc-
tuation exceeds ∼ 10nm, it will continue to extend and
lower ge`.

Magnitudes of membrane surface charges experimen-
tally measured indicate that our canonical estimate of
−0.2|e|/nm2 is a reasonable physiological value. Sur-
face charges measured in plant vesicles using parti-
cle electrophoresis and dye fluorescence range from
−0.03|e|/nm2 to −0.24|e|/nm2 (Sack et al., 1983; Chow
and Barber 1980). These are averaged charge densities;
higher concentrations of charged lipid could be recruited
to incipient buds (phase separation) if electrostatics are
playing a role. The numerous detailed chemical mecha-
nisms of lipid-solvent interactions have not been modeled.
The variation of lipid pKa’s with solution ionic strengths,
the nonelectrostatic binding of cations to membrane sur-
faces, and the hydrogen bonding among lipid headgroups
can all affect the effective surface charge and is discussed
by Tocanne and Teissié (1990).

The response of surface charges to bending is also cru-
cial in determining the electrostatic contributions to the
free energy. The two extreme cases examined correspond
to charge distributions which are lipid tail or head con-
trolled and are depicted in Figs. 10. For large head
groups where lipid packing is governed by steric and
electrostatic interactions among head groups, the sur-
face charge is approximately held constant as the bilayer
curvature is varied. Conversely, when the tails occupy a
thermodynamic area larger than the heads, the surface
charge is approximately fixed with respect to the area de-
fined by the midplane of the bilayer. Furthermore, other
special phases may be important in determining charge
distribution. For example, if the solvent contains glyc-
erol or alcohols, the acyl chains of PC bilayers become
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(c)

(b)

(a)

FIG. 10: Microscopic models governing the distribution of
charge and the neutral surface. (a). Bulky heads sterically fix
charge per inner and out leaflet areas. (b). Small heads and
entropically interacting acyl chains distribute charges at the
heads according to midplane area. (c). Charge per midplane
area preserved owing to interdigitated acyl chains.

interdigitated (Gennis, 1989) as shown in Fig. 10(c). If
this coupling is tight, the surface charge on the leaflets
would be determined by the midplane area.

It is interesting to note that the modes of charge con-
servation mentioned above can be correlated with a filling
parameter defined by Israelachvilli (1979),

f = v/a`, (31)

where v is the effective volume of the lipid tail, a is
the thermal area of the head or the tail group near the
head, and ` is the vertical thermal length of the tail.
For f ' 1, the lipids are schematically represented by
cylinders. For f > 1 and f < 1, the lipids behave mi-
croscopically approximately as cones and inverted cones,
respectively. The f > 1 (“tail packed”) or inverted cone
f < 1 (“head packed”) structures will probably be asso-
ciated with fixed surface charge with respect to midplane
area and fixed surface charge with respect to leaflet in-
terfaces (r = a, b) ensembles, respectively. Depending
on the chemical composition of the bilayer, an interme-
diate neutral surface between R and a, b is also possible
(Petrov and Bivas 1984, Gennis 1989).

Correlating the cartoon in Figs. 10 and the arguments
above with bilayer chemistry may serve as an impor-
tant guide in developing in vitro experiments and un-
derstanding biological processes. Studies of the phases
of concentrated lipid solutions suggest that f is related
to lipid micellular, planar, and inverted micellular struc-
tures. For example, lipids such as PC, PS, PI, PG, and
Sphingomyelin at nonacidic conditions and in the ab-
sence of divalent cations (Kates and Manson, 1984) form
stable planar bilayers, implying that inter-lipid interac-
tions through the tail and headgroups are comparable.
Lysophospholipids, on the other hand, form micelles with
the headgroups pointing outward into the aqueous phase,
and can be modelled by inverted cones, with the cone
apex at the midplane of the bilayer, commensurate with
strong headgroup interactions.

In general, factors that increase the effective acyl
chain area relative to that of the headgroups favors
HII(inverted hexagonal) phase over the Lα(planar) phase
(Cullis et al. 1985). As in the case of surface charge,
chemical conditions affect how lipids are packed in a bi-
layer. For example, a low pH tends to increase headgroup
association through hydrogen bonding, (Boggs 1984) and
cations, such as Mg+2 and Ca+2, also decrease head-
group size by dehydrating them. This enhances the like-
lihood of the HII phase. Lee, Taraschi and Janes (1993)
have qualitatively applied the lipid shape concept to the
POPtdEtn/PtdEth binary lipid mixture. Under their
conditions, PtdEth has a large tail area which promotes
the formation of inverted hexagonal phases in the lipid
mixture (Lee, Taraschi, and Janes, 1993). In our study,
vesicles containing similar types of lipids may be expected
to conserve surface charge with respect to midplane area
2πRL.

Probably the least accurately measured parameter in
bilayer electro-mechanical models is the coefficient of
1/R2 in gTOT (R). Measurements using various methods
have yielded scattered results. For example, in phospho-
tidylcholines (PC), large values of km are obtained when
employing tube bending measurements, intermediate val-
ues are obtained when a fluctuation mode analysis is per-
formed, and low values are extracted when electric field
deformation of spherical vesicles is analyzed (Andelman
1995). For example, Song and Waugh (1993) measured
km ' 28kBT for SOPC by mechanically pulling tethers.
This value increased by ∼ 3-fold when ∼ 45% cholesterol
was added. Mode fluctuation measurements by Mutz
and Helfrich (1990) on lipid vesicles ∼ 10µm yielded
km ' 4kBT, 28kBT and 100kBT for galactosyldiglyc-
eride, DMPC, and DMPC + 30% cholesterol bilayers re-
spectively. Finally electric field deformation studies by
Duwe et al. (1990) on DGDG and Egg Yolk PC vesicles
yielded km ' 2kBT and km ' 5kBT respectively. All
of these measurements were performed under neutral pH
and low salt concentrations where electrostatic contribu-
tion to the total bending rigidity km+2C2 may be impor-
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tant. However, without careful experimental control of
the solution ionic strengths (and surface charges), vari-
ation in C2 can lead to the discrepancies reported. The
enhancement of membrane bending stiffness upon surface
association of uncharged polymers has also been studied
by Evans (1996). Throughout this paper we have simply
subsumed all these effects into an intermediate value of
km + 2C2 ' 12kBT , where C2 � km at the higher salt
concentrations considered.

Song and Waugh (1990) also measured bending stiff-
nesses of artificial mixed POPS-SOPC vesicles as a func-
tion of surface charge by varying the composition of
charged POPS. They found no difference in total bending
stiffness for 0 , 2 , and 16% POPS (∼ 35kBT ). However,
the solution ionic strengths and effective surface charges
in these experiments were not precisely controlled and as-
suming surface charges appropriate to the added amounts
of POPS, even screening lengths ∼ 30nm can cause C2

to saturate at a maximal value � km (Winterhalter and
Helfrich 1992).

Experiments on artificial liposomes hitherto have not
carefully considered the effects of solution ionic strength
on deformation, tubulation and budding. In the experi-
ments of Mui et al. (1996), a pH gradient across a bilayer
was used to flip lipids with different pKa’s across from
one leaflet to the other. Tubulation was induced which
the authors attributed to a leaflet area imbalance driven
by the lipid exchange. However, as shown by Hope et

al. (1989), pH induced transport of lipids across the bi-
layer also changes the relative charges between the bilayer
leaflets. These experiments therefore do not isolate the
electrostatic effects we have calculated, even though, as
we have shown, the electrostatic component may play a
significant role in vesicle shape changes. Using natural
Golgi bodies, Cluett et al. (1993) performed experiments
with Brefeldin A (BFA) and approximately 50mM ion
concentration. Tubules up to 7µm in length grew when
BFA was added to prevent binding of coat proteins and
budding. The tubes were of the same size, ∼ 70nm, as
typical budding vesicles, suggesting that a common con-
trolling factor such as electrostatics is not unreasonable.

Besides continuum electrostatics, there are numerous
other chemical and biological effects which can alter the
mechanical properties of a bilayer. In particular, ion
binding and hydrogen bonding effects have not been con-
sidered. However, experiments hitherto have not care-
fully controlled parameters affecting even the electrostat-
ics: solution ionic strength and surface charge. We pro-
pose that in vitro experiments on large vesicles be per-
formed under flaccid conditions with ionic strength as
well as pH carefully measured. Systematically varying
surface charge may also be appropriate.

Our calculations have shown how adding neutral
dopants to a bilayer can indirectly induce morphological
changes of electrostatic origin. For example, if enough
cholesterol, a rigid molecule with a relatively small head

group, is incorporated equally in the bilayer leaflets, upon
bending, phospholipid charges will be conserved with re-
spect to a neutral surface closer to the the midplane ra-
dius R as indicated by Figs. 10b, c. Although km > 0
is also expected to change in magnitude, the sign of C1

is very sensitive to how charge is conserved. With asym-
metry in σa,b (Fig. 4) or interior/exterior screening (Fig.
8), the addition of cholesterol can change the sign of C1

and determine whether tubules grow outward or invagi-
nate. A gradient in lipid composition occurs biologically,
for example with cholesterol in the Golgi-ER membranes
(Bretscher and Munro 1993). Such membranes are con-
stantly tubulating, budding, and recycling and their local
cholesterol content may determine the neutral surfaces
which govern the electrostatic component of these pro-
cesses.

We have also shown that provided a pure lipid bilayer is
impermeable to ions, the conservation of charge in the in-
terior of a closed vesicle can completely alter the electro-
static energies calculated assuming thermodynamic reser-
voirs. Only for a certain interior charge density specified
to O(σa/R) will the conventional result apply, though for
a few tubes growing from a sphere of much larger area
our charge imbalance analysis should be applied to the
sphere only. For in vitro studies of pure bilayer vesicles
it is experimentally difficult to control the interior charge
to the required accuracy and thus large electrostatic ef-
fects are likely to be present at least initially before the
inner and outer solutions have equilibrated.

For an interior charge of order σa,b per area the internal
potential will be of order (εw/ε`)kBT/e, which is absurdly
large for biological membranes, and even for an artificial
bilayer will cause ions to traverse it. If electrogenic ion
pumps act to maintain an electronic potential difference
of several kBT across an organelle’s membrane there may
still be an effect on the optimal curvature comparable
to what we have calculated in the Results section. Our
calculations are most apt for a membrane where pores
allow small inorganic ions to equilibrate while multivalent
proteins are localized to one side and control the bending.

Finally, we have verified that the effects of multivalent
species (zα > 2) in the surrounding buffer solution are
similar to those of the divalent solutions which we have
treated in more detail. This has implications for vesicle
budding assisted by adaptin/clathrin or dynamin pro-
teins, whose molecular charges can interact and screen
those at the bilayer surfaces.
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APPENDIX A
The solutions to the linear equation 9. in the geome-
try of Fig. 1 under appropriate electrostatic boundary
conditions are displayed:

ϕ(r < a) = 4πσaκobaK1(κob)

[

ε

εw

(

σb
σaκoa

+
1

κob

)

K0(κob)

K1(κob)

+ ln

(

b

a

) ]

I0(κir)

D(κ; a, b)

ϕ(a < r < b) = 4πσb
κiabI1(κia)K1(κob)

D(κ; a, b)
ln r + constant

ϕ(r > b) = 4πσbκiabI1(κia)

[

ε

εw

(

σa
σbκib

+
1

κia

)

I0(κia)

I1(κia)
+

ln

(

b

a

) ]

K0(κor)

D(κ; a, b)
,

(32)
where

D(κ; a, b) ≡ εwκiaκobI1(κia)K1(κob)

[

ε`
εw

1

κob

K0(κob)

K1(κob)
+

ε`
εw

1

κia

I0(κia)

I1(κia)
+ ln

(

b

a

) ]

.

(33)

APPENDIX B
Write the solution to Eq. 18 as an expansion in 1/R;
ϕ = ϕ0 + ϕ1, where ϕ0 is the solution to the one dimen-
sional Poisson-Boltzmann equation for a flat interface,
with boundary conditions appropriate to surface charges
σa,b and ϕ1 = O(1/R). Expanding Ge` in for example
the outer (r ≥ b) and bilayer (a < r < b) regions, respec-
tively,

G+ +G`
2πL

' σbb(ϕ0(b) + ϕ1(b)) −
εw
4π

∫ ∞

b

(

1

2
(∂rϕ0)

2+

(∂rϕ0)(∂rϕ1) + U [ϕ0] + ϕ1U
′ [ϕ0]

)

r dr−

ε`
4π

∫ b

a

(

1

2
(∂rϕ0)

2 + (∂rϕ0)(∂rϕ1)

)

r dr +O(1/R).

(34)
Using the identity (∂rϕ0)(∂rϕ1) = ∇·(ϕ1∇ϕ0)−ϕ1∇2ϕ0,
and recalling that to the order in R to which we are work-
ing, we can approximate ∇2ϕ0 ' ∂2

rϕ0 ≡ U ′ [ϕ0] in the
first integral, one sees that the U ′ terms cancel. The to-
tal derivatives in both integrals reduce to surface terms
which cancel σbbϕ1(b) and the corresponding term at the
inner surface when G− is included. This is no accident
since the electrostatic boundary conditions just express
the stationarity of (6) with respect to variation in the

surface value of ϕ. In fact since ∂rϕ0 satisfies boundary
conditions based on σa,b, ϕ1(a, b) ≡ 0. Our argument
does establish that ϕ0 could satisfy the R → ∞ bound-
ary condition for the fixed charge per midplane area en-
semble without affecting the 1/R coefficient. Of course
the explicit σa,b that occurs in G± should be correct for
the particular ensemble.

To extract the R dependence from the integrals over
ϕ0 we write rdr → ±(R± d/2± z)dz in G± and expand.
Incidentally this argument shows that for a sphere the
coefficient of 1/R is doubled, due entirely to the varia-
tion of surface area with radius. The integral within the
bilayer is symmetric about R and does not contribute to
the 1/R coefficient. For numerical purposes it is conve-
nient to use Eq. 19 and express the remaining integrals
in (20) using ϕ0, which is a monotonic function of r, as
the independent variable, i.e.,

∫ ∞

0

dzE [ϕ0] =

∫ ∞

0

dz(∂zϕ0)
2 =

∫ 0

−|ϕ0(S)|

dϕ0

√

2U [ϕ0],

(35)
and similarly,

∫ ∞

0 z dzE [ϕ0] =

∫ 0

−|ϕ0(S)|

[

1
√

2U [ϕ0]

∫ 0

−|ϕ0|

√

2U [ϕ′
0]dϕ

′
0

]

dϕ0.

(36)
The relevant boundary values ϕ0(S) ≡ ϕ0(a), ϕ0(b), are
found from the two boundary conditions which yield,

ε`
d

(ϕ0(b) − ϕ0(a)) − εw
√

2U [ϕ0(b)] = 4πσb

−ε`
d

(ϕ0(b) − ϕ0(a)) − εw
√

2U [ϕ0(a)] = 4πσa,

(37)

where σa,b < 0 and the sign of the square-root terms have
been chosen accordingly. The solution of this simultane-
ous system of equations gives ϕ0(a), ϕ0(b) to be used in
the limits in integrals (35) and (36).

If we had imposed boundary conditions that the charge
per midplane area was conserved during bending, the
only change in Eq. 34 would be to replace the multiplica-
tive factor of b with R in the first term and of course to
interpret σa,b as the charge per midplane area. One can
continue to employ the boundary conditions (37) even
though σa,b are no longer the correct lipid-solution sur-
face charges, by the argument already given that the sur-
face value of ϕ1 drops out. The only change to Eq. 20 is
to remove the d/2R factor multiplying σa,b.
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