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An algorithm to enumerate the number of independent scalars that determine the general tensor formed from
n velocity gradients at a point in homogeneous-isotropic turbulence is elaborated for n = 4. The physical
content of the invariants that result as well as their determination from experiment is discussed.

Tensors formed from # velocity derivatives evaluated
at a common point (3, =9/3x,),

Taﬂ,b,... = <(auvb)(acvl)' <o)

have proved to be a convenient characterization of the
small-scale structure of fully turbulent flows.! Se-
lected elements are easily measured with hot wires
while more general combinations of terms, such as
the correlations between the vorticity and rate of
strain, have an immediate physical interpretation.
When the small scales are homogeneous and isotropic,
symmetry arguments alone can provide constraints
among measured quantities as well as relate them to
correlations of greater physical interest.®® Thus,

- {(5u,/3x,)*) is proportional to both the fourth moment
of the energy spectrum and the rate of production of
vorticity by stretching, (w,e,,w,), where e,,=3(3,v,
+2,0,) and w =V xv. Repeated indices are summed
from 1 to 3 and tr denotes the trace of a matrix.

The most common measure of small-scale intermit-
tency in fully developed turbulence is the flatness fac-
tor of the longitudinal velocity derivative, ((3u,/0x,)*)/
((0u,/5x,)%)?, and is thus related to one component of
T*.! Just as the transfer of energy via vortex stretch-
ing is most naturally and physically expressed in terms
of the correlation between vorticity and strain rather
than the skewness, it is also fruitful to describe inter-
mittency in the same way. The four quantities
([tre)]?), (tre®w®), (Weserew, ) and (w?w?) are all
expressible in terms of 7%, and thereby generalize the
conventional flatness in a manner so as to express in a
rotationally invariant way the correlations between
vorticity and strain. How they vary with R,, and the
extent to which they deviate from their Gaussian val-
ues, would indicate whether both the vorticity and
strain rate were intermittent, and if so, whether
bursts in one were correlated with bursts in the other.
Further study could also yield important information on
the velocity field in the vicinity of the active regions.

Of course, it would be virtually impossible to si-
multaneously measure all eight components of 3,v,
and fortunately, also unnecessary. The assumption of
statistical isotropy and homogeneity can be used to re-
late the four vorticity-strain correlations defined above
to an equal number of other elements of T* that could
be measured by currently available techniques. The
numerical relations between these two sets of cor-
relations constitute the second-half of our paper.and
we conclude by considering how knowledge of additional
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elements of T* could serve to sharpen the phenomen-
ological theories of intermittency that now exist.

We begin by enumerating the number of invariants
that under the assumption of isotropy (proper rotations
and reflections) suffice to completely specify T¢, We
will then show that homogeneitfy imposes no additional
constraints among these invariants, and therefore,
unless some nontrivial use is made of the Navier—
Stokes equations, four independent numbers are re-
quired to specify T, Recall that under the same as-
sumptions only one invariant is required to completely
determine 73,%* Although a field that is isotropic at
every point is necessarily homogeneous, if we con-
sider only the average of velocity derivatives at a
single point the two symmetries impose distinct re-
strictions on the elements of 7",

Isotropy implies that 7™ can be expressed as the
sum of (2n)!/(2*n!) terms (i.e., the number of ways of
partitioning 2n indices into pairs), each the product of
n factors of the unit matrix 5,,. (The product of two of
the completely antisymmetric Levi-Civita symbols
€ g5 Can be reexpressed as the sum of products of the
unit tensor.) The number of invariants as well as the
expression of an arbitrary tensor element in terms of
the invariants can then be found by imposing permuta-
tion symmetry and incompressibility on the above sum.

The arithmetic required to implement this algorithm
becomes prohibitive for n = 4 and is unnecessary once
it is realized that the number of independent coeffi -
cients remaining after all symmetries are imposed
equals the number of distinct scalars that can be
formed by contracting the tensor indices. This
enumeration is rendered trivial if we write

0glp = €4y t+ %eabcwc . (1)
In addition, we need the identity for small x
det(1 + xe) = exp{tr{In(1 + xe)]}, (2)

where “tr” and “det” stand for trace and determinant,
respectively. A Taylor expansion in x then yields for
tr(e)=0.°

tr(e®) =3 detle), [tr(e®)P=2tr(?). 3)

In general, the trace of ¢,, to any power can be reduced
to sums of products of det{e) and tr(e?). The scalars
that can be formed from 7" can be classified, after
substituting (1), by the number of factors of w, which
is necessarily even. (Otherwise, the corresponding
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tensor would have an odd number of indices and thus
contain a factor of €, in its expansion. But €, is
odd under reflection while w and ¢,, are both even.
For n <6 odd terms in w can be ruled out without in-
voking reflection symmetry.)

For n=4 there are precisely four invariants:

I,=(tre?)?), I,=(wire®,

I3= <waeabebcwc)’ I4= ((wz)z) . (4)

There are thus 101 constraints among the 105 terms in
the expansion of 7%. Were there any fewer, it would
imply the existence of a scalar term in addition to the
above, while by inspection none exist. If there were
any more than 101 constraints, then several of the I,
would be linearly related, but rotations cannot turn a
pure strain into a rotation or vice versa.

The number of invariants of order » involving only
e is simply the number of distinct ways of partitioning
n into the sum of n, factors of 2 and n, factors of 3.
For reasonable n the invariants involving @ can be
enumerated by inspection. Thus for 7", there are a
total of 5 invariants for n=>5 and 10 for n=6.

For n=23 our enumeration yields two invariants under
rotations (tre®) and (w,e,,w,), respectively. Homo-
geneity then implies (3,2,9,v,9,0,)=0 or (tre®)
= —3{w,e,w,) /4.3 For the fourth-order invariants
(4) (and by suggestion for n > 4), however, homogeneity
implies no further restrictions beyond those already
imposed by isotropy.

For n=4 we prove this assertion by supposing that
there is a condition, 22%_, ¢ I, =0, with ¢, constant,
and then constructing a series of ensembles that are
manifestly homogeneous and isotropic. Since the ¢,
are by assumption independent of the ensemble, we
will be able to show ¢, =0. Our test ensembles are
constructed from a two-dimensional velocity field with
variation only in the plane in which the velocity lies.
An angular average is performed to achieve isotropy.

In any such ensemble I;=0. Let us further specialize
to v, =sin(k,x,), v, =sin(k,x,) and compute s =tre? +iu?
and d=tre® —$w?. A spatial average is then required
to achieve homogeneity. It is then easily seen that
while (tre?)=3 (w?), (sd)=0 and (s*)/(d?) depends
on %,/k, and therefore on the ensemble., Thus, homo-
geneity does not allow a linear relationship of the as-
sumed form among I,, I,, and I,, i.e., ¢,=c,=c,=0.
Finally, taking an arbitrary three-dimensional velocity
field and still assuming 2%, ¢, I, =0, implies c,=0
and completes the demonstration that the I, are linearly
independent.

Although our enumeration of the invariants of the
general tension T* was considerably easier than ex-
panding it in terms of §,,, it remains to relate an ar-
bitrary element of 7* to the I,. We again proceed by
resolving the velocity gradients into strain and vortici-
ty.

A tensor consisting of a string of elements from e,,
must be proportional to I,. The constant of propor-
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tionality can be determined by evaluating all quantities
in a Gaussian ensemble. The required averages are
most conveniently evaluated by differentiating the gen-
erating function

FQ, p)=1In [f (11,,,de,,)5(tre)exp (— 3 ael

—2(p,e5, + paeis + I-iseiz)>]
= -zlnQ, + Mds T AAg) — 3 In(pypppg) (5)

with respect to 3, or y, and setting A, = p, =2 at the
end to achieve isotropy. An additive constant has been
omitted in the second line of (5). One then finds

(e1,)=41,/105, (el,)=3I,/140,
e?ed,) =1,/105, (ele?)=1,/140.... 6

An arbitrary element of the tensor formed from two
factors of vorticity and two factors from e,, may be ex-
pressed as a linear combination of I, and I,. Since the
general tensor has only six indices, it may be written
explicitly as

(wdwbe“e") = aﬁﬂﬁc‘ﬁ” - % aéab(bcféu + 6CI5‘)’)
+ ﬁ(54c63f5u +8,4,00,049+ 00400 + 83400004
+ 54! 550641 + Oafﬁblaeg + 6“5“6" + Guauacf)

+ %B(%badﬁu + 6“5“5‘, - 64061)45!! - 5“5“5”

_5¢f5u 8- 65,51;/5::4 ) (7a)
where we have defined
a =8I,/105 -1,/21, B=3I,/70—1,/70. (o)

Equation (7a) was derived by imposing the permutation
symmetries and tre =0 on the 15 terms that describe

a six-index tensor under isotropic conditions. Finally,
for the tensor involving only the vorticity we have

{ WaWyw wg) = (1,/15)(5,,0 55+ 8,054 + BgaBpe) « (8)

Either additional assumptions or some further input
from the Navier-Stokes equations is required to say
anything more about the I,. Lower bounds on I, can be
given in terms of {w,e ,w,) = -35((du,/9x,)*)/2. One
finds

(waeabwb)z s L{w?) ,
(waeabwb >2 < Zlq(trez)/S ’ (9)
(Welapwy ) S 2L, (w? )/3 .

By working from (tre®), Betchov derived an analogous
bound for I,.® One can also show

I,<2L,/3, I2<3L1,/10, I*<I],. (10)

The inequalities {3)-(10) are optimal if nothing more
than (w?)=2(tre?), isotropy, and incompressibility is
assumed. The configuration for which equality holds in
9), ey (2,-1,-1), e,,, =0, and w= (1,0,0), does not
satisfy 0 < ~det(e) = w,e,,w,/4 S0 the inequalities could
be somewhat strengthened if homogeneity were imposed.
The bounds on I, in (10) might be improved if a value of
the skewness is imposed externally on the ensemble.

The only other reliable information we have on the
1, for @ >1 comes from fully resolved numerical
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simulations for R, in the range 60-90.° In Table I we
reproduce the data of Ref. 5 with a different normal -
ization together with the values of I, appropriate to a
Gaussian random velocity field. Since the skewness is
of order 0.5, i.e., (w,e,w,)*=0.18(tre?)®, none of the
inequalities in (9)-(10) is particularly stringent.

Experiments done with crossed wires yield three in-
dependent measures of the fourth-order velocity gra-
dient statistics

F,= ((3“1/3%)4) y Fp= ((aul/axl)”(au z/ax1)2) ’
Fy= ((ou,/0x,)*) . (11)

The fourth quantity one might hope to obtain with wires,
((@uy/0%, P (5u,/9x,)%), equals F,/3 as may be seen by
writing 2F, = ((3i,/3x,)") + ((8ity/3x,)*) With &, 5= (u,
+u,)/¥ 2 and rearranging. After re-expressing au,/0x,
in terms of strain and vorticity, Eqs. (6)-(8) imply

F,=4l,/105,
F,=1I,/105+1,/70 - I,/105 ,
F,=31,/140 + 11I,/140 — 31,/35 +I,/80. (12)

Clearly, one additional experimental number is
needed to fully determine 7*. It might either be an
independent determination of one component of the
vorticity or

F,= {(0u,/2%,)*(au,/9x5)%)
:11/105'+ I2/210 +2I,/105 .

But, note that ((3u,/9x,)%(ou,/3x,)?) =F, and {(3u,/
3%, 2 (duy/0x,) )= F,/3.

We believe that more will be learned about small-
scale intermittency by determining I, in a high-quality
wind tunnel than by measuring just F, at ever higher
R,. The case for laboratory experiments becomes
stronger if second derivatives can be resolved. All
phenomenological theories of intermittency to date
have parametrized the fluctuations with a single-scalar
field interpreted variously as the energy transfer or
dissipation.® There is no freedom for different veloc-
ity derivatives to scale differently with Reynolds num-
ber, i.e., I,/I, must approach a constant as R, in-
creases.

A rather different conclusion is suggested by the al-
ternative viewpoint that intermittency arises from an
assembly of identifiable and persistent vortical struc-
tures that become more singular as R, increases,”®
(Cascade notions play little or no role in this picture.)
For the solutions we have examined,” in which the vor-
tex tube or sheet is maintained by a smooth background
straining field, e,,w, is always linear in the intermit-

TABLE I. The invariants in Eq. (4) all normalized by {tre?2.
The numerical values are taken from run (2b) of Ref. 5 with
R,~60-90. Only two figures are significant.

4 L 2 L
Gaussian 7/5 2 2/3 20/3
Numerical 2.58 4.85 0. 733 15.6
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tent part of the velocity field. One would therefore
predict that I,/I, tends to zero with increasing R,. A
comparison between the computed and Gaussian values
of I, in Table I suggests a similar conclusion. Our
argument is, of course, only heuristic and ultimately
leads to conflict with the first inequality in {9), if one
assumes that the skewness scales as a positive power
of R,. It does, however, emphasize that the invariants
I, provide important information on the possible flow
configurations in the intermittent regions.

Lastly, we recall the long-standing question of the
nature of the singularity predicted by the inviscid
Navier —Stokes equations when initialized with a veloci-
ty restricted to low wavenumbers and run forward in
time.® If one could be assured that the small scales
were isotropic, perhaps by using random initial con-
ditions and averaging, then the question would arise
whether all the I, diverged in the same way. The
various moments of the energy spectrum may not be
the most illuminating way to characterize this singu-
larity.

Orszag has enumerated the number of scalars neces-
sary to specify the general n velocity correlation func-
tion in wavenumber space.’® We have not found that
classification particularly useful here since homogen-
eity did not provide any further constraints among the
I

a"
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