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Incipient Singularities in the Navier-Stokes Equations
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Infinite pointwise stretching in a finite time for general initial conditions is found in a simulation of
the Biot-Savart equation for a slender vortex tube in three dimensions. Viscosity is ineffective in limiting
the divergence in the vorticity as long as it remains concentrated in tubes. Stability has not been shown.
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The incompressible Navier-Stokes equations are used in
many practical problems, yet it has never been proven
that their solutions remain finite for all times even if
there are no external forces.!~® In this Letter we suggest
physical reasons why a proof may be difficult to achieve.
Within our model, vortex tubes generically collapse in a
finite time in such a way that the viscosity only becomes
important when the velocity and its derivative are formal-
ly of the order of the exponential of a Reynolds number.
Other processes must intervene earlier and the most likely
candidate is an inviscid deformation of the tubes into rib-
bons where the viscosity will then control the stretching.
If our solutions are a stable up to this point then they are
a very efficient means of transferring and focusing energy
into small scales. They may partially explain the violent
intermittency seen in wall-bounded shear flows.

Our construction proceeds from the well-known
equivalence between the velocity field from a slender vor-
tex tube and the Biot-Savart formula with a suitable cut-
off.* Under time evolution, the connection with slender
tubes is never lost, i.e., the filament radius of curvature is
always appreciably greater than the local core size. A lo-
cal approximation to the Biot-Savart formula is then ob-
tained which confirms certain numerical results analyti-
cally. Solutions to the Navier-Stokes or Euler equations
may in principle be recovered by perturbation methods
which exploit the slow variation along the filament axis.
The extent to which the cores deform may be estimated
by similar means and is also examined numerically. Our
emphasis here will be on existence.

Rigorous results severely restrict any possible singulari-

ties that solutions to the Navier-Stokes equations can as-
sume. Leray' showed in effect that either the velocity is
everywhere smooth or its maximum magnitude becomes
unbounded according to

max(v)>const[v(t* —1)]1/?, (1)

where v is the kinematic viscosity, ¢* the singularity time,
and const an arbitrary constant. The analogous lower
bound on the maximum vorticity, w, is const/(t* —t)
(neglecting technicalities).> Scheffer was the first to
bound the space-time dimension of the singular set and
the best current estimates place the Hausdorff dimension
strictly less than 1.2% A different line of research has
proven existence for the Laplacian to a power greater

than 1.5

Though arguments originating from Kolmogorov’s
theory of inertial-range turbulence suggest that the Euler
equation should have a finite-time singularity, numerical
experiments based on a Fourier representation have
proved inconclusive.® Chorin did find a singularity with
vortex methods, but his solution looks very different from
ours and there are worries about the numerical pro-
cedures.’ _

The Biot-Savart formula with a core size o reads*

wo)=—=F [r(8)—1(6")]1X (dr/d6')de’
4 {([r(0)—1(0") >+ 0%0)+aX6')}3
(2a)
o?ds /dO=const, (2b)

where 6 is a Lagrangean parameter, s is the arc length,
and I is the circulation. If several filaments are present,
each convects all the others. Equation (2b) ties the core
size to the local stretching. The maximum velocity and
vorticity scale as I'/o and T /o?, respectively. Infinite
stretching (0—0) in a finite time is equivalent to blowup.
The reduction of the velocity field of a vortex tube to (2a)
is rigorous* while (2b) is only one extreme of a continuum
of models that preserve volume.

To solve (2) numerically we lay down a series of nodes,
fit the curve r(0) with cubic splines, and solve (2b) for
0%(0). The integral over 8’ was done with Simpson’s rule
to yield the velocity at each node 6. The nodes are then
stepped forward in time by use of a variable—step-length
Runge-Kutta-Fehlberg algorithm. Questions of resolu-
tion, accuracy, and stability are dealt with by Siggia.®

Equation (2b) is the appropriate core model for collapse
since, as we will see, the time necessary for ds /d6— o is
comparable to the characteristic time for core rearrange-
ments, o2/I". Furthermore, o does not vary rapidly with
arc length around the point of its minimum so that some
redistribution of core volume along the filament would
not matter. The core model in Ref. 8, o*L=const
(L =total arc length) is clearly inappropriate once signifi-
cant stretching begins, yet three-dimensional pictures of
the filaments look very similar to (2b).

To follow the collapse as far as possible with (2b), our
code focuses down on the region with smallest 0. Thus
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we are unable to say if the total arc length, L, is infinite
when o first hits zero for some 8. However, because (2a)
becomes nearly local in s, many values of 6 should be-
come singular in a finite time if one does. The singular
set must clearly be thought of in space-time.

The most striking and surprising consequence of (2) is
the pairing between oppositely directed sections of the
vortex filament.® The spacing is of order o, permanent,
and independent of initial conditions. The filament pair
must be thought of as a single dynamical entity. The
pairing justifies the local model below (i.e., the nonlocal
velocity falls off as a dipole) while the local terms con-
spire to maintain the pairing.

The stretching process is triggered by a version of the
Crow instability appropriate to tightly paired antiparallel
filaments.® Locally the paired filament looks like a small
piece of a vortex ring together with its image in a parallel
plane. The ensemble convects itself radially outward with
a speed of order T' /o (recall that the spacing is ~o) and
a differential stretching ~T /or, where r, is the local ra-
dius of curvature. After a certain amount of new line is
produced the Crow instability is reactivated and smaller-
scale folding begins. How all this leads to singularity in
finite time will be apparent once we become more quanti-
tative. (Nearly parallel filaments will remain so for some
time and wrap around each other. The vortex stretching
then occurs through differential rotation which is essen-
tially a linear process and does not seem to yield finite-
time singularities.)

We conclude the numerical discussion with a few de-
tails. Most significantly, the distribution in r. scales with
o yet maintains r./0>4—5 point by point except for
~25% of the instances and then only 5% of the points
when the ratio fell to 2—3. The interfilament spacing de-
creases from 1.3¢ to 0.60 while o? decreases by a factor
of 200. The core size is uniform in arc length about its
minimum to the extent that it does not exceed 1.50.;,
over a AL ~1000,,;,. Lastly, o tends to zero as t*—t¢
with corrections that could plausibly be fitted with loga-
rithms. Figure 1 looks scalloped and slightly steeper than
linear since we chose to plot o, irrespective of location
to prove that some point hits zero in a finite time.

Further analytic reduction of (2a) is possible if o /7, is
treated as a small parameter. A particularly simple
model is obtained in terms of an average, R, and differ-
ence variable p for the filament pair (i.e., 7, =R +p/2),

dR__ 2 _ 3R
dt _p2+20-2p 3’

Li£=_a§_ IR 2 2
ar 35 < 952 In[1+4p*/(20°)]

2 %
4202 as @

where o obeys (2b), ds=|dR |, and T'/47r=1. Further-
more if p 9R /360=0 initially, it remains so.
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FIG. 1. The minimum core size squared vs time. Both scales
are linear and magnified ten times for each of the three succes-
sive bands of data points (alternating crosses and circles). The
asterisks mark a common value of ¢* that has been shifted to
separate the various scales. The horizontal arrows illustrate the
magnification. The uppermost point in each of bands 2 and 3
repeat the last point in the previous band. The circled points
show the times when the location of the minimum has jumped

to another point along the filament.

With no further approximations we find for
y=p>/(20%
dy/dIn(o™ )=y —(1+y)In(1+y), (4a)
or
p?~20?/[const+In(c~1)], (4b)

when 0—0. The right-hand side of (4a) acts as a
Liapunov function which “confines” the ratio p/o when
the “time,” In(oc~2), tends to infinity. Equation (4b) is
consistent with the slow decrease in p/o as t—t* that we
found numerically.

Two further assumptions, both supported numerically,
yield some analytic understanding of why (2) diverges in
a finite time, i.e., impose max|R | <const and O
>const>p - b, where b is the binormal to R. Then ig-
noring logarithms,

L'2(¢)> const fOtL . (5)

Equation (5) is a statement of convexity which forces a
finite-time singularity. A further assumption that
r./o~const implies, o?>=const(t* —1), neglecting loga-
rithms.

Equation (3) must be understood only as a step in the
derivation of (4) and (5) rather than as a new model
whose trajectories will track (2a). Certain small terms
have to be included to make its linearized spectrum more
closely match (2a) before it can reasonably be integrated
forward in time. Equation (5) then appears merely for-
mal since pointwise singularities with 7./o~const and
0% ~const(t* —t) occur with L finite.
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The small value of o /r, that we found for solutions to
(2a) and (2b) is the key for building from them solutions
of the Navier-Stokes or Euler equations by multiscale per-
turbation techniques. To restore the correct core struc-
ture, one begins from finite-core vortex solutions to the
two-dimensional (2D) Euler equations subject to axial
stretching, and scales them with o(6) as one moves along
the filament. The expansion around o /r, =0 is systemat-
ic.

The extreme stability of vortex dipole solutions in the
2D Euler equations has been demonstrated many times
numerically.!® The third dimension enters perturbatively
to lowest order in o /7, as a uniform axisymmetric strain
and as such can be completely accounted for by a scale
change even for the Navier-Stokes equations. Let
AMt)=(ds /d0)"/? be the integrated strain; then if lower-
case variables denote the strained system the rescaled
variables are,

(X,Y)=(Ax,Ay), (6a)
t
_ 2
T= fox dr | (6b)
QUX,Y,T)=A"2w(x,y,t) . (6¢)

The viscosity is unaffected. An approximate 3D solution,
w, is thus obtained from (6¢) by imagining x,y to be per-
pendicular to the filament and adjoining A(¢) computed
from the Biot-Savart equations.

We consider how higher-order terms could modify the
core shapes and whether the inclusion of viscosity will
cause the evolution of the Oth order solution to deviate
from the Biot-Savart formula. The former question is a
delicate one since the 3D energy computed from quasi 2D
solutions scales as I'’L (if we assume constant shape).
Hence when one region amplifies, energy must be drawn
from the large scales elsewhere in the fluid. The collapse
that we observe is a very efficient means of transferring
and focusing energy.

To bound the distortion crudely we examined the order
of various corrections in o/r, and assumed that any
velocity thereby generated acted monotonically in time to
change the shape. Even so, perturbations only became
appreciable for In[o(0)/0(t)]> ~(r,/0)}’%2. The actual
dynamics of the collapse entered our estimates. When a
vortex ring approaches a free slip wall and expands radi-
ally, the arc length grows only as t? and the core shapes
can change by O(1) when the radius doubles. In fact the
cores must deform if the ring remains axisymmetric so as
not to violate energy conservation.

Clearly o /r., though formally small, may not be small
enough in actuality. Several runs were restarted with one
filament replaced by a bundle of four and no secular de-
gradation of the cores was observed. Since we are uncer-
tain whether L /L(t =0) is large when o? first hits zero,
it is worthwhile to note that (3) suppresses certain insta-
bilities of (2) and thereby makes evident that (2) admits
unstable solutions with 0—0 and little growth in L.

While (6) also provides the essential connection between
solutions of the Biot-Savart and the Navier-Stokes equa-
tions, it is informative to give a more heuristic argument
as to why the strain can nearly overwhelm the viscous
diffusion. Consider the most naive modification of (2b)
that includes the viscosity,

gizv_ozdln(ds/de) _ o
dt dt

Either from (3) or directly from the flow field for a pair
of curved vortex tubes, the strain rate in (7) scales as the
velocity, I'/max(p,o) divided by the radius of curvature.
Since both 7, and p scale with o, the right-hand side of
(7) is v—constI’ which may be negative allowing o? to
vanish. For these reasons we are unable to imagine any
other flow in which the self-stretching balances the
viscosity.

It is now also apparent why if we modified the viscous
term in the Navier-Stokes equations by ¥V?>*€ and re-
placed v by ¥/0€ in (7), no singularity is possible. In a
real sense the Navier-Stokes equations almost diverge be-
cause the viscosity and circulation have the same units.

Our discussion up to this point has assumed that T is
fixed and unaffected by viscous diffusion. Recall (6b)
and imagine that ds /d6~1/(t* —t)%, then for a < 1, T is
finite at ¢* and at most a fraction of T will be lost which
changes nothing. Conversely for a> 1, T(¢t*) is infinite
and diffusion may entirely eliminate the vortex dipole.
The actual value either numerically or from (3) is a=1
plus logarithms. This is the minimum « that would satis-
fy Leray’s bounds' and is another manifestation of the
marginal nature of the usual Laplacian formula for the
damping.

Some degree of stability is necessary in order for our
solutions to have any experimental relevance. However,
isolated points where the pair pinches off should not alter
our conclusions. It may be that core instabilities disrupt
the initial pairing process studied in Ref. 8, yet would not
destroy the collapse after pairing occurred. For this
reason, wall-bounded shear flows are of interest since
paired filaments (“hairpins™) are known to occur.!!

Our numerical simulations plus analysis of (3) convince
us that the Biot-Savart equations lead into infinite
stretching in a finite time. The biggest uncertainty in
promoting even nearly straight vortex filaments into solu-
tions of the Navier-Stokes or Euler equations are purely
inviscid effects that would turn the cores into ribbons as
they stretched. Ribbons would be unstable in spite of any
stretching. If the cores remain circular, then we have a
good argument why viscosity is only marginally able to
control the divergence. The linear decrease of o? figures
essentially in the demonstration.

Our results fall short of common expectations for the
Euler equations, even granting that vortex tubes follow
the Biot-Savart equations. We claim, for instance, only
that max |w |, not the enstrophy, blows up in finite time.
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There may be no universality with respect to initial condi-
tions, e.g., max|v| may never diverge for the Taylor-
Green flow; nevertheless, we resist any suggestion that
vortex tubes are more singular than Fourier modes.
Whatever size the core has initially merely fixes the time
scale and has no other dynamical significance.
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