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A nonlinear hydrodynamic model is proposed which reproduces the integral equation of Leutheusser for
the density correlation function as the first term in a perturbation expansion. At the transition proposed by
this author, our model reduces to a nonlinear oscillator, proving that the transition in this case is an artifact

of the approximation.

I. INTRODUCTION

Leutheusser! has proposed a theory for the transition
from a simple liquid to a glass that proceeds from a non-
linear equation for the density correlation function C,,.
The transition is signaled by a divergence in the longitudinal
viscosity D and is accompanied by a persistent (i.e., nonde-
caying) term in Cpp- Under these assumptions, the wave-
number dependence of C,, in the hydrodynamic limit effec-
tively vanishes leaving one with an equation for C,,(w)
alone, which is solvable analytically at the transition. Refer-
ence 2 follows up on this connection with hydrodynamics by
proposing a nonlinear fluctuating hydrodynamic theory for
the liquid-to-glass transition which reproduces and extends
Ref. 1.

In this paper we analyze a slightly different hydrodynamic
theory, which yields Leutheusser’s equation for C,, as the
first term of a perturbation expansion. At the putative glass
transition, for the reasons enunciated by Leutheusser, all
wave-number dependence disappears, leaving us with the
diagrammatic series for a nonlinear oscillator forced by
Gaussian white noise. This equation does not show any
nonergodic behavior. This seeming contradiction is resolved
by examining higher diagrams and showing them to be in-
consistent with the assumed form of the correlation func-
tions at the glass transition. We also comment on the rela-
tion of our model to Ref. 2. A fairly careful discussion of
the diagrammatic expansion following Ref. 3 is contained in
the Appendix, should there be any question about our con-
clusions.

Our construction cannot logically disqualify Ref. 1 as a
model for the glass transition, since there may well be a
small expansion parameter in the kinetic theory which leads
to the C,, equation which we do not have. It does suggest
that some care needs to be taken in searching for a glass
transition in an approximate theory.*

II. NONLINEAR HYDRODYNAMICS

Consider the system
(1a)
(1b)

p+V-g=0,
g+Vu'(p)—DVig=q ,
where the white noise n obeys
(i )n;(x",t")) =2D38(t — ')V, V 8(x —x')

and p and g represent, respectively, the mass and logitudi-
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nal momentum density, and

u’=—g%=czp+ S wp" . )

n=2
By standard arguments, (1) and (2) imply an equilibrium
distribution function for p and g of the form

P(p,g)=exp(—u—g?¥2) . 3)

Factors of temperature and a unit of density have been set
to 1. All correlations involving p have the appropriate fac-
tors of (p) subtracted off.

It will be convenient to define three different functions
measuring correlations of the fields. Let (pp) be complete-
ly symmetric in the arguments of the two densities (i.e., the
anticommutator quantum mechanically) and let Xpp be the
retarded response function 8{p)/3p, where the infinitesimal
“force’” p enters (1b) according to u’'— u’—8p. Either
function defines the retarded correlation C,, according to

Copo(1,') +Cpp(t',1) = (pp) (1 — ') (4a)
or

(4v)

These relations are consistent by virtue of the fluctuation-
dissipation theorem:

Xpp(@) = Xpp(0) = iwCpp(w) .

2ReC,p(w) = (pp) (w)=% Imx,, (@) . (5
At the linearized level we find from (1)

Xpp = k*/ (K*c* — w?— iDwk?) (6a)
and

Cop=c"l—iw+k*?*/(—iw+Dk?)] . (6b)

The static response is just ¢~ 2.

Consider, following Leutheusser,! the large D limit of
(6b) with o fixed. Clearly, C,, is k independent for
k*> w/D. We show in the Appendix, diagram by diagram,
that provided we impose a cutoff on the internal momen-
tum integrals and incorporate cutoff factors into the cou-
pling constants, (1) and (2) reduce to

x=p ,

p=—u'-Dp+n ,
o @)

u'=cx+ 3 ux",

n=2

(mm)=2Ds(t—1¢") .
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The linear correlation functions read P x
- 24 2 X 3 X
Xox=1/(—0?+c?—iDw) , ® %Z,-('vZ) = 1 2+
Coa=c"Yl—iw+c/(—io+D)] . PP x _Ix x
p
The equilibrium distribution follows (3). $ x
The perturbation expansion for (7) involves two self- X X X
energies, which are related by the fluctuation-dissipation (l==2) + 1 2 +
theorem.® If we examine Eﬁx, which enters the denomina- X X X
tor of X, (8), then, after removing certain constant terms x P
which renormalize c¢? and an overall factor of w, we find to X :
order uf,ui, : X P X
) 1 2 + (| =-=2)
D(w)=D +2uiF(CL) +6u}F(C3) , ()] X « X
with & denoting the Fourier transform of products of Ci P x

taken in real time. Of course, D is properly retarded.
Equation (9), with u4=0 taken together with (8), is pre-

cisely Leutheusser’s equation (1). Again following Ref. 1,

let us imagine that C,, has a piece which relaxes slowly, i.e.,

-2

Co=—L— | (10)
—iw+e

with 0< f <1, e<<1. A self-consistent equation for f

follows, i.e.,
fi—f+c%/QQui)=0 , an

and a ‘‘glass’ state is obtained for the constant term less
than 0.25. It will be observed on dimensional grounds that
precisely in this regime the lifetime of the x — 0 solution
becomes of order 1 due to thermal escape over the barrier,
i.e., the distribution,

P(x)=exp(—c*x?¥2—usx*/3) , 12)

is unbounded. For this reason we included the u4 term in
(9) which keeps everything finite. A cubic equation for fis
obtained in place of (11), which has an acceptable solution
for uj,u4 large. Of course, if one believes (10) is a valid
representation of (7), then a nonconfining potential is not a
problem since the motion is not ergodic.

Equation (7) cannot fail to be consistent with the equilib-
rium distribution (3) or (12). Of course, a nonlinear sys-
tem subject to a periodic force can mode lock and not ex-
plore the available phase space. However, the force in (7)
is white and Gaussian. If we integrate over At << D~1,
¢~ ! then the variance of the force is (DA¢) and there is al-
ways a small probability of a large kick.

When the complete dynamic perturbation series is exam-
ined, the ‘‘glass’ transition for this model appears as just an
artifact of the approximation (9). Before doing this, a fur-
ther simplification is possible which was already apparent in
(6b) for large D. Namely, an overdamped oscillator, (7),
reduces to just

| )'c=—%u'(x)+§ , 13)
with
(L) =2D"'8(r—1') .

Now imagine there is a self-consistent solution (13) in the
form

(xx)=-§e"““‘|+L1—:2f—)-8(t—-t’) , (14a)

x,“=%e“““")®(t~t') +—(LZTQ8(I—-/—-O+) , (14b)

FIG. 1. The three distinct graphics that contribute to Eﬁﬁ to order
u34. They all carry a weight of eight, but the first and third possess

mirror images (right to left), which are shown as (1~ 2).

where © is the step function, e — 0. The §-function terms
are shorthand for the pieces of C or X which decay rapidly
to zero.

Equation (14) is consistent with (10). For instance, by
(4b) and for small w,

: -2 -2
X (@) = A9LE— y o2 _efe__ L 1oF ()
—iw+e —iw+e I
One obtains the correct static limit if w — 0 before € — 0,
but a smaller correlation in the opposite limit. The constant

term in (15) is just the weight in frequencies >> e.

Imagine substituting both the slow and fast terms of (14)
into the higher-order diagrams for (13) or (7). [The ansatz
(14) applies equally well to (7) if we call Xy, X35 similarly
the graphs in Fig. 1 apply to (13) if the reverse substitution
is made.] The pieces of graph involving only the & func-
tions in X were retained in Ref. 2 to yield an equation simi-
lar to (9) with an unknown but local function of C replacing
C? and C3. All convolutions disappear, since there are as
many 8 functions as interior integrals over time. The slow
pieces of X cannot be neglected, however, since although
they contain an explicit €, the associated time integrals have
an effective range of order e !, provided that only the slow
part of (xx) is kept. Once again, there are as many interior
integrals as factors of X, so € disappears. Since f is of order
1 at the transition, both pieces of X must be retained and
(9) involves arbitrary convolutions of C. Hence there is no
local equation linking D (¢) with C(¢).

Whether one regards (14) as an acceptable ansatz depends
on interchanging an € — 0 limit with the order in the expan-
sion tending to infinity. If this is done then C(w) —w™!
implies D(w) ~w~! as w—0 simply on dimensional
grounds. This is a dangerous argument, even supposing the
coefficient in C and D can be made to work out, as the ex-
ample of (13) shows. There the small e disappears from the
problem entirely by redefining the time scale. There is
clearly no dynamical reason why e should tend to zero as
other parameters in the model are varied.

III. CONCLUSION

Hydrodynamical theories of the glass transition are not
new. For spin glasses, Sompolinsky and Zippelius® used a
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relaxational model to elucidate some of the peculiarities of
purely static calculations. At the same time, they found it
necessary to restate the fluctuation-dissipation relation and
to suppose that strictly linear response and the thermo-
dynamics limit are incompatible. Neither property has been
investigated in the present model. .

Spin and structural glasses are very different in that there
are manifestly competing interactions in the former. While

there may, in principle, be some vestige of frustration in su--

percooled liquids if one hypothesizes sufficiently robust lo-
cal order, a hydrodynamic theory would certainly miss it.
One can inquire into the mechanism of a glass transition by
considering the simpler problem of localizing a particle in a
fixed array of scatterers.® With hard cores, steric effects can
obviously lead to localization, but for soft cores or a point
test particle we presume classical mechanics yields ergodic
motion.” We are unaware of any analog to quantum locali-
zation in the manner of Anderson.

We also cannot claim any quantitative correspondence
between our model (1)-(3) and a kinetic theory calculation.
Clearly, the viscosities and diffusion constants do not in-
volve the potential only through the virial coefficients (i.e.,
u,), as (1)-(3) assume.

We do not see, on the other hand, why the model of Ref.
2, being hydrodynamic, is any more plausible a starting
point for studying the glass transition than (1)-(3). The
convective term in Ref. 2 is only used to rule out considera-
tion of low dimensional systems. We have been unable to
derive an analog to their Eq. (8), a local relation between
D(t) and C(t), and we doubt that one exists. If instead
one merely imagines matching coefficients of »~!, then al-
most any field theory is a candidate for a glass transition.

One might take a more phenomenological view, and trust
a hydrodynamical theory to give the correct singularity at
the transition, even though it does not predict when a tran-
sition will occur. One then must contend with the disap-
pearance of all wave-number dependence at the transition
that Leutheusser noted. The contribution from various
scales is then proportional to their phase-space volume.
Wherever one puts the cutoff one has to argue why smaller
scales themselves are not glassy. It is these ‘‘atomic’’ scales
that one customarily lumps into a bare viscosity which is
supposed to be nonsingular. In the present circumstances
hydrodynamics suggests small scales ‘“‘freeze’’ first. In oth-
er terms, the usual renormalization-group notions one in-
vokes to make sense out of fluctuating nonlinear hydro-
dynamics near a second-order phase transition emphatically
do not apply here, since the singularity originates on small
scales.
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APPENDIX: DIAGRAMMATIC EXPANSION

We first generate the diagram rules for (7), since their
generalization to (1) and (2) is trivial. Two operators X,p
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are introduced, obeying the commutation relations
[x%1=1, [ppl=1,
in terms of which a ‘‘Hamiltonian,”’
H=3%p—Dpp+pn—pu’ , (A1)

can be written, which permits one to reexpress the equa-
tions of motion, (7), as commutators, e.g.,

x=[xH], x=I[%H], etc.

A perturbation expansion is constructed in terms of correla-
tions (xx), (xp), etc., and formal responses (xX), ...,
(%Xx), ..., where the first set are retarded and the others
advanced. They are all conveniently grouped into a 4x4
matrix propagator.

Interactions come solely from the term pu’ in (A1). The
only nonvanishing self-energies are X, 3;(=3;), and
2;,5 which are, resepectively, retarded, advanced, and sym-
metric in time. The simplest way to express G in terms of
X is to observe that 3; and 3,; always occur in combina-
tion with ¢? in G~', while 3; naturally adds to (yn).
Thus,

(x£) =(—io+D)/ (-’ +?~iDo—3;) ,
(pR) = —iw(xX) -1,

(xp) =1/(—w?+c*—iDo—3;) , (A2)
(pb) = —iw({xp) ,

(xx) =(2D +3;) [(xp) 1 .

The remaining functions can be found by using —iwx =p.

The physical response function X, we introduced above is
computed by adding an infinitesimal force to u’ in (7), i.e.,
the equilibrium distribution should become

P~exp(—cx¥2+fx+ )
We then add pf to H and prove
(A3)

Since our diagrammatic expansion is not restricted to
equilibrium problems, the fluctuation-dissipation relation is
not obvious. Thus it must be shown that

X:Dt-—'(xﬁ) .

(xx) =2 1m(xp) (Ada)
or

The diagram rules for (G ) obey the usual combinator-
ics, thus to &(u,2), ignoring ‘‘Hartree®’ terms,

Eﬁx(tt") =nnluly (xx)""Yxp) , (A5a)
S () =nludey (xx)" . (A5b)
To verify (A4b) we write
2Im[%; ()]
=n(n!)u42f(w—E,w,)(xx)(w—E,w,):'];]i(xx)(w,) ;
(A6)

when the frequency integrals are symmetrized using
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w,=w—3 "1, the explicit frequency dependence reduces
to w/n. Q.E.D.

Equation (9) follows from either the numerator of (xx)
or the denominator of (xp). In the former instance one
has to write (A5b) as an advanced and retarded piece using
(4a). To work from 3X;, use (4b) to reexpress
(xp)(w) ={xp)(0) +iwCx(w). The constant piece in
(A5a) adds to c%, while in the remainder we use (4a) to
write

n—1
J 10310 Calo—%0) TT (xx) (@)

i=1

. n—1
—12 [ uto=—%w0) T Culw)
The external w;/n factor arises just as in the reduction of
(A6).
A closed equation for Cy to arbitrary order in u'(x) fol-

lows from (xp) in (A2) and (A3) with iwCx=(xp) (w)
—(xp) (0);

[—w?—iwD +é2—iwsD(w)]Cx=1H. , (A7)

where 8D =F (0 (1 —1')%; (¢ —1')) picks out the retarded
piece of %; as explained above, and the inhomogeneous
term (I.H.) results from the elimination of (xp)(w). The
renormalized static susceptibility is denoted by ¢ ~2, and LH.
just enforces the boundary conditions on Ck, ie.,
Cxc(0) =72, dCx (0)/dt = 0.

To examine the self-energy to higher order (e.g., Fig. 1)
in the ‘‘glass’” limit we found it easier to retain
3({xx),{xp)) and use (14) in place of (10). Clearly, in
2;,;, every interior vertex brings in one p and hence one
(xp) line as well as one time integral.

The reduction from (7) to (13) is also easy to see in the
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large D limit. For (xp) in (A2), we have
D~ 1

P =

and we identify e=c?/ D and reduce the weight by f to re-
cover (14b). The diagrams for (13) are generated from

1

A=-
D

xu'(x)=x¢ .

There is no ‘‘Jacobian term’’ if we are careful about the or-

der of X and u’. In X for (7), (xp) is replaced by (xX).
There is a natural correspondence between (1a) and (1b)

as a function of wave number and (7). Specifically,

X=p, P=—ik-g m=k’y ,
C?=k*? D=k*D, U,=k%, ,

where capitals on the left-hand sides are used to rewrite (1)
in the form of (7). To verify the fluctuation-dissipation re-
lation, observe that

Xpp (k) = K*(XP) .

Furthermorg, all the k dependence on the vertices is associ-
ated with P and thus always occurs in the combination

k*(XP). Therefore, 2(X,,, (pp)) is identical to what one

would obtain from (7) using the analogous variables. Note
that the exterior factors of k work out properly, a k? from
3, to be combined with —DV? in (1b) and a k* from 2
to add to 2Dk* in the numerator of (PP). Equation (9)
remains unchanged save for a convolution in wave number
since (4a) and (4b), which relate X,, and (pp) to C,,, are
identical to the corresponding relations for (7) with x replac-
ing p.
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