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The conventional cloud-in-cell vortex representation of the two-dimensional Euler equations is modified to
allow energy injection from small scales. A simulation of the inverse cascade yields an energy spectrum

consistent with k£ ~** and a Kolmogoroff constant of 14.

The two conservation laws of energy and enstrophy
are well known to greatly constrain the manner in which
an inviscid, statistically homogeneous and isotropic,
two-dimensional flow can relax to equilibrium.’ When
a two~dimensional fluid is randomly forced, energy
cascades to small wavenumbers and enstrophy to large
wavenumbers.?

Far less attention has been paid to the inverse energy
cascade than to the enstrophy cascade since Lilly’s
first numerical simulations.® In this note, we report
on a simulation of only the inverse cascade, but on a
considerably larger scale than Lilly was able to run.
To accomplish this, we have extended the scope of
point vortex methods in two dimensions by devising a
physically plausible forcing technique to inject energy.

Vortex methods have been successfully used to simu-
late 2 number of nearly inviscid flows when the vorti-
city is nonuniformly distributed. When used in conjunc-
tion with a lattice to facilitate inversion of Poisson’s
equation (the cloud-in-cell algorithm?), their numeri-
cal efficiency is competitive with finite difference or
spectral methods. For the statistically homogeneous,
isotropic flow simulated here, one might hope that, in
spite of the effects of the lattice, a vortex simulation would
better express the local conservation of circulation (Kel-
vin’s theorem). A second reasonforapplying vortex meth-~
odstothis problem concerns the forcing. When a spectral
or finite difference simulationis forced at some wave-
number k,, the ratio of enstrophy to energy injected is
given oy k7 (Ref. 3). The former must be dissipated by
viscosity so the simulation must extend at least out to
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4k,. If an enstrophy sink is not provided, the energy
spectrum will remain peaked about k, and no inverse
cascade will materialize. As we shall see, vortex
methods do not require a viscosity and the ~2 spectrum
may extend out to the highest wavenumber resolved.

Let ¢ be a stream function obtained from the Poisson
equation

V2¢= -w, (1)

where the vorticity w=2‘ K 0(r-r,), Ei k,=0, and each
kK, =tk. Vortices move according to

Fo==2% VY (r,)+v(r), @

where ¥’ is the stream function due to all vortices ex-
cept the one at r, and the last term represents the as
yet unspecified forcing. The total kinetic energy, less
the self-energy of the vortices, is 1/225, x$'(r,). We
invert (1), subject to periodic boundary conditions, af-
ter smoothing the vortices onto a lattice. The spatial
derivatives in (2) are computed as centered differences
on the lattice and then interpolated. (While our code
generally follows Ref. 4, additional details and dlag-
nostics are given in Ref. 5).

In the atmosphere, the energy supplied to the largest
scales ultimately comes from small scale processes
such as convection. If, however, the motions of interest
are separated from the actual forcing by a larger range
of scales than can be accommodated on the computer,
some subgrid modeling is needed. The “force” then
represents energy transfer from smaller scales. With-
in the context of a spectral simulation, closures could
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provide the necessary parametrization for the energy
transfer from small scales,® but the rather intricate
coding involved has never been done. Instead, we shall
suggest a physically plausible functional form of the
forcing to be used in conjunction with (2), (Its appro-
priateness could be checked by comparing simulations
covering different ranges of scales just as is done for
subgrid models in three dimensions.”)

Let us assume

v, (r,) =Bk, Vip(r,), ®)

where B is a scale factor (possibly time dependent) and
Jg is the stream function ' filtered to remove all wave-
numbers less than some %2;,. While the strongest argu-
ments in favor of (3) can be given a posteriori, it can

be made physically plausible.

In the absence of forcing, Eq. (2) represents the ad-
vection of vortices along the instantaneous stream lines.
The force (3) is provided by a small incremental velo-
city up or down the local stream function gradient de-
pending on the sign of «,. Since the energy is itself the
product of a vortex strength «,, and a stream function
', it is not implausible that (3) will increase the en-
ergy. Equation (3) is also in accord with the notion of
negative viscosity. Individual vortices are pushed
toward clusters of like sign contrary to the action of
ordinary diffusion. Lastly, imagine that for some rea-
son (e.g., drag against a substrate) the motion of a point
vortex lags behind the local velocity. The Magnus force
will then result in a component of motion at right angles
to the local velocity. Equation (3) points in the opposite
direction of this incremental velocity.

The small 2 components of §’ were filtered out to ar-
rive at (3) since we insist that the energy input is un-
changed if a large parcel of fluid is advected uniformly.
That is, the energy transfer from small to large scales
is not modified by uniform sweeping.

The data we present were obtained with 128%= 16384
vortices on a 256 X 256 lattice. Extensive runs were
also made on coarser lattices with proportionally fewer
vortices where the dependence on various parameters
could be explored and various possible systematic er-
rors examined.

The energy spectra shown in Fig, 1 were computed
from the Fourier components of the lattice vorticity.
All modes with integral wavenumber % <64 were re-
moved from ¥} in (3), where units are used in which the
minimal allowed wavenumber is 1 and 8 [« | = 0.004.

The forcing is localized as much as seemed sensible to
high #. Along with Fig. 1 we prepared a plot of energy
vs time which was linear to within a few percent and the
slope of which defined €, the rate of energy input.

Initial conditions were chosen to approximate statisti-
cal equilibrium? with as much energy as possible at
high 2. Once the high # modes adjust they remain fixed
and energy cascades backward. The rate of increase
of enstrophy (computed from the lattice vorticity) de-
creases since € is constant and energy is being added
at progressively smaller wavenumbers. The Kolmo-

172 Phys. Fluids, Vol. 24, No. 1, January 1981

o aren

FIG. 1, Alog-log plot of the energy spectrum E(k)=7k{vy Vy)
at four successive times. The dash~line has a slope of -—g.

goroff constant is of order 14. When a larger value of
B was used, the entire spectrum moved up before the
inverse cascade developed. With much smaller 8 a
hump in E () at large k remained from which the -2
spectrum emerged. In either case the Kolmogoroff
constant was indeed constant with. changes in E(#) and
€ compensating.

For the later times we were able to demonstrate that
the rate of energy increase of the large scales was cor-
rectly predicted by computing the energy transfer from
the two-dimensional Euler equation using ¢ defined on
the lattice. Thus, whatever defects Eq. (3) may have,
it has been shown to lead to a constant rate of energy in-
put localized at high 2. Having done this, we have not
addressed the more delicate question of how universal
are the statistics of the largest scales. A more subtle
dependence on the forcing function rather than just
through € is conceivable.

The most important conclusion to be drawn from our
simulation is the unexpectedly large Kolmogoroff con-
stant, which is about twice the accepted value.®® A
large Kolmogoroff constant is indicative of an ineffi-
cient cascade; that is a small € is associated with a
given E(¢) or local shear, or a large shear is required
to generate a given €. It is appealing to conjecture that
a vortex code gives a more accurate account of the lo-
cal dynamics in two dimensions and thereby impedes
the energy transfer. It would obviously be interesting
to repeat our simulations with a spectral code of com-
parable spectral range.

The advection and forcing effects are on a very equal
footing in Eq. (3). Once E(%) has stabilized for large
k, the ratio |v;|/|vy’| never exceeds 0.003 and is de-
creasing. The motion of the vortices thus is very nearly
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coincident with the instantaneous stream lines. A Kol-
mogoroff constant of order 10 is really very large. One
might therefore speculate that intermittency will not

be significant in the inverse energy cascade and the
modal statistics will be nearly Gaussian.
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Under subcritical conditions, it is shown that a spatial variation of the velocity amplitude of convective rolls is
accompanied by a modification in their wavenumber which takes values lower than the critical one.

The question of the analogy between second-order
phase transitions and hydrodynamic instabilities as
exhibited, for instance, by the Rayleigh—Bénard prob-
lem has received much attention in recent years. In
particular, Wesfreid et al.’ found that the convection
induced at one side of a Rayleigh—~Bénard box main~
tained under subcritical conditions exhibits a spatial
exponential decay of the amplitude of the rolls with a
characteristic length £_varying as e“’z, where € =(R,
-R)/R,, R and R_ being the imposed and critical Ray-
leigh numbers. The numerical simulation of such a
triggered subcritical convection in the electrohydro-
dynamic case® further revealed a decrease in the wave-
number k& when R decreases below R, a feature also
visible from a similar study in the Rayleigh-Bénard
case,’

Here, we focus on this wavenumber variation with
the idea that a spatial modulation of the amplitude of
the rolls is necessarily accompanied by a variation in
the wavenumber. In this view the problem might have
some relevance to the supercritical conditions (R>R,)
where a decrease in £ vs R has been observed.*

Let us return to the Rayleigh~Bénard problem under
subcritical conditions (R <R,) with a triggered convec-
tion roll of low enough amplitude so that the z compo-
nent of the velocity w satisfies the linear equation

Véuw =RV2w . 1)

173 Phys. Fluids 24(1), January 1981

0031-9171/81/010173-02$00.90

Seeking for an asymptotic solution of the form
w(x,z) =W(z) exp(ikag -ax),
Eq. (1) gives
(D? +¥*)’W=Ry*W | (2)

where D =d/dz and y=ik —a. In the case of two hori-
zontal free surfaces, the solution of (2) with the cor-
responding boundary conditions is W(z) =sinmz which
leads to

(2 =) =Ry*. 3)

Since R is real, Eq. (3) gives two equations (relative
to real and imaginary parts) relating the two variables
a and k2. For R<R_, these equations have a unique
couple of real roots (o> 0). Figure 1(a) shows that 2
increases with R (R<R_). For R-0, we can deduce
from (3) the asymptotic expressions

B~ (V3/4)R/mB, a=1-LR/7)A.

For R—R (e ~0), it is easy to see that  and a? vary
linearly with €. Putting

R =k(1 +ae), a®=kbe,

with &, =7/V2, we obtain, after substitutions, a =-"7/24
=-0.292 and b =%. The formula obtained, a =v'3/2
x (1/2)€'”, is identical to the law for the influence
length £_(£_=a™) given by Wesfreid et al.® for the free—
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