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The various routes to chaos are explored for a nonlinear mechanical system mode locked to one of two incommensurate 
external frequencies. Two types of transitions are seen in our model system. A saddle-node transition with its associated 
intermittency can occur when the mode locking is lost while the attracting two-torus remains smooth. A less trivial transition 
can occur in which the attracting torus roughens and the power spectrum of the time series develops singular low frequency 
components; after the breakdown mode locking persists with noisy small-scale motions about the former torus. At the 
multicritical point where these two transition lines meet scaling and universal low-frequency power spectra are observed. A 
renormalization group treatment is proposed. The analysis might also be applicable to transitions in rotationally invariant 
systems. 

I. Introduction 

Cer ta in  t rans i t ions  (b i furca t ions)  in the d y n a m -  

ics o f  classical  mechan ica l  systems are  closely 

re la ted to phase  t rans i t ions  in s ta t is t ical  mechanics .  

In par t icu la r ,  r eno rma l i za t i on  g roup  me thods  de- 

ve loped to s tudy  second  o rde r  phase  t rans i t ions  

have been successfully app l ied  to several  con- 

t inuous  b i furca t ions  [1-6]. The  r eno rma l i za t ion  

g roup  in these p rob l ems  a m o u n t s  to a dec ima t ion  

o f  the t ime series; because  the t ime series is one-  

d imens iona l ,  the analysis  essent ial ly  can be done  

exactly.  The  universal  p red ic t ions  a b o u t  these bi- 

*Address as of August 1, 1983. 

furca t ions  can be more  deta i led  than  those a b o u t  

phase  t ransi t ions .  N o t  only  are  there exponen t s  

govern ing  the a p p r o a c h  to the t rans i t ion  bu t  of ten 

[1-5] there is a highly s t ruc tured  s ingular  universal  

low f requency spec t rum at the t rans i t ion .  

In this p a p e r  we begin the s tudy o f  a no the r  class 

o f  bi furcat ions .  Cons ide r  a dissipat ive,  non l inea r  

physical  system forced at  two incommensu ra t e  

frequencies.  Fo rced  only  at  one f requency 090 the 

system will of ten r e spond  at  a f requency P09o/q 

c omme nsu ra t e  with the forcing. This  mode  locked 

state will generical ly  be s table  to small  var ia t ions  

in the dynamics .  In  par t i cu la r ,  we shall  see tha t  it  

will persist  under  the in t roduc t ion  o f  the second 
frequency 092. 
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Let our  physical system be represented by a 

single variable q~x and our  external forces by vari- 

ables q~0 and 4~2, 0 ~< ~bi ~< 2re. I f  we measure  the 

state o f  the system at periodic intervals 2zt/co0, we 

get a Poincar6 once return map  f(qS~, ~b2). We 

believe the following form is sufficiently general to 

encompass  the (universal) features o f  the bifur- 
cations we intend to study: 

('L(4',, 4'9"] 
f(4,,, 4,2) = ~(4,, ,  ,~2)J 

= (~b, + co + a cos(~bx) + b cos(qS, - ~b2) ) 

~b 2 + 2rta 
(1.1) 

We define winding numbers  Pt and to2 for f ,  giving 

the mean  rota t ion in the 4h and ( ] )2  directions, 

p, = lim [(fn)i(~ D (])2) - -  qSi]/(2rtn) • (1.2) 

In eq. (1.1), P2 = o. We confine our  analysis to the 
golden mean  a = (x/5 - 1)/2. Extensions to other  

good  irrationals should follow as in ref. 2; why the 

golden mean  should be experimentally op t i m um is 

also discussed there. 

At  b = 0 the system is forced at only one fre- 

quency; for [a] < [co[ the system is mode  locked to 

that  frequency. Tha t  is, the m a p  f~ has a stable 

fixed point  at q51 = s = a r c c o s ( -  cola) and unsta-  

ble fixed point  at 4) 1 = u = 2 r e - s ;  the winding 

number  p~ = 0. For  small b these turn into curves 

4~1 =s(q~2) and q~l = u(~b2) (fig. 1) which in the 
original state space form an at t ract ing and a 

repelling torus. This article is devoted to a thor-  

ough  study o f  the destruct ion o f  the stable curve 

s(q~2) as we change the parameters  a, b, and co. 

The system described in eq. (1.1) should be 
generic (as described above)  in the class o f  non-  

linear dissipative dynamical  systems forced at two 
frequencies. (More  precisely, eq. (1.1) describes 

generic nonl inear  dissipative systems with two 

neutral  directions representing periodic forces and 
all but  one o f  the remaining directions s trongly 

contract ing.  As in Fe igenbaum period doubling,  

we believe this noninvert ible m a p  has the universal 

277 

0 2rr 4, 
Fig. 1. Stable and unstable curves. The stable and unstable 
curves found by iterating f o f  eq. (1.1) with a = 0.5, b = 0.9, 
co = 0.4 and as always o = (x/5 - 1)/2. The curves s and u are 
the Poincar6 sections of the stable and unstable torus in the 
original (continuous time) dynamical system. Along the 
football-shaped curve F the Jacobian Ofl/~491 o f f  is zero, and 
f does not have an inverse. Under iterations, the flow is 
motion away from u and into the curve s, superimposed upo~ 
a uniform rotation in the q5 2 direction. As one approaches the 
saddle-node transition from this state, the curve s will first leav~ 
the region bounded by F and then the curves s and u wil 
smoothly and uniformly coalesce. 

features o f  dissipative invertible systems in highe: 

dimensions.) For  arbi t rary  flows on a three-toru: 

it is o f  course not  generic, since f2 should includl 

an additive periodic funct ion o f  q~l and ~b 2. 

mode- locked state on a three-torus with two in 

commensura te  frequencies whose ratio is kept fixe( 

can break down in a variety o f  ways. For  som~ 

parameters  the embedded two- torus  shouk 

roughen following the same universal route as th, 

dissipative annular  maps  o f  refs. 2 and 3. Alterna 
tively, the two- torus  can "coll ide" with its unstabl  

counterpar t  in a higher dimensional  analogue o 
the saddle-node bifurcat ion [5] (see also sectiol 
2.2). It is also possible that  a tho rough  renor 

malizat ion g roup  analysis would  show the generi 

nonl inear  terms in f2 can be irrelevant, leading on 
back to the system described in eq. (1.1). There ar 

several qualitatively different transit ions th~ 
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emerge from (1.1) that we analyze below. Whether 
at any of these the nonlinear terms in f2 are 
irrelevant remains to be seen. 

In general (and we believe in eq. (1.1)) flows on 
a three-torus are mode locked on an open dense 
subset of parameter space. When the parameters 
are adjusted so that the rotation rates of  the three 
phases are suitably incommensurate, then Ruelle, 
Takens and Newhouse [7] have shown that arbi- 
trarily close to such a flow in the space of  all 
possible flows there is an open set on which the 
motion is described by a truely chaotic attractor. 
(The "chaos" in their construction is confined to 
very low frequencies.) On the other hand, one 
could hope to use a KAM-like approach to show 
by varying two parameters consistently as the 
stress (nonlinearity) on the system is increased that 
a quasiperiodic flow on a three-torus can be kept 
quasiperiodic-i .e . ,  non-chaotic [8]. (Arnold has 
shown this for a two-torus [9].) We numerically 
checked that eq. (1.1), with a = 0.5, b = 0.2 and 

= P2 = (x/5 - 1)/2 can be tuned by varying o9 to 
achieve pl = x / 2 - 1 ;  the spectrum numerically 
consists of  sharp peaks (quasiperiodic) with no 
observed chaos. Thus in this (non-generic) map, 
quasiperiodic flow on a three torus can be main- 
tained by varying one parameter. 

Rand [10] has shown that in systems with circu- 
lar symmetry flow on a two-torus will not mode 
lock. This makes (1.1) an attractive model of  
Couette flow in the modulated wavy vortex regime, 
though it is certainly not generic for rotationally 
symmetric systems (e.g., we have assumed the 
attractor lies on a three torus in the chaotic 
regime). Also, one can put this system in a param- 
eter regime where there is naturally periodic mo- 
tion and apply one external incommensurate force. 

Another setting in which systems of the form 
(1.1) naturally arise is in the spectra of  a one- 
dimensional Schr6dinger equation with a quasi- 
periodic potential. Consider the equation 

- ~SxZ + U(ogoX, o92x) 0 = EO, (1.3) 

where U is periodic with period 2re in both its 

arguments. It has been shown [11] that there are 
extended eigenstates of (1.3), with the form 

O (x) = e i°,x z (og0x, o92x) (1.4) 

with X again 2re periodic in its arguments. If one 
thinks of  the Schr6dinger eq. (1.3) as an autono- 
mous system of differential equations in "t ime",  

&~o 04~2 020 
Ot - o90, ~3t - ° ) 2 '  0t 2 - [ E -  U(qbl,~b2)]qJ, 

(1.5) 

then the proof  of (1.4) is equivalent to the existence 
of  quasiperiodic motion on a three-torus (~b0, q~2 
and ~bl = arg(6) with ]~b I a smooth function of q~0, 
~bl and 4)2). The energy E is a parameter analogous 
to o9 in eq. (1.1); as it is varied, q51 mode locks to 
~b0 and q52 on an open dense set (gaps in the 
spectrum), and is incommensurate on the com- 
plement (bands). Of course since the ~, equation is 
linear, the evolution of  ~b~ implicit in (1.5) is 
non-generic. Nonetheless, this system may share 
some fixed points with eq. (1.1). 

2. Qualitative properties 

2.1. The mode- locked region 

As we vary the parameters a, b and o9, the stable 
curve ~b 1 = s(q52) of  eq. (1.1) deforms (see fig. 1), 
until it is eventually destroyed. Fig. 2 is a phase 
diagram for a = 1/2 showing the mode-locked 
region where s(4~2) is smooth and has zero winding 
number in the ~bl direction (p~ = 0). There are two 
ways in which s is destroyed. Along the side 
boundaries we shall show that s disappears in a 
saddle-node bifurcation. That  is, s(~b2) while re- 
maining smooth collides with the unstable curve 
u(qh) and annihilates in a manner quantitatively 
equivalent to the familiar coalescence of  stable and 
unstable periodic orbits studied in refs. 6. Along 
the top boundary s becomes crinkled (singular on 
short lengthscales = long timescales), leading to a 
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Fig. 2. Phase diagram a = 0.5. Approximate boundaries for 
regions of  zero winding number in the q~] direction, for the map 
f o f  eq. (1.1) with a = 1/2 and ¢r = ( x / 5 - 1 ) / 2 .  The various 
phases and transitions in this diagram are the subject o f  this 
paper. In the mode-locked region the attractor is apparently an 
analytic curve ~b~ = s(q~2); in tl~e tornado region the attractor is 
bounded in the ~b~ direction (zero winding number Pl) but 
appears to fill a two-dimensional area. The crinkling and 
saddle-node transitions are the two-ways in which the mode 
locked state s((o2) can break down. The dashed boundary of  the 
tornado region represents the onset of  intermittent bursts 
(winding in the q~l direction) in the already chaotic tornado 
state. 

chaot ic  state with zero winding n u m b e r  (p~ = 0) 

and a fuzzy, " t o r n a d o "  like a t t rac tor .  
First, one might  ask why the curve s remains  

smoo th  as pa rame te r s  are varied.  Suppose  for  one 
value o f  the p a r a m e t e r  p = (a,b, og) the m a p  

ff(~bh ~b2) o f e q .  (1.1) m a p s  the smoo th  curve s into 
itself. Unde r  a small change 6p in p,  we want  a new 
curve (s + 5s) (~b2) close to s which is fixed under  
jo  + a< I f  we define 

d(~2)=fC,+~(s(~2-2x~), ~2-2x~)-s(~2), 
(2.0 

Df(~b2)  = ~ ( s G b 2 ) '  ~b2) 

= 1 - a s in ( s (q~2)  ) - b s in ( s (~b2)  - q~2), 

(2.21 

then d and D f a r e  also smoo th  funct ions of  ~b 2. To 
first order  in 6p, 5s must  satisfy 

bS(~2)  = d(q~2) + Df(q~ 2 - 27~G)6s(q~ 2 - 2 g a )  

n - - I  

= ~ d(~b 2 - 2 ~ m a )  f l  Df(q~ 2 - 2~k~)  
m = 0  k = l  

+6s(~b2 - 2rma)  1 e] Df(4~2 - 2 r&~) .  
k = l  

(2.3) 

I f  D f  has only power- law zeros, we can define the 
L iapunov  exponent  (the cont rac t ion  rate) 

2~ 

f dq~ logll - a sin(s(q~2)) 
27: 

0 

- b sin(s(~b2) - ~b2)] • (2.4) 

I f  A < 0, then for  good  irrat ionals  a the infinite 
p roduc t  l-IU=~ D f ( ~ b 2 - k ~ )  should converge to 
zero like e NA, and 5s should be a smoo th  funct ion 

of  q~2 (since 5s in eq. (2.3) is essentially a finite 
(geometr ical ly converging)  sum o f  smoo th  func- 
tions). Numerical ly ,  A ~ 0  on the boundar ies  o f  the 

mode- locked  region in fig. 2. We conjecture that  
for  good  irrat ionals  ~r, A = 0 is a necessary condi-  
tion for the b reakdown  of  m o d e  locking. 

We note here that  the m a p  f i n  eq. (1.1) is not  
invertible when ]a] + Ibl > 1. The  curve r where the 

Jacob ian  1 - a sin (~1 - -  b sin(~b~ - 4~2) o f f  is zero is 
a foo tba l l - shaped  region depicted e.g., in fig. 1. F 
will be an impor t an t  curve in our  analysis. 

2.2. The saddle-node transition 

Across  the side boundar ies  of  the mode  locked 
region in fig. 2, the i terates of  the m a p  wind in the 
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(j~, direction (p~ ~ 0). Between the mode-locked 
regions, the map can exhibit quasiperiodic motion 
of three incommensurate frequencies as mentioned 
in the introduction. Truely chaotic motion (with 
positive entropy) is only possible when the map is 
noninvertible. (The Sinai entropy of  a map is less 
than or equal to the sum of  its positive character- 
istic exponents. If  a map is invertible, its entropy 
is equal to that of  its inverse. Since one of  our 
characteristic exponents is always zero [in the 
trivial ~b 2 direction], i f f  is invertible its entropy is 
zero). The map can also lock into modes where 1, 
p~, and P2 are rationally related; fig. 3 shows a case 
where 1 lpl = - 1 + 2p2. These mode locked states 
have phase diagrams qualitatively similar to fig. 2, 
with saddle-node transitions, crinkling transitions, 
tornadoes, and multicritical points. 

At the side boundaries, the stable curve s(~b2) 
remains smooth, and appears to coalesce with the 
unstable curve u(tk2). At b = 0 this is just the 

27T 

o / 

/ 

27r 

Fig. 3. Stable  curve  for ano the r  mode - locked  state.  A mode-  

locked s ta te  wi th  p~ = (2/1 l )p  2 - (1/11) is found  in f a t  a = 0.5, 
b = 0.2, to = 0.52 (P2 = ~ = (x /5  - 1)/2). I t  has  a negat ive  Li- 
a p u n o v  exponen t  A ~ - 0 . 0 0 3 5 7  and  the wind ing  n u m b e r  p~ is 
cons tan t  under  small  changes  in a, b and  09. One would  expect  
reduced copies  of  fig. 2 a b o u t  al l  m o d e  locked  states;  we have  
seen several  numer ica l ly .  The  mode - locked  s ta tes  are p r o b a b l y  
dense in p a r a m e t e r  space, a t  least  for smal l  a and  b, bu t  no t  o f  
full measure .  

conventional saddle-node bifurcation of  the circle 

map at lal--I 1, since f1 is then independent of ~b~. 
As in the saddle-node bifurcation [6], on ap- 
proaching the boundary at constant b 4= 0 from the 
mode-locked side the contraction rate (eq. (2.4)) 
A ~ I c-col'/2. On the far side Pl V= 0; the orbits 
spend most of  their time running along the path of  
the former curves s and u (which no longer exist), 
with occasional rapid excursions that wrap around 
the torus once in the q~l direction. The frequencies 
of these intermittent bursts determine the winding 
number p~; as in the saddle-node bifurcation 
Pl  ~ - ' '2 .  (The contraction rate is of course 
non-zero and Pl is constant in the other mode 
locked regions, as in fig. 3) 

A second way of  displaying the saddle-node 
transition is by approximating [12] the irrational 
frequency ratio P2 by a rational approximant 
tr =p/q .  This will be a useful tool in studying all 
the transitions. The stable curve s(q~2) becomes a 
stable q-cycle; iterating the map makes s(q52) a 
stable fixed point of  (fq)~(4h, 4)2) (by this notation 
we mean the first component of  the qth iterate of  

4/T 
-5- 

271" 
-5- 

2~ 4~ 

Fig. 4. Saddle-node  t ransi t ion:  r a t iona l  app rox iman t .  
(fs)l(~b I, 0) vs. ~b I for tr = 5/8, a = 0.5, b = 0.9 and  to = 0.50, 
0.54 and  0.58. The  sadd le -node  l ine in fig. 2 for a = (x /5  -- 1)/2 
is a conven t iona l  sadd le -node  b i fu rca t ion  of  a s table  and  
uns table  q-cycle for r a t iona l  a p p r o x i m a n t s  p / q  ~ tr. 
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the map). (fo)l for q52e[0 , 27t/q] is analytically 
conjugate to Ocq)l for qb2s[2gn/q , 2rc(n + 1)/q]; in 
this case we expect fq to be qualitatively ~b2 inde- 
pendent. (See, however, the rational approximants 
at the multicritical point in 2.4.) We therefore can 
examine an essentially one-dimensional map (fq)~ 
(~bl, q~2) versus ~b I (fig. 4). In essence we have 
"integrated out"  the q~2 degree of  freedom and all 
interesting physics occur in the q~ direction. Here 
the one-dimensional map exhibits a saddle-node 
bifurcation, as expected. 

Finally, it should be noted that although the 
saddle-node line extends into the region 
Ib[ > 1 - [ a [  where f is not invertible, the curve 
s(~b2) does not intersect the singular curve F in the 
(~bl, ~b2) plane at the bifurcation. Along the curve F 
the contraction rate in the ~bj direction is infinite; 
at the transition the unstable curve u(q52) coincides 
with s(ck2). It indeed seems reasonable (although 
not certain) that an unstable fixed curve will avoid 
regions of  infinite contraction. 

2~r 

0 
--210 (~)I 27r-2 

Fig. 5. T o r n a d o  wi th  b o u n d s .  A t t r a c t o r  fo r  f wi th  a = 0.5, 

b = 1.4 a n d  o) = 0 exhib i t s  c h a o t i c  m o t i o n  a b o u t  f o r m e r  s table  

curve.  Side cu rves  are  r o u g h  b o u n d s  o n  the  a t t r a c t o r  f o u n d  b y  

c o m p a r i n g  the d y n a m i c s  to t h a t  o f  f w i th  a = 0, b = l,  a n d  

p~ = 0 (co = 0.071458);  they  a re  the curves  ~ for  ~mi, = - 1.557 

a n d  COma x = 2.52 in sec t ion  2.3. F o r  smal le r  ' a '  a v e r a g i n g  over  

several  i terates ,  wi th  b < 1, will give be t t e r  b o u n d s .  

2.3. The crinkling transition and tornadoes 

When the top boundary of the mode locked 
region in fig. 2 is crossed, the attractor appears to 
chaotically fill a two-dimensional volume, but does 
not wind in the ~b~ direction (Pl stays zero). (A 
jump in the dimension of  the attractor from one to 
two would doubtless be due to the form off2 in 
(1.1). Our observation is in accord with the 
Kaplan-Yorke conjecture [13] since when A = 0 
we have two Liapunov exponents ~> 1). The stable 
curves becomes fuzzy, turning into the tornado 
shown in fig. 5. At the transition, the map f is 
always noninvertible and the curve s(~b2), always 
intersects the curve of  zero Jacobian F. The inter- 
nal structures seen in the tornado are formed by 
the folding ( f fo lds  over the interior of  F; the curve 
F is the crease where f is singular); one can also 
think of them as caustics in the projection of  a 
higher dimensional attractor (with invertible dy- 
namics) onto the torus. 

Tornado attractors with winding number Pl -- 0 
occur in the region shown in fig. 2. At the bound- 

aries of this region, the tornadoes become intermit- 
tent; intermittent bursts cause repeated excursions 
of q51 through 2re in one direction. Crude numerical 
checks indicate the intermittency exponent (the 
power of ( c o -  coc) which gives the frequency of 
these bursts) is somewhat less than 1/2. Above the 
intersection of  the two boundaries, the bursts cause 
excursions of  qS~ through 2rr in both directions, and 
p~ probably depends upon initial conditions. 

The confinement of the dynamics to a neigh- 
borhood of the former attracting curve in the 
" tornado"  region is an interesting question; it can 
be understood by investigating the limit a ~0 .  At 
a = 0, the time evolution f i n  eq. (1.1) depends only 
upon 0 = ( ~ 2 -  (~1, and reduces in this limit to the 
well-studied circle map [2, 3, 9], 

g(O) = O + (79 + b cos O . (2.5) 

The mode-locked region in fig. 2 collapses to the 
line oh(b) on which the rotation number of the map 
is the golden mean a; the crinkling transition line, 
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the two multicritical points (Ml and M2 in fig. 2) 
and the entire tornado region collapses onto the 
critical point b = 1 where the circle map develops 
a cubic inflection point. Sincefdepends only upon 
~b2- ¢h~, for fixed values of the constants 
p = (0, b, th(b)) one has a one-parameter family of 
invariant curves G 

f~l(~a(~)2)) = ~=(4)2 -}- 2 ~ a ) ,  (2.6) 

the averaged equation of motion for a becomes 

27~ 

ld~z fdq~2 
a dt d 2g [(&o/a) + cos(~t((~2)) 

0 

+ (6b/a) cos(~(q~2) -- ~2)] 

/ I  1 - ~ ( ~ 2 + 2 r c ¢ )  1" (2.11) 

~((~2) = ~0((~2 - -  0~) -]- ~ ,  

~ , (~ )  = ~ .  

(2.7) 

For b < 1, ~ is analytic (so long as a is a good 
irrational); as b--* l, ~ becomes nondifferentiable. 
((0(~b2) = h(~b2)-q~2, where h is the coordinate 
transformation conjugating [2] the circle map g to 
a simple rotation: g .h(O) = h(O + 2~z~).) 

Under small deviations 6p = (a, 6b, &o), points 
on ~ are mapped nearly back onto it; 

~+aP(~ (~b2 ) ,  ~b2) = ( . ( ~ 2  + 2 ~ a )  + & o  

+ a cos(~a((])2) ) -{- 6b  cos (~a(~2  ) - (J~2) , (2.8) 

with a slow drift to one side. We want to change 
variables from (~b~, thz) to (~, ~2) with ~ defined 
such that (~(q~2) ='~b~ (since each point (q~l, q~2) lies 
on an invariant curve, this variable change is well 
defined and for b < 1 is analytic). We can then use 

as a slow variable. The change 6~(~, q~2) in :t 
under one iteration o f f  ° + ap is defined implicitly by 

~ + 6~((/)2 "q- 2xr~) = ~  + aP({,(q~2), q~2). (2.9) 

Using eq. (2.7), for b < 1 to first order in 6p we can 
solve for 6~, 

(6:¢/a) = [(60~/a) + cos(~(q~2)) 

+ (6b/a) cos(~,(q~2) - ~b2)] 

/ [ I  - -  (c~dc3q~2)(~b 2 4- 2~0" ) ] .  (2.10) 

If  we let t be the number of iterations of the map, 

This equation roughly corresponds to the ampli- 
tude equations used in studying convection. It 
ignores the fast timescales (i.e., ~2). One can ex- 
tract from it most of the features of the phase 
diagram even at a = 1/2 (fig. 2). We have evaluated 
the right-hand side of eq. (2.11) numerically as a 
function of ~. Crudely speaking, ~(~b2) --~ ct, and the 
middle cosine term in the numerator of (2.11) gives 
a periodic potential d~/dt proportional to cos(a), 
with one minimum near ~ =~z/2. (As b-+l the 
amplitude of this potential diverges, since the 
denominator goes to zero at a dense set of points, 
but the form remains the same.) The first term 
involving &o tilts this potential; d~/dt ,,~ 

cos c¢ + &o/a. Until &o becomes comparable to a, 
it can only shift the minimum and cannot cause 4h 
to wind. The perturbations contributed by fib 
similarly can cause intermittency only when 
6b >~ a. Thus the region of zero q~ winding number 
in fig. 2 is roughly of radius a about the curve 
rh(b) of  the circle map. 

However, the averaged equation completely mis- 
ses the crinkling transition. The fast timescale 
corrections to eq. (2.11) in the mode locked region 
act to deform the curve ~(~b2); in the tornado 
region they destroy it, introducing chaos. By using 
eq. (2.10), one can put rough bounds on the extent 
of the chaotic attractor; fig. 5 shows the bounds 
given by finding :t~, < ~max such that &t/> 0 for all 
points G mi,(~b2) and & ~< 0 for all points ~ . . . .  (q~2), 
at b = 1. (Strict bounds on the attractor can also 
be found.) Better bounds for small a can be found 
by iterating eq. (2.10), until as a-+0 the asymptotic 
phase diagram should be given by eq. (2.11). 

It is not widely appreciated that averaged equa- 
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t ions and  ampl i tude  equat ions  c a n n o t  exclude 

small-scale noise on fast timescales. For  good 

winding numbers ,  if A < 0 the stable invar ian t  

curve must  persist for small var ia t ions  in the 

parameters  (section 2.1) and  hence one can exclude 

chaos. In contrast ,  the absence of chaos canno t  be 

inferred from the averaged equat ions.  The latter do 

on the other hand  serve to confine the chaos (e.g., 

prove Pl stays zero). 

At  the top b o u n d a r y  of fig. 2, the curve s(~b2) 

becomes nonana ly t i c  and  appears to develop hori- 

zontal  tangents  at a dense set of  points  (fig. 6). The 

map f in eq. (1.1) has zero Jacob ian  on  the 

footbal l -shaped curve F in fig. 6; the curve s(¢2) 

crosses F several times. The con t rac t ion  rate A goes 

to zero as one approaches  the cr inkl ing t rans i t ion  

from below (fig. 7), bu t  in an i rregular  fashion. 

Presumably  the dips in fig. 7 occur when a new 

intersection of s with F forms, and  s is temporar i ly  

tangent  to F. The time series at long times will 

depend upon  the interplay of  influences of  these 

intersections; the distance separat ing them in the 

~b2 direct ion will be relevent parameters .  The power 

27?" 

Fig. 6. Stable curve at crinkling transition. Attracting curve s 
for eq. (1.1) with a =0.5, b = 1.3 and 09 =0.2, near where s 
disappears in a crinkling transition. The ¢2 coordinates of the 
points at which s crosses the zero Jacobian line F are probably 
relevant in determining its singular structure. 

0 

-03 

A(b) 

0.~ 

-0.7:1.0 1]1 11.2 1.3 
b 

Fig. 7. Contraction rate at the crinkling transition. Contraction 
rate A (eq. (2.4)) as a function of b for w = 0.0, a = 0.5. The 
crinkling transition occurs at b c = 1.299 + 0.001. The error bars 
on b c are perhaps overly conservative. The periodic cycle of 
length 17711 (corresponding to the 22nd rational approximant 
P22/q22 to a) becomes unstable at b = 1.29893 __+ 1 if the cycle is 
started at 4~2 = 0; it becomes unstable at b = 1.299428 + 10 if 
the cycle is started at q~2 = 2n/10. Thus the 17711 cycle has a 
transition in a range b = 1.2992 + 0.0003. However, the con- 
vergence of A with increasing cycle length is very slow; 
at b = 1.298 it has clearly not yet converged 
(At7711 = --5.85× 10 4, A46368 = --14.07x 10 4). Major fea- 
tures seen here are independent of cycle length, but the very 
small scale bumps are finite cycle-length effects. (For b in the 
range 1.2-1.3 cycles of length 46368 were used.) 

spectrum at the cr inkl ing t rans i t ion  has been exam- 

ined numerical ly  at isolated points  on M ~ M  2 (fig. 

8); it is not  self-similar but  is s ingular  in that  the 

envelope of  the spectrum varies as frequency v to 

a power as v ~ 0 .  Thus  scaling behavior  does not  

appear  to occur unless these parameters  (and pos- 

sibly others) are controlled.  

Finally,  we can again let a be a rat ional  approx- 

imant  p / q  of the golden mean;  fig. 9 shows that,  at 

the t ransi t ion,  Qf#) l  is developing mult iple fixed 

points,  via an inverse saddle-node bifurcat ion.  This 

is the first stage in a complicated t ransi t ion also 

including period doubl ing,  which as q ~  col- 

lapses onto  the cr inkl ing transi t ion.  

2.4. The muhicr i t i ca l  po in t  

The saddle-node line and the cr inkl ing line ter- 

minate  at a c o m m o n  multicri t ical  point.  New 
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Fig. 8. Time series spectrum at the crinkling transition. Power 
spectrum of the time series ~b~ ") = (f'(q5 °, ~b°))l for f i n  eq. (1.1) 
at the crinkling transition (a =½, o9 =0,  b = 1.298926, 
a = 2~(10946/17711), ~b ° = -0.0364373, q5 ° = 0), on a log-log 
plot. The largest peaks fall at v = ~rJ = [(x/5 - 1)/2]L Note that 
no factor has been divided out of this spectrum (in contrast to 
fig. 11); the low frequency behavior at the crinkling transition 
probably is more singular than at the multicritical point. 

c r i t ica l  e x p o n e n t s  a p p e a r  a t  th is  po in t .  As  o n e  

c rosses  the  s a d d l e - n o d e  l ine j u s t  b e l o w  it, fig. 10 

s h o w s  the  c r o s s o v e r  o f  the  c o n t r a c t i o n  e x p o n e n t  

f r o m  a mu l t i c r i t i c a l  v a l u e  o f  ~ 1/3 ( f o u n d  by  f i t t ing 

the  s lope)  to  its s a d d l e - n o d e  v a l u e  o f  1/2. A l so ,  the  

t ime  series s p e c t r u m  ~ ( v )  at  the  mu l t i c r i t i c a l  p o i n t  

b e c o m e s  se l f - s imi la r  at  l o w  f r e q u e n c i e s  (fig. 11). 

T h e  s p e c t r u m  a p p e a r s  to  f o l l o w  the  sca l ing  l aw 

(fig. 12) 

f l ( v )  = a2 f l ( v /a2 ) ,  as v - * 0 .  (2.12) 

F o r  a = 0, the  sca l ing  l aw  f o l l o w s  f r o m  t h a t  o f  the  

c i rc le  m a p  [2] (a = 0, b = 1, 03 = 0 . 0 7 1 4 5 8 . . .  ) i f  

the  l a t t e r  is i t e r a t ed  twice.  P r e s u m a b l y  the  r e l a t ive  

phase  (e.g.,  the  ang le  in fig. 12) o f  the  e v e n  a n d  o d d  

p e a k s  f(v/~r 2") a n d  f ( v / a  2"÷1) goes  s m o o t h l y  to  

180 ° as  a--*0. 

As  o n e  inc reases  o9 a l o n g  the  c r i n k l i n g  t r a n s i t i o n  

l ine,  e v e n t u a l l y  the  s i n g u l a r  a t t r a c t i n g  c u r v e  s in 

Fig. 9. Crinkling transition: rational approximants. (fs)j(qS~, 0) 
vs. ~b~ for a = 5/8, as a = 0.5, ~o = 0.4 and b = 1.2 and 1.4. The 
crinkling bifurcation occurs when multiple zeroes form in the 
rational approximants, via inverse saddle-node bifurcations. 
For b = 1.2 (representing the mode locked state) there is a single 
stable fixed point sl 2 and a single unstable point u~.2 corre- 
sponding to s and u of fig. 1. A second pair of fixed points u'L4, 
s~4 has formed at b = 1.4. 

j 

A 

I0-  i I i 
Io-" Iw-%[ 

Fig. 10. Crossover in A from multicritical to saddle-node 
scaling behavior along b = 1.0. The contraction rate A in eq. 
(2.4) scales as A Qc I o -  o9c11/2 as one approaches the saddle- 
node transition at fixed b from the mode locked side. At the 
multicritical point M 2 (see fig. 2) (b ~ 1.00245, ~o ~ 0.529192) 
A presumably scales with a new multicritical exponent (eq. 
(3.12)). Here we see a crossover from multicritical scaling to 
saddle-node scaling as we cross the saddle-node line at b = 1.0, 
~o~. = 0.52921796 just below M 2. 
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f(u) 2 I--v- 

Fig. I I. Time series power spectrum at multicritical point. 
Power spectrum of  the time series ~b~ ") = (f"(~b i c, 4'2~))1 for f in 
eq. (1.1) at the multicritical point M,  (b = 1.00245, 
~o = 0.529192). A normalization factor o f  v 2 has  been divided 
out o f  the power, and a log-log plot has  been used, in order to 
exhibit the scaling implied by eq. (2.12). The principle peaks fall 
at v = ~rJ = [(x/5 - l )/2] j. Except for an overall scale factor, the 
spectrum should be universal as v ~ 0 .  

fig. 6 becomes tangent to the zero Jacobian curve 
F (0fl/O~b] = 0) of  the map (fig. 13). The point of  
tangency is the extremal point (~b~, qS~) of  F i n  the 
~b2 direction. Since the crinkling transition depends 
upon the noninvertibility o f f ,  the crinkling transi- 
tion line must end when s is tangent to F, and 
indeed this is the multicritical point. There is now 
a unique intersection point about which to scale; 
we shall argue in section 3 that this explains the 
self-similar time series spectrum. 

The fact that at the multicritical point s and F 
are tangent at (~b~, ~b~) can be explained as a con- 

sequence of  the coexistence of  the saddle-node and 
crinkling transitions and of  zero winding number 
Pl in the q~l direction. The map ft(~b~, q~2) as a 
function of  ~b~ is monotone increasing outside F, 
and monotone decreasing inside F. ( f  folds the 
interior over, with F forming the crease.) I f  u were 
tangent to F at a single point other than at an 
extremum, parts of  the interior of  F would neces- 

- o o o 2  
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Fig. 12. Scaling of  the time series spectrum at the multicriticai 
point. The principle peaks of  fig. 11, here plotted in the complex 
plane. The even peaks v = (72" and the odd peaks v = a 2"+~ 
appear to be separately converging to universal values marked 
a 2~ and a 2N+1 as n ~ .  At a = 0 (the circle map)  the fourier 
spectrum at low frequencies satisfies f (v)  = - a f ( v / a ) ;  thus the 
opening angle 0, is n at a = 0. The time series used was o f  length 
2584, so the principle peaks continue down to 1/2584= a ~6. 
Below a ~0 neither the magni tudes  nor the phases of  the fourier 
peaks scale; this is presumably due to the cutoff at ~r J6 with 
possibly some contribution from errors in the value of  b at the 
multicritical point. 

sarily be mapped across u. The onset of  intermit- 
tency necessarily involves orbits which cross the 
unstable manifold u. We believe near the multi- 
critical point the converse is also true; points 
crossing u when u is tangent to F won't  be mapped 
back across (roughly because outside F the map is 
increasing). Under further iterations, these points 
will presumably wind around in ~b~, some of  them 
reentering F and crossing aga in- lead ing  to non- 
zero p~. Thus for u to be tangent to F at any point 
other than its extreme in the q~2 direction, intermit- 
tency must already be present. For  a orinkling 
transition to take place, s must intersect F; at a 
saddle-node transition, s and u coalesce; u will 
presumably not cross F (as noted in 2.2). Thus u 
and s must be tangent to F, and for p~ to stay zero 
the point of tangency must be an extremum of  F 
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Fig. 13. Multicritical curve. At the multicritical point M2, the 
stable and unstable curves of eq. (1.1) coalesce into the curve 
shown here (whose time series spectrum is shown in figs. 11 and 
12). The curve is tangent to the zero Jacobian curve F (where 

f does not locally have an inverse) at the point 
(~blc, ~b2~ ) = (2.894, 1.828) on F where ~b 2 is a local extremum. 
The tangency follows from the simultaneous occurrance of a 
saddle-node and a crinkling bifurcation; the unstable curve u 
does not cross F at saddle-node transitions, (fig. 1) while the 
stable curve s always crosses F at crinkling transitions (fig. 6). 
The tangency must occur at the extremum in ~b 2 to maintain the 
winding number Pl = 0. 

Fig. 14. Multicritical point: rational approximants. (fs)l(~bl, q52) 
vs. ~b~ at the multicritical point for a = 5/8 and a = 0.5, at 
~b2 = ~bzc, ~k2c + 1/64 and q~z~ + 3/32. At ~b 2 = ~b~ + 1/8, the curve 
would again have a cubic inflection fixed point at a smaller 
value of q~l- One can see clearly the coexistence of the saddle- 
node and crinkling bifurcations in the curve ~bz~ + 1/64, one 
eighth the way through the cycle. Here the saddle-node bifur- 
cation is occurring apparently at the same time as a new pair 
of fixed points (signaling a crinkling bifurcation) is forming via 
an inverse saddle-node bifurcation. 

in the  q~2 d i r ec t ion ,  wheref(~b~, (/)2) as  a f u n c t i o n  o f  

q~ has  a cub ic  in f l ec t ion  po in t .  

Fig.  14 shows  (fq)l(~bl, ~b2) versus  41, a t  the 

mul t i c r i t i ca l  po in t ,  w i th  tr = p / q  a p p r o x i m a t e l y  the  

inverse  go lden  m e a n .  W e  c a n  u n d e r s t a n d  h o w  the  

s a d d l e - n o d e  a n d  c r i n k l i n g  t r a n s i t i o n s  m a n i f e s t  

themselves  a t  the  mu l t i c r i t i c a l  p o i n t  b y  l o o k i n g  at  

this f u n c t i o n  a t  v a r i o u s  va lues  o f  ~b2 in  a n  in t e rva l  

1/q.  (The  qua l i t a t i v e  fea tures  t h e n  o f  cour se  re- 

peat . )  

W e  s tar t  wi th  the  cu rve  l abe led  zero,  in  wh ich  

q~2 = ~b~ (the local  m a x i m u m  o f  F in  the  (J~2 direc-  

t ion) ;  the  i t e ra ted  m a p f  q thus  has  a cub ic  in f lec t ion  

p o i n t  at  ~b~. The  f u n c t i o n  here  has  a s ingle  s table  

fixed p o i n t  a t  So a n d  a single u n s t a b l e  fixed p o i n t  

at  u0. The  curve  l abe led  1/8 shows (fqh a t  

~b2 = qS~ + 1/8q; So a n d  u0 have  j u s t  a n n i h i l a t e d  in  

a s a d d l e - n o d e  b i f u r c a t i o n .  H o w e v e r ,  there  has  

been  a n  inverse  s a d d l e - n o d e  b i f u r c a t i o n  (charac -  

terist ic o f  the r a t i o n a l  a p p r o x i m a n t s  at  the cr in-  

k l ing  t r an s i t i on )  a t  precise ly  the  s ame  t ime. The  

curves  c o n t i n u e  to evolve  un t i l  a t  ~b ~ + 1/q a cub ic  

in f lec t ion  p o i n t  a g a i n  appea r s  b e t w e e n  the n e w  

s table  a n d  u n s t a b l e  po in t s .  

3. Proposed renormalization group 

In  this sec t ion  we p r o p o s e ,  b u t  do  n o t  i m p l e m e n t ,  a r e n o r m a l i z a t i o n - g r o u p  ana lys i s  o f  n o n l i n e a r  sys tems 

forced  a t  two  f r equenc ie s  (eq. (1.1)). W e  s t u d y  three  k n o w n  fixed p o i n t s  o f  this r e n o r m a l i z a t i o n  g r o u p ,  a n d  
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Fig. 15. Phase diagram and renormalization group eigenvalues. Inside the volume M]M2S2SIRC eq. (1.1) has a smooth attractor 
~1 = S ( •2 )  with winding number Pl = 0 in the q~ direction. The eigenvalues shown govern the various bifurcations through which 
this mode locked state can break down. Point R is the trivial fixed point; the curve connecting C to R is the intersection of the stable 
manifold of  R with [a, b, m 1. The surfaces MICRS l and M2CRS 2 are the intersection of [a, b, ~0] with the stable manifold of  the 
saddle-node fixed points; the eigenvalue governing the penetration of  these surfaces is ~r 2, so the exponent is log a/ log(e 2) = _ 1/2. 
The point C lies on the stable manifold of the circle map fixed point. The eigenvalue 6 governs perturbations depending only on 0 2 - 0~ 
causing transitions to different winding numbers p]; the eigenvalue ~? governs the growth of  perturbations depending on 0 2 - 0 1  at 
fixed winding number. The multicritical lines M~C and M2C are conjectured to be the intersection of  [a, b, 0)] with the stable manifold 
of  a line of  multicritical fixed points of  T 2. The conjectured eigenvalues :%4 and &~ of  T 2 at these multicritical fixed points thus lead 
to exponents log ~2/log e 4 and log a2/log &2 governing perturbations leading down the saddle-node surface and across the crinkling 
surface, respectively. Finally, althought the crinkling surface intersecting [a, b, o)] in M~CM 2 is probably not a stable manifold of  a 
fixed point, it is mapped into itself under T. If the motion on this codimension one surface is "sufficiently ergodic", one might 
characterize flow away from it by an eigenvalue ~. 

relate them to the phase diagram (fig. 15). We conjecture that a one-parameter family of multicritical fixed 
points exists. Finally, we briefly speculate about possible studies of  the crinkling transition. 

The non-trivial universal features associated with transitions in dynamical systems always involve 
behavior on long timescales. The usual method for extracting these universal features is to decimate the 
time series. Since the time series is one-dimensional, this decimation is given exactly, by iterating the map. 

For convenience, we shall write our renormalization group in terms of  variables 01 and 02 periodic 
modulo one; the renormalization group transformation will iterate the map and expand about 01 = 02 = 0. 
(The expansion point in terms of  the 2n-periodic variables 4~1 and 4) 2 will be shifted appropriately as we 
study different transitions.) We express f(01, 02) = (fl(01, 02), (02 + a)) in terms of two pieces, E and F, whose 
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second components are trivial: 

f(O~, 02) = \ 02 + tr f (3.1) 

202 -k- O" -- 1 ] '  

Our renormalization group is a map T on the space of  pairs of functions (E, F). Consistent with the 
interpretation of 02 as an external periodic force, we restrict the second components of E and F to be trivial 
(as in eq. (3.1)). We can also assume E and F commute; they of course commute initially if f is analytic, 
and our renormalization group will preserve this property. 

Following the treatment of  annular maps in ref. 2, we define 

T(E,  F)  = (AFA -% A F .  EA  -~) , (3.2) 

A (0  33) 
where the choice of  ~ and fl in A will in general depend upon E and/7. This transformation preserves the 
winding number P2 = a = (x/5 - 1)/2 the ratio of the two forcing frequencies. (Remember that this is a 
relevant variable; the low frequency properties o f f  depend sensitively, for example, on whether P2 is rational 
or irrational.) The best rational approximants to a are ratios q,/q, +1 of Fibonacci numbers q0 --- 0, ql = 1, 
qn+l = q, + q,-1. After n applications of  T, E (") = Anfq.A -n, F(,) = A,j~,  + 'A -" 

The contraction rate A (eq. (2.4)) behaves simply under T. A (f)  is the integral of the logarithm of  the 
magnitude of  the Jacobian o f f  over its attracting curve, 

= d02 log ~ ( s / ( 0 2 ) ,  . ( 3 . 4 )  A(f)  i ot~, 0:) I 
0"--1 

T acts by eliminating those elements of the time series which lie in the range a s < 02 < tr, and then scaling 
the coordinates by A. Thus the segment of the attracting curve sI(Oz) of f l y i n g  between - a z and ~r 3 maps 
under A onto the attracting curve sri of  Tf: 

st:(02) = ~ts:( - tr02) - fltr02. (3.5) 

(In particular, st: is continuous at the boundary only if one identifies the points E(O~, 0) with F(Ot, 0) after 
applying T. When the map becomes non-invertible along 02 = 0, the utility of  gluing the torus back in this 
way becomes questionable.) The Jacobian of T f  along sty for - tr 2 < 0 z < 0 is equal to that o f f  at the 
corresponding point on s:: 

02+ a 

O(Tf)t  OF, 
~01 (sty(02), 02) = ~ (sF( - a02), - -a02) ,  - tr 2 < 02 < 0.  (3.6) 

The Jacobian of  Tfa long srl in the range 0 < 02 < tr is a product of the Jacobians for f a t  the corresponding 
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point on s s and at its image (which was eliminated by the decimation). That  is, for 0 < 0 < a, 

0 2 + a  - 1 

OFl OE~ a(rf)'(sTAO2l, O3=s~(sf(-oO2+a), -~02+~)~O~(sj(-a09, -~o0 0 < 0 2 < ~  (3.7 
~301 ' ' 

Thus, using (3.4), 

A ~  = ~A ( r / ) .  (3.8 

It is obvious from our definition of T that, roughly speaking, after a large number of i te ra t ionsf  N ~ (Tff f  
up to a scale change. Thus by taking the Jacobian of  both sides, for large N e NA09 ,~ eNaa(TJ); hence (3.8) 

If B is a change of  coordinates which commutes with A and if (E, F)  is a fixed point of  T, then so i~ 
(BEB -~, BFB-~). We allow only changes of coordinates which leave the 02 evolution trivial; thus if B i, 
linear, it has the form (1 ~-g th) and commutes with A if h(e + a -1) = fig. All of  our fixed points lie withir 
one-parameter families generated by scaling them in this way as we shall see. 

The first three entries in table I are known fixed points of  T whose winding number p~ in the 0~ direction 
is zero. Also shown are the physically relevant known eigenvectors and eigenvalues of  the linearized fixed 
point equations; if E and F are fixed points of  T then a small perturbation El + e, F1 + 6 grows with 

eigenvalue 2 if 

2E(~0~ + 302, - a-102) = ~,5(01, 02), 

, ~  (0~0, + f102, --  ~ - 102) = ~ "~1  (E(01'  02))~; (01' 02) + 0c3 ( E ( O , ,  02) ) . 

In addition, the condition that E and F commute (E" F - F ' E )  implies 

OE1 
OF1 (E(O~, 00)E (0~, 02) + 6 (E(O, 02)) = ~ (F(O, 02))6 (0t, 02) + E (F(01, 02)). (3.9) 
00~ 

The trivial fixed point Et(O~, 02) = F~(01, 0z) = 02 has been analyzed by Stellan Ostlund [14]; it happens 
to occur at a = b = 09 = 0 (point R on fig. 15). The scale factor A (eq. (3.3)) for this fixed point does not 
shear (/3 = 0) but the stretch in 01 (~) is arbitrary. To allow comparisons with the other fixed points, we 
tabulate the two values c~ = __+ a-1. (The relevant eigenvalues one could generate using 10~ I < 1 are of  no ap- 
parent interest.) The eigenvectors can be expanded as polynomials in 01 and 02. Ignoring the commutativity 
condition (3.9), for each n, m there are two eigenvectors of  (3.8) with degree n in 01 and m in 02; their 
eigenvalues are c~ l - " ( -O)  m + !  and - ~ 1 - , ( _  a),,-~. There are two relevant eigenvalues (unstable direc- 
tions) and two marginal eigenvalues which satisfy (3.9) (see table I). The eigenvalue __+ a -2 governs the 
growth rate of  any perturbation which does not leave the origin on an invariant curve. The eigenvalue a - 
governs perturbations which put the origin onto an invariant curve with A ¢: 0; it expresses the increase 
of  stability or instability of  this curve under applications of  T (eq. (3.8)). The eigenvalue __+ 1 represents 
the marginally stable saddle-node line discussed below, where (0, 0) lies on an invariant curve with A = 0. 
Finally, the eigenvalue -T- 1 tilts the invariant curve. As discussed above the coordinate transformation B 
with h ~ 0 (skewing the coordinates) commutes with A for ~ = - a - ~ ;  h generates a one-parameter family 
of  fixed points E1 = 0~ + ha, F l = 01 "4- h(a - 1). For  ~ = a -1 the tilt is reflected, leading to the eigenvalue 
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Table I 
Fixed points of T, For the trivial fixed point, the eigenvalues change sign ( _+ ) with ~. 
Sections of the table in brackets are conjectural 
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Fixed points of T with 0~ rotation number pt = 0 

Trivial fixed point a = b = ~o = 0 

E~=Ot' FI=O~' A = (  + a  l 0 --o -~ 

Eigenvalue Eigenvector Significance 
(~, ~) 

+ o-2 (o, I) O~ rotation number 
a -  ~ (aO~, 9~) slope at fixed point 
+ 1 (aO~, 0~) curvature at fixed point 
T- 1 ( - ~r -f, 1) skew coordinates 

Saddle -node fixed point 

Eigenvalue Significance 
a-2 saddle-node transition 
1 change in c 
- 1 skew coordinates 

Ej = 0 z + a - ~*(02 - 00, 

Eigenvalue 
3 m -2.8336 
~2 ~ 1.6605 
1 

Circle map fixed point 

(5 ,  - (5 + ~ - ,)'~ 
F)=O2+a--l--q*(Oz--Ol) ,  A =  0, __~-I ] 

Significance 
0~ rotation number 
slope at cubic inflection point 
skew coordinates 
unstable direction into crinkling "] 
surface 

J marginal direction along multi- 
critical lines 

Multicritical points (fixed points of  T 2) 
One parameter family/:~, F~ 

Eigenvalue 

4 5 a  

1 
1 

Significance 
flow into crinkling surface, other 
O~ rotation numbers 
flow down to saddle node, up to 
chaos 
marginal direction, changes a 
skew coordinates 

I Eigenvalue 
K 

Crinkling surface (fixed surface of T)'~ 

J Significance 
flow away from surface (ergodic 
average) 
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- l, and a line of fixed points of T 2. No relevant eigenvalue whose eigenvector commutes (eq. (3.9)) depends 
upon 02. 

The stable manifold of the trivial fixed point intersects the three-parameter family of eq. (1.1) in th( 
line connecting C to R in fig. 15. Perturbations in the b direction appear to be irrelevant; thus only twc 
of the marginal and relevant eigendirections can be exhibited at once. On the one hand, if we expand abou! 
41 = 0 then changing co keeping a = 0 changes the rotation number (eigenvalue __+ a-2), while changing 
co = - a  moves along the saddle-node line ( _+ 1). On the other hand, if we expand about any ~b~ value other 
than zero and re, the eigenvalues __+ ~r -2 and ~-~ will be represented. The irrelevance of perturbations 
involving 02 is interesting; near this fixed point iterations of the map gradually average out the 02 dependence 
of any small additive perturbation. 

The one-parameter family of saddle-node fixed points {E~ = 0~/(1 -~rcO~), FI = 0~/(1 -cO~), c~ = ~-~, 
/~ = 0} has been studied by several authors [6]. The eigenvalue a-2 gives the exponent 1/2 quoted in section 
2.2 which governs the intermittency and the contraction rate as one passes through the transition. The first 
marginal direction ( +  1) noted in table I moves along the line of fixed points corresponding to the free 
constant c; the second marginal direction ( -  1) tilts the invariant curve. (Again, technically we have a 
two-parameter family of saddle node fixed points, with various curvatures and tilts.) Although we have not 
performed the calculation, we believe that these are the only relevant and marginal eigenvalues; in particular 
we expect only irrelevant eigenvectors depend upon 02. This implies again that b gets averaged out under 
iterations and one sees the one-dimensional exponents as noted in section 2.2. The stable manifold of this 
family intersects fig. 15 in the surfaces MICRS~ and M2CRS 2. Here of course the lines SiR are not the fixed 
points, though they are independent of q52. 

As noted in section 2.3, for a = 0 eq. (1.1) is equivalent to the circle map in 02 - 0~, with the transition 
to chaos occurring at b = 1. The associated fixed point E~ = 02 -~- o- - ~ * ( 0 2  - 0 1 )  , *ill = 02  71- o- - 1 - r/* 
(02 - 0j) (table I) is expressed in terms of the universal functions ~* and r/* of the circle map discussed 
in ref. 2. Both ~* and r/* have cubic inflection points at the origin (~*(0)~ q*(0)~  0 3 as 0~0) .  Two 
unstable directions exist which involve only 02 -  0~; the exponent 6 governs perturbations which change 
the winding number p~ in the 01 direction, and the exponent e2 governs both the growth of the slope at 
the cubic inflection point and more generally the transition to chaos at fixed rotation number p~. (Recall 
that our perturbations do not alter the 02 evolution.) Again, there is a linear change of coordinates B (with 
g = - h )  which commutes with A, thus there will be a marginal directions corresponding to the family of 
fixed points found by skewing the coordinates by B. 

We have now completed a summary of the known fixed points and important eigenvalues for our 
renormalization group. The remainder of this paper will become increasingly speculative; we will attempt 
to outline the type of results obtainable from a numerical implementation of the renormalization 

group 3.2. 
The scaling law obeyed by the low frequency spectrum at the multicritical point (eq. (2.12) and figs. 

9 and 10) indicates that self-similar behavior is occurring on all timescales, and that a RG fixed point should 
exist. However, fixed points of T obey scaling laws [2] relating jr(v) with j~(~rv); the multicritical scaling law 
relates f ( v )  with ?(O'2V) (eq. (2.12)). The multicritical point will thus flow to fixed points of T 2 (two cycles 
of T). We conjecture that a one-parameter family (E~, Fa) of multicritical fixed points of T 2 exists, whose 
low frequency spectra will be universal (with fractional corrections proportional to the frequency, as in ref. 

2). 
Since as a ~0 ,  (Ea, Fa) approach the circle map fixed point, the latter will presumably have a marginal 

direction (whose eigenvalue of T will be - 1) leading along the multicritical lines. In analogy with the trivial 
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fixed point there is probably at least one unstable direction from the circle map fixed point which is not 
a function of  02 - 01; the corresponding exponent • would govern perturbations (e.g., increasing a) leading 
onto the crinkling surface M1CM2. 

Since we must vary two parameters in eq. (1.1) to find a multicritical point, it seems reasonable to 
presume that there are two relevant eigenvalues so that the stable manifold of  the family of fixed points 
is of codimension two. Consider the unstable manifold of  one of  the multicritical points M. The contraction 
rate A is zero at M; it should be non-zero and negative in the mode-locked region of  the unstable manifold. 
Along some curve passing through M the mode-locked state is undergoing a saddle-node bifurcation and 
A = 0; by eq. (3.8) this curve is mapped onto itself and the tangent to it at M must be an eigenvector of 
T 2. It seems safe to assume that as a --,0 the associated eigenvalue goes smoothly to the circle map exponent 
~4 (M is a fixedpoint of  T2), so we call this exponent :t 4. The multicritical fixed points will clearly also have 
two marginal directions. One, with eigenfunction O(Ea, Fa)/~a will be associated with motion along the 
multicritical line M1C and M2C in fig. 13; the other will again correspond to that ratio o f g  and h which 
allows the coordinate transformation B to commute with A and thus with T. 

There remains a second relevant eigenvalue at M to be characterized. Numerical evidence (fig. 7) and 
the analysis O f section 2.1 indicate that A = 0 at the crinkling transition surface M1CM 2 of  fig. 15. Thus 

the crinkling boundary of  the mode-locked region on the unstable manifold of  M should be mapped onto 
itself by T 2. If  a tangent to the crinkling boundary exists at M, it will be an eigenvector of  T 2, presumably 
a relevant one. (Since we know only isolated points on the crinkling boundary, and those without great 
accuracy, we cannot be sure that it forms a smooth curve.) It is not clear from fig. 2 whether this eigenvector 
is independent of  the saddle-node direction; the points at b = 1.145 indicate that the crinkling curve and 
the intermittent tornado boundary may become tangent at M. For  the analysis in the remainder of  this 
section we shall assume that this eigenvector exists and is independent of  the eigenvector corresponding 
to ~4. We shall call the eigenvalue ~2; it is not obvious whether in the limit a ~ 0  this eigenvalue will equal 
~2 for the circle map. 

The renormalization group transformation T 2 will, as noted above, map the crinkling surface in function 
space into itself. For  the circle map [2], the unstable manifold corresponding to 6 is mapped into itself by 
T, but the map is chaotic, depending in detail on the continued fraction expansion of  the winding number 
[2]. Only if one controls the winding number as a relevant parameter can one find fixed points and 
exponents. It has been suggested in that system that most winding numbers (forming an ergodic set of 
Lebesgue measure one on which the map induced by T acts ergodically) will possess "average" exponents 
[2]; there is no evidence for or against this suggestion. We believe the action of  T 2 on the crinkling surface 
is also chaotic. The highly singular nature of  the power spectrum at the crinkling transition and the lack 
of  any observable scaling, with new structure on all timescales, indicates to us that at a minimum there 
are relevant parameters at the crinkling transition which we have not controlled. The operator T 2 carries 
points near the crinkling surface farther away, while it mixes points on the surface. We will assume for 
the remainder of  this section that the unstable direction leading away from the crinkling surface 
characterized by an "average" eigenvalue x for all nearby points. (If in fig. 7 we crudely estimate 
A ( b )  ~ (b - b~), then x = a - l ) .  

In fig. 8 we saw the crossover behavior of  the exponent for the contraction rate A, from a value of  about 
4 the multicritical value of  the exponent for A will 1/3 to the saddle-node value of  1/2. If  we assume 6 2 > ~a, 

depend on x; the renormalization group flows will take one first along the crinkling surface (eigenvalue 
4 the same analysis will apply, exchanging [&,[ for 0~ a 32) and then away from it (eigenvalue x). [If 6~ < ~a, 2 

and a -2  for x.] Let x be a measure of  the distance in function space from the saddle-node surface, and 



210 J.P. Sethna and E.D. Siggia / Universal transition in a dynamical system 

y be a distance from the crinkling surface. Then A ( x , y )  satisfies (via eq. (3.8)) 

y ~  l ,  A ( E , y ) ~ E  m 
' ( 3 . 1 0 )  

x ~ 1 , A(x ,  E),,~ el°g"-'/l°gN. 

Near M(x = y  = 0) the R G  flow is close to linear, and using eq. (3.8) we see 

A ( x , y ) = a 2 A ( c J Z x ,  o~4oy), x , y , 4  1. (3.11) 

Approaching M in a transverse direction ex0, Eyo, we find 

A (eXo, Eyo) ,,~ a - Iog,/Iogl6,,I A (Xo, ~ a 20og Oog16 a I)ey0) 

¢7 log a IIIog]6 a IE (1 -- log a 2 IloglS a I)(log ~- U logN) 

E {log o Ulogl6 a ] + log a-  Ulogl~ I - Clog =2/logl6 ~ I)log a UlogN} ~ E 1/3 . ( 3 . 1 2 )  

Thus the exponent of  the contraction rate A along a transversal approach to the multicritical point (and 
thus the nontrivial exponent in fig. 8 before the crossover) can be written explicitly in terms of  6a, ~a and 
/£. 

4. Conclusion 

We would like to summarize the status of  our 
understanding of  this system. In this paper we have 
given a careful qualitative description of  the phases 
and transitions observed in this system adjacent 
to a mode-locked state; other transitions can occur 
(e.g., "period doubling" of  tori) for larger values of  
b and a, but these seemed of  less interest to us. We 
understand the saddle-node transition quan- 
titatively and the boundedness of  the chaotic "tor-  
nado"  state as a partial breakdown of  averaged 

equations of  motion. We have demonstrated nu- 
merically the self-similar nature of  the multicritical 
attractor and the scaling law for its spectrum, and 
have given an explicit criterion for locating it in 
terms of the Liapunov exponent A and the zero 
Jacobian curve F for the map. We have set up a 
renormalization group to study this multicritical 
point, and believe that a quantitative under- 
standing of  it will be obtained from a numerical 
implementation of  this group. 

There are two features of  this system which are 
not under control. First, the crinkling transition 
appears to be a generic route to chaos in systems 
forced at two frequencies; it takes one continuously 
from a one-dimensional attractor to the pre- 

sumably two-dimensional tornado attractor. No 
quantitative understanding of this transition exists; 
indeed, we have not found an effective numerical 
algorithm to locate it. Secondly, the chaotic tor- 
nado attractor undergoes an intermittent break- 
down; this transition is similar to "escape time" 
problems in other chaotic systems and might war- 
rant further study. 
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