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The various routes to chaos are explored for a nonlinear mechanical system mode locked to one of two incommensurate
external frequencies. Two types of transitions are seen in our model system. A saddle-node transition with its associated
intermittency can occur when the mode locking is lost while the attracting two-torus remains smooth. A less trivial transition
can occur in which the attracting torus roughens and the power spectrum of the time series develops singular low frequency
components; after the breakdown mode locking persists with noisy small-scale motions about the former torus. At the
multicritical point where these two transition lines meet scaling and universal low-frequency power spectra are observed. A
renormalization group treatment is proposed. The analysis might also be applicable to transitions in rotationally invariant

systems.

1. Introduction

Certain transitions (bifurcations) in the dynam-
ics of classical mechanical systems are closely
related to phase transitions in statistical mechanics.
In particular, renormalization group methods de-
veloped to study second order phase transitions
have been successfully applied to several con-
tinuous bifurcations [1-6]. The renormalization
group in these problems amounts to a decimation
of the time series; because the time series is one-
dimensional, the analysis essentially can be done
exactly. The universal predictions about these bi-

fAddress as of August 1, 1983.

furcations can be more detailed than those about
phase transitions. Not only are there exponents
governing the approach to the transition but often
[1-5] there is a highly structured singular universal
low frequency spectrum at the transition.

In this paper we begin the study of another class
of bifurcations. Consider a dissipative, nonlinear
physical system forced at two incommensurate
frequencies. Forced only at one frequency w, the
system will often respond at a frequency paw,/gq
commensurate with the forcing. This mode locked
state will generically be stable to small variations
in the dynamics. In particular, we shall see that it
will persist under the introduction of the second
frequency w,.
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Let our physical system be represented by a
single variable ¢, and our external forces by vari-
ables ¢, and ¢,, 0 < ¢, <2xn. If we measure the
state of the system at periodic intervals 2 /w,, we
get a Poincaré once return map f(¢,, ¢,). We
believe the following form is sufficiently general to
encompass the (universal) features of the bifur-
cations we intend to study:

_ (/i@ )
f(¢1,¢z)—</2(¢1’¢2)>

_ d)1+(1) +aCOS(¢1)+bCOS(¢l—¢2) (1 1)
- ¢,+ 2n0 . .

We define winding numbers p, and p, for f, giving
the mean rotation in the ¢, and ¢, directions,

pi=lim [(f")($1, &2) — ¢/ (2mn) . (1.2)

Ineq. (1.1), p, = 6. We confine our analysis to the
golden mean ¢ = (\/ 5 —1)/2. Extensions to other
good irrationals should follow as in ref. 2; why the
golden mean should be experimentally optimum is
also discussed there.

At b =0 the system is forced at only one fre-
quency; for |a| < |w| the system is mode locked to
that frequency. That is, the map f, has a stable
fixed point at ¢, =s = arccos( — w/a) and unsta-
ble fixed point at ¢, =u =2n —s; the winding
number p, = 0. For small b these turn into curves
¢, =s5(¢,) and ¢, =u(¢p,) (fig. 1) which in the
original state space form an attracting and a
repelling torus. This article is devoted to a thor-
ough study of the destruction of the stable curve
s(¢,) as we change the parameters a, b, and o.

The system described in eq. (1.1) should be
generic (as described above) in the class of non-
linear dissipative dynamical systems forced at two
frequencies. (More precisely, eq. (1.1) describes
generic nonlinear dissipative systems with two
neutral directions representing periodic forces and
all but one of the remaining directions strongly
contracting. As in Feigenbaum period doubling,
we believe this noninvertible map has the universal

’ @/
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Fig. 1. Stable and unstable curves. The stable and unstable
curves found by iterating f of eq. (1.1) with @ =0.5, b = 0.9,
o = 0.4 and as always ¢ = (\/5 — 1)/2. The curves s and u are
the Poincaré sections of the stable and unstable torus in the
original (continuous time) dynamical system. Along the
football-shaped curve F the Jacobian 9f,/0¢, of f is zero, and
f does not have an inverse. Under iterations, the flow is s
motion away from u and into the curve s, superimposed upon
a uniform rotation in the ¢, direction. As one approaches the
saddle-node transition from this state, the curve s will first leave
the region bounded by F and then the curves s and u wil
smoothly and uniformly coalesce.

features of dissipative invertible systems in highe:
dimensions.) For arbitrary flows on a three-toru:
it is of course not generic, since f, should include
an additive periodic function of ¢, and ¢,. 2
mode-locked state on a three-torus with two in
commensurate frequencies whose ratio is kept fixec
can break down in a variety of ways. For som
parameters the embedded two-torus shoul
roughen following the same universal route as th
dissipative annular maps of refs. 2 and 3. Alterna
tively, the two-torus can “‘collide” with its unstabl
counterpart in a higher dimensional analogue o
the saddle-node bifurcation [5] (see also sectior
2.2). It is also possible that a thorough renor
malization group analysis would show the generi
nonlinear terms in f; can be irrelevant, leading on
back to the system described in eq. (1.1). There ar
several qualitatively different transitions tha
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emerge from (1.1) that we analyze below. Whether
at any of these the nonlinear terms in f, are
irrelevant remains to be seen.

In general (and we believe in eq. (1.1)) flows on
a three-torus are mode locked on an open dense
subset of parameter space. When the parameters
are adjusted so that the rotation rates of the three
phases are suitably incommensurate, then Ruelle,
Takens and Newhouse [7] have shown that arbi-
trarily close to such a flow in the space of all
possible flows there is an open set on which the
motion is described by a truely chaotic attractor.
(The “chaos” in their construction is confined to
very low frequencies.) On the other hand, one
could hope to use a KAM-like approach to show
by varying two parameters consistently as the
stress (nonlinearity) on the system is increased that
a quasiperiodic flow on a three-torus can be kept
quasiperiodic —i.e., non-chaotic [8]. (Arnold has
shown this for a two-torus [9].) We numerically
checked that eq. (1.1), with a = 0.5, b =0.2 and
6 =p,= (\/5 — 1)/2 can be tuned by varying o to
achieve p, =./2—1; the spectrum numerically
consists of sharp peaks (quasiperiodic) with no
observed chaos. Thus in this (non-generic) map,
quasiperiodic flow on a three torus can be main-
tained by varying one parameter.

Rand [10] has shown that in systems with circu-
lar symmetry flow on a two-torus will not mode
lock. This makes (1.1) an attractive model of
Couette flow in the modulated wavy vortex regime,
though it is certainly not generic for rotationally
symmetric systems (e.g., we have assumed the
attractor lies on a three torus in the chaotic
regime). Also, one can put this system in a param-
eter regime where there is naturally periodic mo-
tion and apply one external incommensurate force.

Another setting in which systems of the form
(1.1) naturally arise is in the spectra of a one-
dimensional Schrodinger equation with a quasi-
periodic potential. Consider the equation

2
|: — aa—xz + Uwyx, wzx)]w =Ey, (1.3)

where U is periodic with period 2rn in both its

arguments. It has been shown [11] that there are
extended eigenstates of (1.3), with the form

¥ (x) = ey (wpx, wx) (1.4)

with y again 2n periodic in its arguments. If one
thinks of the Schrodinger eq. (1.3) as an autono-
mous system of differential equations in “time”,

¢ _ . 0 _ W
ot LY 2 ar?

=[E—- U, 9l ,
(1.5)

then the proof of (1.4) is equivalent to the existence
of quasiperiodic motion on a three-torus (¢, ¢,
and ¢, = arg(y) with ||//| a smooth function of ¢,
¢, and ¢,). The energy E is a parameter analogous
to w in eq. (1.1); as it is varied, ¢, mode locks to
¢, and ¢, on an open dense set (gaps in the
spectrum), and is incommensurate on the com-
plement (bands). Of course since the i equation is
linear, the evolution of ¢, implicit in (1.5) is
non-generic. Nonetheless, this system may share
some fixed points with eq. (1.1).

2. Qualitative properties

2.1. The mode-locked region

As we vary the parameters a, b and w, the stable
curve ¢, = s(¢,) of eq. (1.1) deforms (see fig. 1),
until it is eventually destroyed. Fig. 2 is a phase
diagram for a =1/2 showing the mode-locked
region where 5(¢,) is smooth and has zero winding
number in the ¢, direction (p, = 0). There are two
ways in which s is destroyed. Along the side
boundaries we shall show that s disappears in a
saddle-node bifurcation. That is, s(¢,) while re-
maining smooth collides with the unstable curve
u(¢,) and annihilates in a manner quantitatively
equivalent to the familiar coalescence of stable and
unstable periodic orbits studied in refs. 6. Along
the top boundary s becomes crinkled (singular on
short lengthscales = long timescales), leading to a
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Fig. 2. Phase diagram a = 0.5. Approximate boundaries for
regions of zero winding number in the ¢, direction, for the map
fof eq. (1.1) with a=1/2 and ¢ =(\/5— 1)/2. The various
phases and transitions in this diagram are the subject of this
paper. In the mode-locked region the attractor is apparently an
analytic curve ¢, = s(¢,); in the tornado region the attractor is
bounded in the ¢, direction (zero winding number p;) but
appears to fill a two-dimensional area. The crinkling and
saddle-node transitions are the two-ways in which the mode
locked state s(¢,) can break down. The dashed boundary of the
tornado region represents the onset of intermittent bursts
(winding in the ¢, direction) in the already chaotic tornado
state.

chaotic state with zero winding number (p, = 0)
and a fuzzy, “tornado” like attractor.

First, one might ask why the curve s remains
smooth as parameters are varied. Suppose for one
value of the parameter p =(a,b,w) the map
f2(¢,, ¢,) of eq. (1.1) maps the smooth curve s into
itself. Under a small change dp in p, we want a new
curve (s + 8s) (¢,) close to s which is fixed under
2 If we define

d(¢,) =ﬁ|)+5p(5(¢2 —2n0), ¢, — 2n0) — s(¢),
2.1

o]
Df(¢,) = 5% (s(¢2), ¢2)

=1—asin(s(¢,)) — b sin(s(¢,) — @),
(2.2)

then d and Df are also smooth functions of ¢,. To
first order in Jp, s must satisfy

0s(¢,) = d(¢,) + Df (¢, — 2m0)0s(¢, — 2n5)

n—1

=Y d(¢,— 2nmo) ﬁ Df(¢, — 2nko)
m=0 k=1

+0s(¢p, — 2mna) ﬁ Df(¢, — 2nko) .
k=1
2.3)

If Df has only power-law zeros, we can define the
Liapunov exponent (the contraction rate)

2n
 [de, .
A= J %2 oglt —a sin(s(9)
0

— b sin(s(¢) — $o)| - (24)

If A <0, then for good irrationals ¢ the infinite
product TI¥_, Df(¢, — ko) should converge to
zero like ¢™, and s should be a smooth function
of ¢, (since ds in eq. (2.3) is essentially a finite
(geometrically converging) sum of smooth func-
tions). Numerically, 4 —0 on the boundaries of the
mode-locked region in fig. 2. We conjecture that
for good irrationals ¢, 4 = 0 is a necessary condi-
tion for the breakdown of mode locking.

We note here that the map fin eq. (1.1) is not
invertible when |a| + || > 1. The curve F where the
Jacobian 1 — a sin ¢, — b sin(¢, — ¢,) of fis zero is
a football-shaped region depicted e.g., in fig. 1. F
will be an important curve in our analysis.

2.2. The saddle-node transition

Across the side boundaries of the mode locked
region in fig. 2, the iterates of the map wind in the
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¢, direction (p, #0). Between the mode-locked
regions, the map can exhibit quasiperiodic motion
of three incommensurate frequencies as mentioned
in the introduction. Truely chaotic motion (with
positive entropy) is only possible when the map is
noninvertible. (The Sinai entropy of a map is less
than or equal to the sum of its positive character-
istic exponents. If a map is invertible, its entropy
is equal to that of its inverse. Since one of our
characteristic exponents is always zero [in the
trivial ¢, direction], if f is invertible its entropy is
zero). The map can also lock into modes where 1,
p1, and p, are rationally related; fig. 3 shows a case
where 11p, = —1 + 2p,. These mode locked states
have phase diagrams qualitatively similar to fig. 2,
with saddie-node transitions, crinkling transitions,
tornadoes, and multicritical points.

At the side boundaries, the stable curve s(¢,)
remains smooth, and appears to coalesce with the
unstable curve u(¢,). At b =0 this is just the

2w

¢

3 27
Fig. 3. Stable curve for another mode-locked state. A mode-
locked state with p, = (2/11)p, — (1/11) is found in fat a = 0.5,
b=02, =052 (p,= 06 = (/5—1)/2). It has a negative Li-
apunov exponent A & —0.00357 and the winding number p, is
constant under small changes in a, b and w. One would expect
reduced copies of fig. 2 about all mode locked states; we have
seen several numerically. The mode-locked states are probably
dense in parameter space, at least for small 2 and b, but not of
full measure.

conventional saddle-node bifurcation of the circle
map at |a| = |/, since f; is then independent of ¢,.
As in the saddle-node bifurcation [6], on ap-
proaching the boundary at constant b 0 from the
mode-locked side the contraction rate (eq. (2.4))
A ~|o,— w|"2 On the far side p, #0; the orbits
spend most of their time running along the path of
the former curves s and u (which no longer exist),
with occasional rapid excursions that wrap around
the torus once in the ¢, direction. The frequencies
of these intermittent bursts determine the winding
number p,; as in the saddle-node bifurcation
pi ~ |w — "2 (The contraction rate is of course
non-zero and p, is constant in the other mode
locked regions, as in fig. 3)

A second way of displaying the saddle-node
transition is by approximating [12] the irrational
frequency ratio p, by a rational approximant
¢ = p/q. This will be a useful tool in studying all
the transitions. The stable curve s(¢,) becomes a
stable g-cycle; iterating the map makes s(¢,) a
stable fixed point of (f7),(¢,, ¢,) (by this notation
we mean the first component of the gth iterate of

Am
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Fig. 4. Saddle-node transition: rational approximant.
($1,0) vs. ¢, for 6 =5/8, a=0.5, b =0.9 and » =0.50,
0.54 and 0.58. The saddle-node line in fig. 2 for ¢ = (\/5 —1)/2
is a conventional saddle-node bifurcation of a stable and
unstable g-cycle for rational approximants p/g ~ o.
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the map). (f), for ¢,€[0,2n/q] is analytically
conjugate to (fY), for ¢,e[2rn/q, 2rn(n + 1)/q]; in
this case we expect f to be qualitatively ¢, inde-
pendent. (See, however, the rational approximants
at the multicritical point in 2.4.) We therefore can
examine an essentially one-dimensional map (f%),
(¢, ¢,) versus ¢, (fig. 4). In essence we have
“integrated out” the ¢, degree of freedom and all
interesting physics occur in the ¢, direction. Here
the one-dimensional map exhibits a saddle-node
bifurcation, as expected.

Finally, it should be noted that although the
saddle-node line extends into the region
|b| > 1 —|a| where f is not invertible, the curve
5(¢,) does not intersect the singular curve F in the
(¢, ¢,) plane at the bifurcation. Along the curve F
the contraction rate in the ¢, direction is infinite;
at the transition the unstable curve u(¢,) coincides
with s(¢,). It indeed seems reasonable (although
not certain) that an unstable fixed curve will avoid
regions of infinite contraction.

2.3. The crinkling transition and tornadoes

When the top boundary of the mode locked
region in fig. 2 is crossed, the attractor appears to
chaotically fill a two-dimensional volume, but does
not wind in the ¢, direction (p, stays zero). (A
jump in the dimension of the attractor from one to
two would doubtless be due to the form of f; in
(1.1). Our observation is in accord with the
Kaplan—-Yorke conjecture [13] since when A =0
we have two Liapunov exponents > 1). The stable
curves becomes fuzzy, turning into the tornado
shown in fig. 5. At the transition, the map f is
always noninvertible and the curve s(¢,). always
intersects the curve of zero Jacobian F. The inter-
nal structures seen in the tornado are formed by
the folding (f folds over the interior of F; the curve
F is the crease where f is singular); one can also
think of them as caustics in the projection of a
higher dimensional attractor (with invertible dy-
namics) onto the torus.

Tornado attractors with winding number p, =0
occur in the region shown in fig. 2. At the bound-

27

¢}
2.0 2m-2

Fig. 5. Tornado with bounds. Attractor for f with ¢ = 0.5,
b = 1.4 and w = 0 exhibits chaotic motion about former stable
curve. Side curves are rough bounds on the attractor found by
comparing the dynamics to that of f with ¢ =0, b =1, and
pi =0 (v =0.071458); they are the curves &, for a,,, = —1.557
and a,, = 2.52 in section 2.3. For smaller ‘a” averaging over
several iterates, with b < 1, will give better bounds.

aries of this region, the tornadoes become intermit-
tent; intermittent bursts cause repeated excursions
of ¢, through 27 in one direction. Crude numerical
checks indicate the intermittency exponent (the
power of (w — w,) which gives the frequency of
these bursts) is somewhat less than 1/2. Above the
intersection of the two boundaries, the bursts cause
excursions of ¢, through 27 in both directions, and
p, probably depends upon initial conditions.

The confinement of the dynamics to a neigh-
borhood of the former attracting curve in the
“tornado” region is an interesting question; it can
be understood by investigating the limit a »0. At
a =0, the time evolution fin eq. (1.1) depends only
upon 6 = ¢, — ¢, and reduces in this limit to the
well-studied circle map [2, 3, 9],

g0)=0+ o>+ bcosh. 2.5
The mode-locked region in fig. 2 collapses to the

line @ (b) on which the rotation number of the map
is the golden mean a; the crinkling transition line,
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the two multicritical points (M, and M, in fig. 2)
and the entire tornado region collapses onto the
critical point b = 1 where the circle map develops
a cubic inflection point. Since f depends only upon
¢,— ¢,, for fixed values of the constants
p = (0, b, ®(b)) one has a one-parameter family of
invariant curves ¢,

AE$2)) = &, + 270) (2.6)
Sl @) = Sor— )+, 2.7
{la) =a.

For b < 1, ¢ is analytic (so long as ¢ is a good
irrational); as b —1, £ becomes nondifferentiable.
(E(dy) = h(d,) — ¢, where h is the coordinate
transformation conjugating [2] the circle map g to
a simple rotation: g - 2(0) = h(0 + 2rno).)

Under small deviations dp = (a, b, dw), points
on &, are mapped nearly back onto it;

SIHELD), b)) = Efb, + 2n0) + b
+ a cos(&,(¢,)) + 0b cos(E () — ¢,) , (2.8)

with a slow drift to one side. We want to change
variables from (¢,, ¢,) to (o, ¢,) with a defined
such that & (¢,) = ¢, (since each point (¢,, ¢,) lies
on an invariant curve, this variable change is well
defined and for b < 1 is analytic). We can then use
o as a slow variable. The change da(x, ¢,) in «
under one iteration of /7 *+% is defined implicitly by

écx + 5a(¢2 + 27[0') =ﬂ+ 6p(§m(¢2)’ ¢2) . (29)

Using eq. (2.7), for b < 1 to first order in dp we can
solve for da,

(da/a) = [(dw [a) + cos(E(9,))
+ (8b/a) cos({,(¢2) — ¢2)]
/1 = (0,/0¢,)(¢, + 2ma)] . (2.10)

If we let ¢ be the number of iterations of the map,

the averaged equation of motion for o becomes

2n

| da_ J 492 (500 /a) + cos(E(é2)

adt | 2n
0

+(8b/a) cos(£.(¢2) — ¢,
/[1 O (¢2+27w)]. (2.11)

 0¢,

This equation roughly corresponds to the ampli-
tude equations used in studying convection. It
ignores the fast timescales (i.e., ¢,). One can ex-
tract from it most of the features of the phase
diagram even at a = 1/2 (fig. 2). We have evaluated
the right-hand side of eq. (2.11) numerically as a
function of «. Crudely speaking, & (¢,) ~ a, and the
middle cosine term in the numerator of (2.11) gives
a periodic potential da/dz proportional to cos(x),
with one minimum near « =7/2. (As b—1 the
amplitude of this potential diverges, since the
denominator goes to zero at a dense set of points,
but the form remains the same.) The first term
involving dw tilts this potential, da/dt ~
cos a + déw/a. Until dw becomes comparable 1o a,
it can only shift the minimum and cannot cause ¢,
to wind. The perturbations contributed by b
similarly can cause intermittency only when
&b 2 a. Thus the region of zero ¢, winding number
in fig. 2 is roughly of radius a about the curve
@(b) of the circle map.

However, the averaged equation completely mis-
ses the crinkling transition. The fast timescale
corrections to eq. (2.11) in the mode locked region
act to deform the curve &(¢,); in the tornado
region they destroy it, introducing chaos. By using
eq. (2.10), one can put rough bounds on the extent
of the chaotic attractor; fig. 5 shows the bounds
given by finding «,;, < a,,., such that da = 0 for all
points &, ...(¢,) and da < 0 for all points &, ,..(¢,),
at b = 1. (Strict bounds on the attractor can also
be found.) Better bounds for small a can be found
by iterating eq. (2.10), until as ¢ -0 the asymptotic
phase diagram should be given by eq. (2.11).

It is not widely appreciated that averaged equa-
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tions and amplitude equations cannot exclude
small-scale noise on fast timescales. For good
winding numbers, if 4 <0 the stable invariant
curve must persist for small variations in the
parameters (section 2.1) and hence one can exclude
chaos. In contrast, the absence of chaos cannot be
inferred from the averaged equations. The latter do
on the other hand serve to confine the chaos (e.g.,
prove p, stays zero).

At the top boundary of fig. 2, the curve s(¢,)
becomes nonanalytic and appears to develop hori-
zontal tangents at a dense set of points (fig. 6). The
map f in eq. (1.1) has zero Jacobian on the
football-shaped curve F in fig. 6; the curve s(¢,)
crosses F several times. The contraction rate A goes
to zero as one approaches the crinkling transition
from below (fig. 7), but in an irregular fashion.
Presumably the dips in fig. 7 occur when a new
intersection of s with F forms, and s is temporarily
tangent to F. The time series at long times will
depend upon the interplay of influences of these
intersections; the distance separating them in the
¢, direction will be relevent parameters. The power

2

Fig. 6. Stable curve at crinkling transition. Attracting curve s
for eq. (1.1) with a =0.5, b = 1.3 and @ = 0.2, near where s
disappears in a crinkling transition. The ¢, coordinates of the
points at which s crosses the zero Jacobian line F are probably
relevant in determining its singular structure.

1.0 1.1 1.2 1.3

Fig. 7. Contraction rate at the crinkling transition. Contraction
rate A (eq. (2.4)) as a function of b for  =0.0, a = 0.5. The
crinkling transition occurs at b, = 1.299 + 0.001. The error bars
on b, are perhaps overly conservative. The periodic cycle of
length 17711 (corresponding to the 22nd rational approximant
Parlds 10 6) becomes unstable at b = 1.29893 + 1 if the cycle is
started at ¢, =0; it becomes unstable at b =1.299428 + 10 if
the cycle is started at ¢, =2n/10. Thus the 17711 cycle has a
transition in a range b = 1.2992 + 0.0003. However, the con-
vergence of A with increasing cycle length is very slow;
at b»=1298 it has clearly not yet converged
Ay = —5.85 x 1074, Ay = —14.07 x 107%). Major fea-
tures seen here are independent of cycle length, but the very
small scale bumps are finite cycle-length effects. (For b in the
range 1.2-1.3 cycles of length 46368 were used.)

spectrum at the crinkling transition has been exam-
ined numerically at isolated points on M, M, (fig.
8); it is not self-similar but is singular in that the
envelope of the spectrum varies as frequency v to
a power as v—0. Thus scaling behavior does not
appear to occur unless these parameters (and pos-
sibly others) are controlled.

Finally, we can again let ¢ be a rational approx-
imant p /q of the golden mean; fig. 9 shows that, at
the transition, (f¥), is developing multiple fixed
points, via an inverse saddle-node bifurcation. This
is the first stage in a complicated transition also
including period doubling, which as g—oc col-
lapses onto the crinkling transition.

2.4, The multicritical point

The saddle-node line and the crinkling line ter-
minate at a common multicritical point. New
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|
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Fig. 8. Time series spectrum at the crinkling transition. Power
spectrum of the time series ¢ = (f(¢?, $2), for fin eq. (1.1)
at the crinkling transition (=3, =0, b=1298926,
o = 2n(10946/17711), %= —0.0364373, ¢3=0), on a log-log
plot. The largest peaks fallat v = ¢/ = [(\/ 5 — 1)/2}. Note that
no factor has been divided out of this spectrum (in contrast to
fig. 11); the low frequency behavior at the crinkling transition
probably is more singular than at the multicritical point.

critical exponents appear at this point. As one
crosses the saddle-node line just below it, fig. 10
shows the crossover of the contraction exponent
from a multicritical value of & 1/3 (found by fitting
the slope) to its saddle-node value of 1/2. Also, the
time series spectrum £;(v) at the muiticritical point
becomes self-similar at low frequencies (fig. 11).
The spectrum appears to follow the scaling law
(fig. 12)
fim)y=0afitv/e), asv-0. (2.12)
For a =0, the scaling law follows from that of the
circle map [2] (¢ =0, b=1,® =0.071458 .. ) if
the latter is iterated twice. Presumably the relative
phase (e.g., the angle in fig. 12) of the even and odd
peaks f(v/o?) and f(v/c¥*') goes smoothly to
180° as a —0.

As one increases @ along the crinkling transition
line, eventually the singular attracting curve s in

(18,1, 0) UapSla

0

0 ¢| T
Fig. 9. Crinkling transition: rational approximants. (/*),(¢;, 0)
vs. ¢, forc = 5/8,as a =0.5, w = 0.4 and b = 1.2 and 1.4. The
crinkling bifurcation occurs when multiple zeroes form in the
rational approximants, via inverse saddle-node bifurcations.
For b = 1.2 (representing the mode locked state) there is a single
stable fixed point s, , and a single unstable point u; , corre-
sponding to s and u of fig. 1. A second pair of fixed points u] 4,
514 has formed at b =1.4.

|

-

&

—B8
lo — ) S Il 1 '
Jw-wl

Fig. 10. Crossover in A from multicritical to saddle-node
scaling behavior along b = 1.0. The contraction rate A4 in eq.
(2.4) scales as A oc|w — ' as one approaches the saddle-
node transition at fixed b from the mode locked side. At the
multicritical point M, (see fig. 2) (b ~ 1.00245, ® = 0.529192)
A presumably scales with a new multicritical exponent (eq.
(3.12)). Here we see a crossover from multicritical scaling to
saddle-node scaling as we cross the saddle-node line at b = 1.0,
@, =0.52921796 just below M,.
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L

Fig. 11. Time series power spectrum at multicritical point.
Power spectrum of the time series ¢ = (f"(¢,., ¢,.)); for fin
eq. (1.1) at the multicritical point M, (b = 1.00245,
@ =0.529192). A normalization factor of v? has been divided
out of the power, and a log-log plot has been used, in order to
exhibit the scaling implied by eq. (2.12). The principle peaks fall
atv =g/ = [(\/5 — 1)/2}. Except for an overall scale factor, the
spectrum should be universal as v—0.

fig. 6 becomes tangent to the zero Jacobian curve
F (8f,/0¢, = 0) of the map (fig. 13). The point of
tangency is the extremal point (¢§, ¢$) of Fin the
¢, direction. Since the crinkling transition depends
upon the noninvertibility of £, the crinkling transi-
tion line must end when s is tangent to F, and
indeed this is the multicritical point. There is now
a unique intersection point about which to scale;
we shall argue in section 3 that this explains the
self-similar time series spectrum.

The fact that at the multicritical point s and F
are tangent at (¢§, ¢$) can be explained as a con-
sequence of the coexistence of the saddle-node and
crinkling transitions and of zero winding number
p; in the ¢, direction. The map fi(¢,, ;) as a
function of ¢, is monotone increasing outside F,
and monotone decreasing inside F. (f folds the
interior over, with F forming the crease.) If u were
tangent to F at a single point other than at an
extremum, parts of the interior of F would neces-

Im(?(y)/V)O.OOZ r

0.00z
(v)/v)

-0.002

-OOOZJ

Fig. 12. Scaling of the time series spectrum at the multicritical
point. The principle peaks of fig. 11, here plotted in the complex
plane, The even peaks v =¢* and the odd peaks v =¥+
appear to be separately converging to universal values marked
o and ¢®¥*! as n—00. At a = 0 (the circle map) the fourier
spectrum at low frequencies satisfies f(v) = —af(v/a); thus the
opening angle 8, is  at a = 0. The time series used was of length
2584, so the principle peaks continue down to 1/2584 =¢'¢.
Below ¢! neither the magnitudes nor the phases of the fourier
peaks scale; this is presumably due to the cutoff at ¢'¢, with
possibly some contribution from errors in the value of b at the
multicritical point.

sarily be mapped across u. The onset of intermit-
tency necessarily involves orbits which cross the
unstable manifold ». We believe near the multi-
critical point the converse is also true; points
crossing u when u is tangent to F won’t be mapped
back across (roughly because outside F the map is
increasing). Under further iterations, these points
will presumably wind around in ¢,, some of them
reentering F and crossing again — leading to non-
zero p,. Thus for u to be tangent to F at any point
other than its extreme in the ¢, direction, intermit-
tency must already be present. For a crinkling
transition to take place, s must intersect F; at a
saddle-node transition, s and u coalesce; u will
presumably not cross F (as noted in 2.2). Thus u
and s must be tangent to F, and for p, to stay zero
the point of tangency must be an extremum of F
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rad

$2

(Fohe)

¢,

Fig. 13. Multicritical curve. At the multicritical point M,, the
stable and unstable curves of eq. (1.1) coalesce into the curve
shown here (whose time series spectrum is shown in figs. 11 and
12). The curve is tangent to the zero Jacobian curve F (where
f does not locally have an inverse) at the point
(d1c- Do) = (2.894, 1.828) on F where ¢, is a local extremum.
The tangency follows from the simultaneous occurrance of a
saddle-node and a crinkling bifurcation; the unstable curve u
does not cross F at saddle-node transitions, (fig. 1) while the
stable curve s always crosses F at crinkling transitions (fig. 6).
The tangency must occur at the extremum in ¢, to maintain the
winding number p, = 0.

in the ¢, direction, where f(¢,, ¢,) as a function of
¢, has a cubic inflection point.

Fig. 14 shows (f%),(¢,, ¢,) versus ¢,, at the
multicritical point, with ¢ = p /g approximately the
inverse golden mean. We can understand how the
saddle-node and crinkling transitions manifest
themselves at the multicritical point by looking at
this function at various values of ¢, in an interval
1/q. (The qualitative features then of course re-
peat.)

We start with the curve labeled zero, in which
¢, = ¢$ (the local maximum of F in the ¢, direc-

3. Proposed renormalization group

4T
5 3 s/ Jo
i)
+
O
kY
o Y
] x
’/Q’.‘S‘
R _S
o ],
(), 68
% 4
$ 5

Fig. 14. Multicritical point: rational approximants. (/'),(¢,, ¢,)
vs. ¢, at the multicritical point for ¢ = 5/8 and a =0.5, at
¢y = ¢y, §rc + 1/64 and ¢, + 3/32. At ¢, = ¢, + 1/8, the curve
would again have a cubic inflection fixed point at a smaller
value of ¢,. One can see clearly the coexistence of the saddle-
node and crinkling bifurcations in the curve ¢, + 1/64, one
eighth the way through the cycle. Here the saddle-node bifur-
cation is occurring apparently at the same time as a new pair
of fixed points (signaling a crinkling bifurcation) is forming via
an inverse saddle-node bifurcation.

tion); the iterated map f7 thus has a cubic inflection
point at ¢{. The function here has a single stable
fixed point at s, and a single unstable fixed point
at u,. The curve labeled 1/8 shows (f¥), at
¢, = o5+ 1/8q; s, and u, have just annihilated in
a saddle-node bifurcation. However, there has
been an inverse saddle-node bifurcation (charac-
teristic of the rational approximants at the crin-
kling transition) at precisely the same time. The
curves continue to evolve until at ¢5+ 1/g a cubic
inflection point again appears between the new
stable and unstable points.

In this section we propose, but do not implement, a renormalization-group analysis of nonlinear systems
forced at two frequencies (eq. (1.1)). We study three known fixed points of this renormalization group, and
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S

Fig. 15. Phase diagram and renormalization group eigenvalues. Inside the volume M;M,S,S RC eq. (1.1) has a smooth attractor
¢, = s(¢,) with winding number p, =0 in the ¢, direction. The eigenvalues shown govern the various bifurcations through which
this mode locked state can break down. Point R is the trivial fixed point; the curve connecting C to R is the intersection of the stable
manifold of R with [a, b, w]. The surfaces M,CRS, and M,CRS, are the intersection of [a, b, @] with the stable manifold of the
saddle-node fixed points; the eigenvalue governing the penetration of these surfaces is o2, so the exponent is log o /log(c ~%) = —1/2.
The point C lies on the stable manifold of the circle map fixed point. The eigenvalue é governs perturbations depending only on 6, — 0,
causing transitions to different winding numbers p,; the eigenvalue a? governs the growth of perturbations depending on 8, — @, at
fixed winding number. The multicritical lines M,C and M,C are conjectured to be the intersection of [a, b, ] with the stable manifold
of a line of multicritical fixed points of T2 The conjectured eigenvalues a? and 62 of T? at these multicritical fixed points thus lead
to exponents log 6 %/log a? and log o*/log 62 governing perturbations leading down the saddle-node surface and across the crinkling
surface, respectively. Finally, althought the crinkling surface intersecting [a, b, @] in M;CM, is probably not a stable manifold of a
fixed point, it is mapped into itself under 7. If the motion on this codimension one surface is “sufficiently ergodic”, one might
characterize flow away from it by an eigenvalue «.

relate them to the phase diagram (fig. 15). We conjecture that a one-parameter family of multicritical fixed
points exists. Finally, we briefly speculate about possible studies of the crinkling transition.

The non-trivial universal features associated with transitions in dynamical systems always involve
behavior on long timescales. The usual method for extracting these universal features is to decimate the
time series. Since the time series is one-dimensional, this decimation is given exactly, by iterating the map.

For convenience, we shall write our renormalization group in terms of variables 8, and 6, periodic
modulo one; the renormalization group transformation will iterate the map and expand about 8, =0, = 0.
(The expansion point in terms of the 2n-periodic variables ¢, and ¢, will be shifted appropriately as we
study different transitions.) We express f(0,, 8,) = (f,(6,, 6,), (8, + ¢)) in terms of two pieces, E and F, whose
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second components are trivial:

E6,,0,) = (Eé(ei 32)> o —1<6,<0,
£6,,0,) = ;1(91 6) (3.1)
F(01,02)=(92+6_ 1), 0<,<a.

Our renormalization group is a map T on the space of pairs of functions (E, F). Consistent with the
interpretation of 6, as an external periodic force, we restrict the second components of E and F to be trivial
(as in eq. (3.1)). We can also assume E and F commute; they of course commute initially if f is analytic,
and our renormalization group will preserve this property.

Following the treatment of annular maps in ref. 2, we define

T(E, F)=(AFA~', AF-EA™"), (3.2)

o B
y =<o _6_1>, (3.3)

where the choice of « and f in 4 will in general depend upon E and F. This transformation preserves the
winding number p, =0 = (\/ 5 —1)/2 the ratio of the two forcing frequencies. (Remember that this is a
relevant variable; the low frequency properties of fdepend sensitively, for example, on whether p, is rational
or irrational.) The best rational approximants to ¢ are ratios ¢,/q,., of Fibonacci numbers ¢, =0, ¢, =1,
Gnir = 4.+ q,_,. After n applications of T, E® = A"f%4 7" F® = A"fin+14 ",

The contraction rate A (eq. (2.4)) behaves simply under T. A(f) is the integral of the logarithm of the
magnitude of the Jacobian of f over its attracting curve,

21.(516.6) . (34

A(H) = j dé, log
g—1

T acts by eliminating those elements of the time series which lie in the range ¢ < 8, < ¢, and then scaling
the coordinates by A. Thus the segment of the attracting curve s,(6,) of flying between — ¢ and ¢° maps
under 4 onto the attracting curve sz of Tf:

st(6y) = as(— 60,) — ol . (3.5)

(In particular, sz, is continuous at the boundary only if one identifies the points E(8,, 0) with F(§,, 0) after
applying 7. When the map becomes non-invertible along 8, = 0, the utility of gluing the torus back in this
way becomes questionable.) The Jacobian of Tf along s;, for —o?< 6, <0 is equal to that of f at the
corresponding point on s;

ozF1<a“01 +€7602, —092> +p(—a0,+0—1)

71(0,,6,) = , —61<6,<0,
02 + 0o
(T OF,
TPt (580, 0 = 1 (5,(= 0B, —0by), —o2<0,<0. (3.6)
a0, a6,

The Jacobian of Tf along s;,in the range 0 < 6, < ¢ is a product of the Jacobians for f at the corresponding
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point on s, and at its image (which was eliminated by the decimation). That is, for 0 < 8 <o,

- Bo
! — — — 3
70, 0,) = ocFl[El( 6, + 92, 002>, 092+a]+ﬂ( 06, + 63 ’
f,+0—1
(T
( f)1 (517(0,), 6,) = = (Sf( 00,+ ), —a0,+ a) (sf( 66,), —a66), 0<6,<0. (3.7

Thus, using (3.4),
Ay =cA(Tf). (3.8

It is obvious from our definition of T that, roughly speaking, after a large number of iterations /¥ ~ (Tf)"
up to a scale change. Thus by taking the Jacobian of both sides, for large N e x e"4@); hence (3.8)

If B is a change of coordinates which commutes with 4 and if (E, F) is a fixed point of 7, then so i
(BEB™', BFB™"). We allow only changes of coordinates which leave the 6, evolution trivial; thus if B is
linear, it has the form ('#¢%) and commutes with A4 if A(x + ¢ ~") = fg. All of our fixed points lie withir
one-parameter families generated by scaling them in this way as we shall see.

The first three entries in table I are known fixed points of T whose winding number p, in the 8, direction
is zero. Also shown are the physically relevant known eigenvectors and eigenvalues of the linearized fixed
point equations; if E and F are fixed points of T then a small perturbation E; + ¢, F, + 6 grows with
eigenvalue 4 if

Je(a, + B9, —o7'0,) = ad (8, 0,),
oF
A0 (a0, + B0, — 07'0,) = “’6_6'1 (E(8,, 0,))e(6,, 0,) + ad (E(0,, 6,)) .
1

In addition, the condition that E and F commute (E - F = F- E) implies

o S (B0, 0)c(0,,0) + 5(E, 0) = o 3. (F(O, 0)5(0,,0) + (F(0,,6). (3.9)

The trivial fixed point E,(8,, 8,) = F(6,, 6,) = 6, has been analyzed by Stellan Ostlund [14]; it happens
to occur at @ = b = w = 0 (point R on fig. 15). The scale factor A (eq. (3.3)) for this fixed point does not
shear (8 = 0) but the stretch in 6, («) is arbitrary. To allow comparisons with the other fixed points, we
tabulate the two values a = + ¢ . (The relevant eigenvalues one could generate using ]a] < 1 are of no ap-
parent interest.) The eigenvectors can be expanded as polynomials in 6, and 6,. Ignoring the commutativity
condition (3.9), for each n, m there are two eigenvectors of (3.8) with degree » in 6, and m in 0,; their
eigenvalues are a!~"(—a)"*! and —a'~"(—a)" ' There are two relevant eigenvalues (unstable direc-
tions) and two marginal eigenvalues which satisfy (3.9) (see table I). The eigenvalue + o ~? governs the
growth rate of any perturbation which does not leave the origin on an invariant curve. The eigenvalue o -1
governs perturbations which put the origin onto an invariant curve with A 5 0; it expresses the increase
of stability or instability of this curve under applications of T (eq. (3.8)). The eigenvalue + 1 represents
the marginally stable saddle-node line discussed below, where (0, 0) lies on an invariant curve with A =0.
Finally, the eigenvalue F 1 tilts the invariant curve. As discussed above the coordinate transformation B
with 4 # 0 (skewing the coordinates) commutes with 4 for @ = —g ~'; h generates a one-parameter family
of fixed points E, = 0, + ha, F, = 6, + h(c — 1). For a = ¢ 7' the tilt is reflected, leading to the eigenvalue
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Table 1

Fixed points of T, For the trivial fixed point, the eigenvalues change sign ( + ) with a.
Sections of the table in brackets are conjectural

Fixed points of 7 with 6, rotation number p, =0

Trivial fixed point a =b =w =0

+¢7!' O
E, =6, F =6, A=(—'7 )

0 —¢!
Eigenvaiue Eigenvector Significance
(¢, 3)
+07? (o, ) 8, rotation number
ot (¢9,,9) slope at fixed point
+1 (o062, 0% curvature at fixed point
¥ (-1 skew coordinates

Saddle -node fixed point

—t O
E,=8/(1 ~ocB), Fi=0/1-ch) 4= (0'0 U«I)

Eigenvalue Significance

c~? saddle-node transition
1 change in ¢
-1 skew coordinates

Circle map fixed point

_ -1
E =040 ~E40,~0), Fi=0,+0—1—n%06,—6), A=(°" ato ))

0, —g !

FEigenvalue Significance
6~ —~2.8336 8, rotation number
o~ 1.6605 slope at cubic inflection point
1 skew coordinates
7 unstable direction into crinkling

surface
~ 1 marginal direction along multi-

critical lines

Multicritieal points (fixed points of T%) T
One parameter family E,, F,

Eigenvalue Significance

82 fiow into crinkling surface, other
6, rotation numbers

M flow down to saddle node, up to
chaos

1 marginal direction, changes a

w1 skew coordinates

Crinkling surface (fixed surface of T}

Eigenvalue Significance
X flow away from surface {(ergodic
average)
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— 1, and a line of fixed points of 77. No relevant eigenvalue whose eigenvector commutes (eq. (3.9)) depends
upon 6,.

The stable manifold of the trivial fixed point intersects the three-parameter family of eq. (1.1) in the
line connecting C to R in fig. 15. Perturbations in the b direction appear to be irrelevant; thus only twc
of the marginal and relevant eigendirections can be exhibited at once. On the one hand, if we expand about
¢, = 0 then changing o keeping a = 0 changes the rotation number (eigenvalue 4 ¢ ~?), while changing
w = —a moves along the saddle-node line ( & 1). On the other hand, if we expand about any ¢, value other
than zero and n, the eigenvalues + ¢ ~% and ¢ ~! will be represented. The irrelevance of perturbations
involving 6, is interesting; near this fixed point iterations of the map gradually average out the 6, dependence
of any small additive perturbation.

The one-parameter family of saddle-node fixed points {E, = 6,/(1 — ac8)), F,=60,/(1 —cb)), a =0,
B = 0} has been studied by several authors [6]. The eigenvalue o ~2 gives the exponent 1/2 quoted in section
2.2 which governs the intermittency and the contraction rate as one passes through the transition. The first
marginal direction (+ 1) noted in table I moves along the line of fixed points corresponding to the free
constant ¢; the second marginal direction ( — 1) tilts the invariant curve. (Again, technically we have a
two-parameter family of saddle node fixed points, with various curvatures and tilts.) Although we have not
performed the calculation, we believe that these are the only relevant and marginal eigenvalues; in particular
we expect only irrelevant eigenvectors depend upon 6,. This implies again that b gets averaged out under
iterations and one sees the one-dimensional exponents as noted in section 2.2. The stable manifold of this
family intersects fig. 15 in the surfaces M,CRS, and M,CRS,. Here of course the lines S;R are not the fixed
points, though they are independent of ¢,.

As noted in section 2.3, for a = 0 eq. (1.1) is equivalent to the circle map in ¢, — 8,, with the transition
to chaos occurring at b = 1. The associated fixed point E, =6,+0 —¥0,—0), Fi=0,+0 —1—n*
(0, — 8)) (table 1) is expressed in terms of the universal functions ¢* and n* of the circle map discussed
in ref. 2. Both &* and #* have cubic inflection points at the origin (¢*(6) ~n*(@) ~ 6° as 6 »0). Two
unstable directions exist which involve only 6, — 8,; the exponent d governs perturbations which change
the winding number p, in the 8, direction, and the exponent o governs both the growth of the slope at
the cubic inflection point and more generally the transition to chaos at fixed rotation number p,. (Recall
that our perturbations do not alter the 6, evolution.) Again, there is a linear change of coordinates B (with
g = —h) which commutes with 4, thus there will be a marginal directions corresponding to the family of
fixed points found by skewing the coordinates by B.

We have now completed a summary of the known fixed points and important eigenvalues for our
renormalization group. The remainder of this paper will become increasingly speculative; we will attempt
to outline the type of results obtainable from a numerical implementation of the renormalization
group 3.2.

The scaling law obeyed by the low frequency spectrum at the multicritical point (eq. (2.12) and figs.
9 and 10) indicates that self-similar behavior is occurring on all timescales, and that a RG fixed point should
exist. However, fixed points of T obey scaling laws [2] relating f(v) with f(ov); the multicritical scaling law
relates f(v) with f(o?v) (eq. (2.12)). The multicritical point will thus flow to fixed points of T 2 (two cycles
of T). We conjecture that a one-parameter family (E,, F,) of multicritical fixed points of T % exists, whose
low frequency spectra will be universal (with fractional corrections proportional to the frequency, as in ref.
2).

Since as a—0, (E,, F,) approach the circle map fixed point, the latter will presumably have a marginal
direction (whose eigenvalue of T will be — 1) leading along the multicritical lines. In analogy with the trivial
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fixed point there is probably at least one unstable direction from the circle map fixed point which is not
a function of 8, — ,; the corresponding exponent t would govern perturbations (e.g., increasing a) leading
onto the crinkling surface M;CM,.

Since we must vary two parameters in eq. (1.1) to find a multicritical point, it seems reasonable to
presume that there are two relevant eigenvalues so that the stable manifold of the family of fixed points
is of codimension two. Consider the unstable manifold of one of the multicritical points M. The contraction
rate A is zero at M; it should be non-zero and negative in the mode-locked region of the unstable manifold.
Along some curve passing through M the mode-locked state is undergoing a saddle-node bifurcation and
A =0; by eq. (3.8) this curve is mapped onto itself and the tangent to it at M must be an eigenvector of
T?. It seems safe to assume that as @ -0 the associated eigenvalue goes smoothly to the circle map exponent
a* (M is a fixedpoint of T?), so we call this exponent af. The multicritical fixed points will clearly also have
two marginal directions. One, with eigenfunction 0(E,, F,)/da will be associated with motion along the
multicritical line M,C and M,C in fig. 13; the other will again correspond to that ratio of g and 4 which
allows the coordinate transformation B to commute with 4 and thus with T.

There remains a second relevant eigenvalue at M to be characterized. Numerical evidence (fig. 7) and
the analysis of section 2.1 indicate that A =0 at the crinkling transition surface M;CM, of fig. 15. Thus
the crinkling boundary of the mode-locked region on the unstable manifold of M should be mapped onto
itself by T2 If a tangent to the crinkling boundary exists at M, it will be an eigenvector of 72, presumably
a relevant one. (Since we know only isolated points on the crinkling boundary, and those without great
accuracy, we cannot be sure that it forms a smooth curve.) It is not clear from fig. 2 whether this eigenvector
is independent of the saddle-node direction; the points at » = 1.145 indicate that the crinkling curve and
the intermittent tornado boundary may become tangent at M. For the analysis in the remainder of this
section we shall assume that this eigenvector exists and is independent of the eigenvector corresponding
to a*. We shall call the eigenvalue 62 it is not obvious whether in the limit a —0 this eigenvalue will equal
&? for the circle map.

The renormalization group transformation 72 will, as noted above, map the crinkling surface in function
space into itself. For the circle map [2], the unstable manifold corresponding to J is mapped into itself by
T, but the map is chaotic, depending in detail on the continued fraction expansion of the winding number
[2]. Only if one controls the winding number as a relevant parameter can one find fixed points and
exponents. It has been suggested in that system that most winding numbers (forming an ergodic set of
Lebesgue measure one on which the map induced by T acts ergodically) will possess “average’ exponents
[2}; there is no evidence for or against this suggestion. We believe the action of 77 on the crinkling surface
is also chaotic. The highly singular nature of the power spectrum at the crinkling transition and the lack
of any observable scaling, with new structure on all timescales, indicates to us that at a minimum there
are relevant parameters at the crinkling transition which we have not controlled. The operator T? carries
points near the crinkling surface farther away, while it mixes points on the surface. We will assume for
the remainder of this section that the unstable direction leading away from the crinkling surface
characterized by an ‘“average” eigenvalue x for all nearby points. (If in fig. 7 we crudely estimate
Ab)~ (b —b), then k =a~").

In fig. 8 we saw the crossover behavior of the exponent for the contraction rate A, from a value of about
1/3 to the saddle-node value of 1/2. If we assume 62 > &, the multicritical value of the exponent for A will
depend on «; the renormalization group flows will take one first along the crinkling surface (eigenvalue
82) and then away from it (eigenvalue k). [If 62 < af, the same analysis will apply, exchanging |5a‘ for «2
and o 2 for k.] Let x be a measure of the distance in function space from the saddle-node surface, and
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y be a distance from the crinkling surface. Then A(x, y) satisfies (via eq. (3.8))

y~1, A y)~e?,

(3.10)
x ~ 1 , A(x, €)~ 610ga—1/l0g|x| .
Near M(x =y =0) the RG flow is close to linear, and using eq. (3.8) we see
A(x,p) = a’A(02x,aly), x,y<l. (3.11)
Approaching M in a transverse direction ex,, €y,, we find
A(exp €)X @ —logdfloglda| A (x,, o Mot ¢/10g|3,4]) €v,)
~ gloga™ 1/log|s, |6 (1 —log a3 /log|8,, )(log o~ ! log|x|)
ze{log o= /log|, | + log o= /log|x| — (log o3 /log|3 ) log o — ! /log|x} e 1/3 . (312)

Thus the exponent of the contraction rate A along a transversal approach to the multicritical point (and
thus the nontrivial exponent in fig. 8 before the crossover) can be written explicitly in terms of §,, «, and

K.

4. Conclusion

We would like to summarize the status of our
understanding of this system. In this paper we have
given a careful qualitative description of the phases
and transitions observed in this system adjacent
to a mode-locked state; other transitions can occur
(e.g., “period doubling” of tori) for larger values of
b and a, but these seemed of less interest to us. We
understand the saddle-node transition quan-
titatively and the boundedness of the chaotic “tor-
nado” state as a partial breakdown of averaged
equations of motion. We have demonstrated nu-
merically the self-similar nature of the multicritical
attractor and the scaling law for its spectrum, and
have given an explicit criterion for locating it in
terms of the Liapunov exponent A and the zero
Jacobian curve F for the map. We have set up a
renormalization group to study this multicritical
point, and believe that a quantitative under-
standing of it will be obtained from a numerical
implementation of this group.

There are two features of this system which are
not under control. First, the crinkling transition
appears to be a generic route to chaos in systems
forced at two frequencies; it takes one continuously
from a one-dimensional attractor to the pre-

sumably two-dimensional tornado attractor. No
quantitative understanding of this transition exists;
indeed, we have not found an effective numerical
algorithm to locate it. Secondly, the chaotic tor-
nado attractor undergoes an intermittent break-
down; this transition is similar to “‘escape time”
problems in other chaotic systems and might war-
rant further study.
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