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The existence of singular solutions in the 3-D Euler equations is considered. A numeric algorithm for simulating 
collapsing solutions is described, and preliminary results are presented. 

The serious study of singularities in the equa- 
tions of three-dimensional hydrodynamics goes 
back at least to 1934, and a proof still has not 
been given that solutions of the Navier-Stokes 
equations remain smooth [1]. Far less is known 
rigorously about solutions to the Euler equations. 
Although on physical grounds one might expect a 
singularity here, the numerical evidence is unper- 
suasive. 

Other than being a challenging mathematical 
problem, singularities may furnish a paradigm for 
three-dimensional flows. An analogy should be 
drawn with two-dimensional shear flows, specifi- 
cally the mixing layer, where the first visualization 
studies revealed large vortex blobs [2]. Their per- 
sistence came as a complete surprise since this 
same flow had been studied earlier with hot wires 
and generally found to evolve in accordance with 
simple mixing length or dimensional scaling ideas. 
The coexistence of simple scaling and coherent 
structures has subsequently been verified in other 
2-D flows [3]. 

The analogy we wish to draw for 3-D is between 
coherent structures in space and those in space- 
time; or singularities. If we take a turbulent 
boundary layer as the prototypical 3-D flow, we 

are forced to consider the bursting phenomena 
which accounts for an appreciable fraction of the 
Reynolds stress [4]. Boundary layer bursts also 
came as a surprise since the mean velocity profile 
was known to obey the von Karman scaling law. 
There is still debate about the proper interpreta- 
tion of bursts but there is incontrovertible evi- 
dence of very large gradients on very small scales 
[5]. 

Two further more techMca] arguments for 
studying singularities should be advanced. Some 
form of collapse is the only way in which a com- 
puter can simulate a large range of scales..Under 
favorable circumstances, the simulation time will 
grow logarithmically with scale size rather than 
algebraically. Analytic calculations may also prove 
feasible for a collapse and point the way towards 
more generally appficable apprordmations. 

Our numerical approach to singularities should 
be contra~ted with two orevious efforts, both in- 

A 

conc!us:~;'c. Brachet et al. [6~ computed a power 
series in time for the ens:rophy Mth Fourier 
modes, which was then Pad6 approximated. A 
subsequent theorem showed ',his analysis to be 
superfluous. Namely, Beale et al. proved that the 
enstrophy can only diverge if the time integral of 
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the supremum (over space) of the vorticity does 
[7]. In ref. [6] this quantity grew by no more than 
a factor of 4-5, hence no singularity. 

One can also question whether Fourier modes 
are the optimal way of describing spacial singular- 
ities. The equations are local ha real space except 
for the pressure which would tend to average out 
for a singularity with fractal support. Our working 
assumption is that the first singularity is point-like, 
though more complicated objects could develop 
later. 

Chorin applied a vortex algorithm to this prob- 
lem but in our view its implementation was inade- 
quate [8]. 

Pumir and Siggia solved the Biot-Savart model 
for a single vortex filament with a locally variable 
core size chosen to preserve volume [9]. A singu- 
larity was found, which modulo logarithmic terms, 
would persist with viscosity present. This model is 
perhaps the simplest possible which contains vor- 
tex stretching and can be solved with reasonable 
confidence both numerically and analytically. It 
invalidates any casual arguments that viscosity 
will control a singularity in the Euler equations. 

This model has one serious shortcoming which 
was explicitly noted in ref. [9], namely that the 
vortex cores undergo secular distortion when they 
pair and stretch [10]. Vortex reconnection is not 
an issue since it clearly does not occur for Euler 
prior to the singularity, and for Navier-Stokes, 
large gradients diverging with the inverse viscosity 
are necessary for reconnection to occur in a finite 
time. Granting that the collapse does preserve 
some core shape, then it is of no importance 
whether the shape is circular or not. It is necessary 
to adjust the core size locally since comparison 
with the correct equations shows that there is 
insufficient time for the core volume to redis- 
tribute. Lack of manifest energy conservation is 
also not a problem since under these assumptions 
the energy in the Euler flow to which the filaments 
are asymptotic is finite at the singularity but has a 
square root cusp in time. The distortion however 
can be viewed as the consequence of an insuffi- 
cient energy flux into the singular region. 

To simulate a 3-D singularity without modeling 
in the absence of boundaries, we have mapped the 
line onto the interval with the tangent function 
and then finite-differenced the Eu!er equations in 
each direction separately. The code is second or- 
der accurate in space and time and explicitly 
respects incompressibility, and momentum and 
energy conservation. We initially adjusted scales 
continuously to preserve certain norms, but found 
this both to interfere with the conservation laws 
and to bias the result through the choice of norms. 
Currently, we periodically interpolate from the old 
mesh to a new one using splines under tension. 

If we initialize this code with two antiparallel 
vortex tubes, designed to imitate the Biot-Savart 
model, the tubes first press together and flatten 
into sheets or ribbons with the direction of vortic- 
ity and its magnitude changing little. Vortex am- 
plification then ensues at the leading edge of the 
pair of ribbons which assume a V shape. The 
eigenvalues of the rate of strain tensor have the 
signs (+ ,  +,  - )  with the compression pushing the 
ribbons together and the largest expansion along 
the direction of propagation. The smaller expan- 
sion is along the vorticity direction. 

It is not yet clear whether the maximum vortic- 
it2y diverges in a finite time. The enstrophy may 
well x~ot have a finite time singularity. The velocity 
grows much more slowly in time than the maxi- 
mum vorticity in contrast to the Biot-Savart re- 
suits. The product of the spacing between the 
ribbons and the ma:dmum vorticity is roughly 
constant. The flow also appears to be self-similar. 

The best qualitative account we can give of the 
fluid mechanical origins of the vortex self-stretch- 
ing in this flow is by reference to the Biot-Savart 
simulations. In spite of quafitative differences, the 
~'elation of vorticity and strah,~ is the same, as well 
as the resultant velocity. 

The numerical calculation is basically not a 
difficult one since there is one donfinant scale in 
each direction and the flow is smooth. The power 
of our method stems from the successive mesh 
refinements which are common enough in other 
contexts but have not yet been employed on the 
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3-D Euler equations. If a singularity exists for our 
initial conditions, we expect that our simulations 
will ex_hfibit it and provide strong guidance for an 
analytic perturbative treatment of the collapsing 
solution. 
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