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The Biot-Savart model for a vortex filament predicts a finite time singularity in which the
maximum velocity diverges as (£ * — ¢) ~'/2 for the time ¢ tending to ¢ *. The filament pairs with
itself, yet remains locally smooth even though the characteristic length scales as (£ ¥ — z)!/2,
A multiscale perturbative treatment of the Euler equations is developed for solutions that are
locally a two-dimensional vortex dipole centered on a slowly varying three-dimensional space
curve. For short periods of time the Euler and Biot-Savart solutions agree. Provided this
correspondence persists, a sufficiently small viscosity v will not control the divergence in the
maximum velocity until it is of order exp(cst/v), where cst is a constant of order the filament
circulation. Singularities in the Navier-Stokes equations cannot be easily dismissed. The most
questionable step in the arguments presented occurs for v = 0, namely whether the Euler
vortex dipole solutions break down when they self-stretch.

I. INTRODUCTION

It is a basic tenet of fluid dynamics that the velocity of an
incompressible fluid in a container, if initially a smooth func-
tion of space, will remain smooth and bounded for all subse-
quent times. This assertion is also generally accepted as it
applies merely to the existence of solutions even if they are
not stable. Under these circumstances, one cannot appeal to
a century of careful fluid dynamic experiments as proof that
singularities can never occur. The issue then, is whether one
can prove from the three-dimensional Navier-Stokes equa-
tions that initially smooth solutions remain finite for all
times.'™® (It has been shown rigorously that finiteness im-
plies smoothness."*)

Mathematicians have not succeeded in establishing this
ostensibly simple proposition yet they have put important
constraints on how serious a singularity can exist.'® Many
very reasonable physical propositions lack mathematical
proof; and one would suppose existence problems for Na-
vier—Stokes fall into this class since texts written for physical
scientists are utterly silent on these questions. In our view,
these questions remain open and debatable even at a physical
level of rigor. Dimensional and scaling arguments of the
Kolmogorov variety are far from convincing when applied
to the exceptional, possibly unstable, and decidedly nonsta-
tistical solutions we find.” On the other hand, our solutions
may have little physical relevance.

In this article we show by means of a hierarchy of mod-
els for vortex tubes together with asymptotic and scaling
arguments that solutions to the Navier-Stokes equations can
come close to diverging in a finite time. The most problema-
tical step in our argument is the passage from a vortex fila-
ment back to a vortex tube obeying the Euler equations.
Contrary to cascade theories of turbulence, the remaining
step, which restores the viscosity, is simple, more convincing
than the usual scaling arguments, and only modifies the in-
viscid solution when the velocity has already become so large
that the incompressibility assumption is untenable. As long
as the vorticity remains in tubes the Euler and Navier-
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Stokes equations have similar singularities. The usual form
of dissipation is marginal in that if any power of the Lapla-
cian higher than unity is used there is definitely a viscous
cutoff while a lower power renders the dissipation irrelevant.
All our arguments suppose a large but finite Reynolds num-
ber.

Several caveats should be emphasized. Even though
thereis always a fixed small expansion parameter that allows
one to formally invert the asymptotic analysis that leads
from vortex tube solutions of Euler to vortex filaments at any
time, there may well be a secular degradation in the corre-
spondence from that time onward. The weakest step in our
argument is to demonstrate that tubes remain tubes within
the Euler equations. Even if our construction fails at this
point, it does so for relatively delicate reasons, thereby in-
validating any dogmatic but casual physical arguments that
singularities cannot exist. Also for heuristic reasons, devel-
oped below, we believe our vortex tube solutions are the most
likely candidates for a singularity.

Second, we make no claims about other initial data even
though our initial conditions are physically realizable, and
the singularities “generic” for vortex tubes. If the scaling
that accompanies our solution is believed, then an infinite
pointwise velocity implies that the integrated mean square
vorticity is also infinite. Cascade ideas predict such a singu-
larity for the Euler equations for all but special initial condi-
tions, but our models shed no light on this important ques-
tion.*® From internal evidence alone we have no grounds for
asserting that our flows have any relevance to turbulence or
intermittency. There is, however, a body of laboratory flow
visualization experiments and more recently direct numeri-
cal simulations that suggest ““hairpin vortices’ are responsi-
ble for the extreme intermittency seen in turbulent boundary
layers.'®'* Hairpins, according to our models, invariably
lead to singularities. Our analysis may explain in an idealized
way why such large fluctuations are seen in the maximum
vorticity and velocity gradients, in the course of a turbulent
burst.
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Irrespective of any connections with the Navier-Stokes
or Euler equations, it is of intrinsic interest to examine how a
vortex filament evolves under its own velocity field. This is
the simplest continuum dynamical system that admits vor-
tex stretching, which is an essential element in three-dimen-
sional turbulent dynamics. By comparison with two dimen-
sions, there are very few known and interesting
time-dependent solutions to the three-dimensional fluid
equations, so models are a necessary intermediate step. '’

In Sec. II we begin with the Biot~Savart model and in
successive subsections consider two progressively simpler
limits to it. In each case we exploit our earlier observation,
documented more fully in this and the following section, that
filaments pair antiparallel with themselves and only then
proceed to stretch.'!” The pairing permits one to replace
the Biot—Savart integral by a differential expression in arc
length. The stability of a pair of antiparallel straight lines is
examined within each model and a number of simple analyt-
ic results are obtained.

In Sec. IIT we present in successive subsections all our
numerical results for the Biot-Savart model and its most
sensible local version. Salient conclusions are summarized
along with pertinent numerical details. Our analytic and nu-
merical results are in sufficiently tight agreement that we
consider the Biot-Savart model for a filament pair to be
solved.

In Sec. IV we reconsider the asymptotic analysis that
reduces a slender vortex tube to a filament in the case when
the tube is paired with another of opposite circulation. In-
complete arguments are given for the reverse process, name-
Iy how to reconstruct a solution to the Euler equations from
filaments that are straight on the scale of their core size. If
the Biot—-Savart results correctly model the Euler equations,
then we argue that viscous effects can be treated in the limit
of a quasi-two-dimensional flow subjected to time-depen-
dent stretching.

In the conclusion, we recapitulate the chain of argu-
ments that suggest singularities are not an impossibility for
the Navier—Stokes equations. The uncertainties in each step
of the argument are stressed. Finally we discuss related nu-
merical work that supports our analysis and mention the
experimental evidence for paired vortex tubes in boundary
layers.

Il. VORTEX FILAMENT MODELS

Once it is decided to replace a vortex tube whose center
varies slowly on the scale of its core radius by a space curve
plus core parameter, the Biot—Savart formula is the only rea-
sonable dynamical model.'®* We summarize the approxima-
tions made in its derivation and justify our ansatz for how
the core size responds to changes in the curve. This last argu-
ment is ultimately most convincing a posteriori. That'is, one
examines the solutions obtained under the approximation
and concludes that the neglected phenomena are indeed
irrelevant. It will also be necessary to anticipate the numeri-
cal simulations when we derive a local expression for the
Biot—Savart integral. Filaments invariably pair so as to
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achieve zero net circulation. This makes a local approxima-
tion considerably more accurate than for the local induction
approximation to an isolated filament.

A. Biot-Savart

Imagine an isolated vortex tube with an internal vorti-
city distribution and core size, o, uniform along the filament
and no axial velocity. Let r, denote a typical radius of curva-
ture and I" denote the circulation. Then the velocity at a
point either on the axis of the tube'® or a distance >0(r,)
away is given by

v(r) = __;il:__f [l'—l'(gl)]X(dl'/d,f')df'_,_0(3’_)2,
T

d3/2 r

(1a)
withd ? = [r — r(£')]? + ac”. The details of the core struc-
ture enter only a, which is of order unity.'® We will consis-
tently denote the Lagrangian parameter along the curve by
£. For a collection of filaments there is, of course, a contribu-
tion to the total velocity from each one. To time step the
filament we will only need the velocity on the filament itself,
say at £, and we rewrite the denominator as'®

d={[r(&) —r NP+ + (N2 (1b)

The inessential constant a has been adsorbed into o. More
importantly, we allowed o to depend on position, and for
reasons of symmetry break it into a contribution from £ and
&'. Although the quoted errors in {1a) were obtained for o
uniform, we believe they continue to apply when o varies
with arc length, on a scale of r,. The symmetrical placement
of ¢ is reasonable on physical grounds [one averages v(r)
over the tube to obtain v(r(£))] and guarantees a conserved
energy when o is independent of time, viz.,

(dr,/d&,)-(dr;/dE;)dE, d§;
[ — 1)+ 0l + 2]

The core size becomes & and time dependent since we
adjust o locally to conserve volume:

1
E=—YNT.T,
R

, | dr
o ——| = cst. (2)
(&) a
We finally obtain a closed system of equations by insisting
dr(£.t)
—=222 =y(r(&)). (3)
i (r(5))

It is an entirely unsettled question as to under what cir-
cumstances vortex tubes remain tubes as they evolve.?’-*
Even putting aside this question and supposing o/, remains
small (which it does for a paired filament), (2) is merely one
extreme of a family of models that conserve the volume of
the core.

In reality whenever the stretching is nonuniform, axial
velocities are established that can transport core area conser-
vatively along the filament.?*** In short, 0° should satisfy its
own evolution equation whose characteristic frequencies
will be on the order of I'/(or.) to ['/o?. (We justify this
range of values when we discuss Ref. 23 in the conclusion.)

If the vortex tubes remain roughly circular, then the
core dynamics is irrelevant once the paired filament begins to
rapidly stretch. In particular (2) does not make the final
blow up any more singular than it otherwise would be. Some
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support for these assertions comes from recent simulations
of Lundgren and Ashurst,”> who allow for more realistic
dynamics in the core than (2) and still find a singularity
similar to ours. Their work is reviewed in the conclusion.
From our simulations we find (Sec. III A) that ¢ varies suf-
ficiently slowly with arc length around the approaching sin-
gularity and that even if cross-sectional area moves about,
there is insufficient time for appreciable rearrangements to
occur prior to the singularity.

A second potential problem of (1a) is that the quoted
errors do not obviously apply when pieces of filament ap-
proach each other on a scale of the core size. Equation (la)
was developed by a multiscale analysis that decomposes the
velocity field of a vortex tube into its cross section (with a
“fast” scale o) and the tube center (“slow” scale, r.). To
treat a paired filament, we merely have to consider a cross
section that is a vortex dipole. It is then trivial to account for
the deformation of one tube by its mate by simply taking a
known two-dimensional vortex dipole solution and letting
its center vary slowly in three-space. Details are contained in
Sec. IV. Suffice it to say that the Biot-Savart formula with
rescaled constants is adequate for paired filaments also.

A third deficiency of (1) and (2) is the lack of a con-
served energy when o is time dependent. This is no surprise
since axial flows are neglected and the energy in the swirling
component of velocity is not accurately represented. We
simply are not retaining all the modes contained in the real
flow. This is only a problem if the filaments evolve in such a
way that when we restore the full vortex tubes, the usual
kinetic energy is not conserved. We see no general resolution
to this problem and reconsider the energy constraint in the
conclusion after seeing the particular form our candidate
singularity solutions assume.

It is useful before doing simulations to have some idea of
the instabilities a pair of antiparallel vortex tubes is suscep-
tible to. This was first done by Crow who used the Biot—
Savart law with a different cutoff than ours.”® We have re-
peated his analysis with (1) and (2) for the parameter re-
gime of interest to us, namely with the filament spacing of
order the core size.

We consider antiparallel straight filaments of circula-
tion I and spacing p and define 8 = (p* + 20?)"/%. There
are two modes, symmetric (S) and antisymmetric (A),
which are distinguished by their projection onto the plane
defined by the unperturbed filaments or a plane normal to
the segment joining them (Fig. 1). Their growth rates ag,
a, are given by

a; ==Y+ +y—§—40°/B%),

ar =+9¢+5 (1 —y—¢—40°/BY),

Y(k) = kK, (k) + kK, (k), 4)
x (k) = kK, (k),

E(k) = (p*/207) [V2koK | (2ko)

+ 2k 207K, (\2ko) — 1],
where K, and K, are the usual Bessel functions, k = 8k, and
we have suppressed a time scale of I'/(278 7). The growth
rates, where positive, are plotted in Fig. 2 fora/p = 1.
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fop view side view side view

top view

FIG. 1. The antisymmetric (A) and symmetric (S) modes of instability for
a pair of antiparallel vortex filaments. The unperturbed filaments are
dashed.

For long axial wavelengths and well separated fila-
ments, Crow’s (or our) perturbation treatment of Biot-Sa-
vart agrees with the results of a complete analysis of the
Euler equations for a pair of vortex tubes.”>"*’ The most
difficult part of a thorough calculation is understanding one
tube in the field of the other which may be replaced by a local
strain matrix for p>o. For any wavelength, the filament
equations can at best only capture the true eigenmodes that
have no radial zeros within the core. (Radial is measured
outward from the tube axis.) When the axial wavelength is
of order o, an analysis of the Euler equations shows that only
the radial modes with zeros are unstable. The precise details
depend explicitly on the core structure. Therefore any short
wavelength instability predicted by Biot-Savart is spurious
and the result of an unjustified extrapolation. There are
short wavelength instabilities but one would guess from their
eigenmodes that they would disrupt the core rather than
merely displacing it bodily.

0.40

0.30

0.20

.10

FIG. 2. The growth rates, af (dashed) and a? (solid), for the two modes in

Fig. 1 and Eq. (4) as a function of k Jp* + 20°. The ratio of spacing to core
sizeis p/o = 1 and frequencies are measured in units of I'/[27(p* + 207) ].
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Analysis of the Euler equations becomes much more
complicated when the filament spacing is of order ¢. The
core shape is nontrivial at zeroth order and the influence of
one filament on the other cannot be represented as a simple
stagnation point flow as before. The complete stability anal-
ysis has never been done to the best of our knowledge. We
still believe there is a correct long axial wavelength approxi-
mation to the Euler equations in terms of filaments (Sec. IV)
and that the instability predicted by Biot—Savart is qualita-
tively and physically correct in this regime.

One should also ask whether the A-mode instability ar-
tificially favors the formation of singularities in the filament
equations. The answer is decidedly no, since the local limit of
Biot-Savart we derive in the next section has no short wave
instability yet has quantitatively similar singularities. The
reason for examining Biot—Savart at all is that it is clearly the
appropriate model in the early stages of the instability. We
also wanted to verify that certain qualitative features of the
filament dynamics such as the pairing and the inequality
r. >0 were not limited to the initial stages of the collapse.
Lastly, the insensitivity of the singularity to the spectrum of
instabilities lends it plausibility at least within a filament
approximation.

B. Local model

In order to justify further expansion and reduction of
the Biot—Savart integral, we need to anticipate several salient
features of the simulations to follow: (a) vortex filaments
pair antiparallel with a spacing p ~ o; (b) the ratio of o to the
local radius of curvature is a small parameter point by point;
and (c) the radius of curvature sets the scale of variation
with arc length, and the tangent vectors for corresponding
points of the paired filaments agree to O(a/r, ).

Equations (1) and (2) become local in arc length when
expanded in (o/r.). We should further note that when the
local equations are time stepped, properties (a)—(c) persist
and in fact (o/r. ) becomes somewhat smaller than it was for
Biot-Savart. While we have an analytic argument for (a),
we have no proof of (b) or (¢) other than simple inspection
of the data.

Before entering into the details of the calculation, it is
useful to anticipate the form of the answer and state the
errors in the expansion. The largest effect, is one filament
convecting the other with a velocity v~ I'/max( p,0). To
next order in o/r, we have the usual local induction term for
each filament, which is of order I" In(r. /o) /r. and directed
along the binormal. We demonstrate by means of an exam-
ple and more generally in the next subsection that the first
effect sets the velocity of the pair while the second brings the
two filaments together.

It is well known that the error in the local induction
approximation for an isolated filament is O (1/In(r,/0)).?®
Let us add to property (c), for the moment, the assumption
that corresponding normals on the two filaments agree to
O(o/r.). A local approximation to the Biot-Savart integral
is then accurate to O(o/r, ) since the velocity from distant
pieces of filament cancels due to the proximity of its mate
with opposite circulation.

Numerical simulations of the local model reveal, how-
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ever, a phenomenon suggestive of a shock in which the nor-
mal vectors on one side only of the singularity fail to agree.
The configuration one finds is reminiscent of the initial
stages of pairing examined in Ref. 16. That is, the two planes
defined by the two normals and common tangent form a
dihedral. The normals to the planes are the binormals of the
curves and point towards the interior of the dihedral. When
the binormals are not antiparallel, a certain logarithm of an
integral cutof fails to cancel and the errors in the equations
we simulate are no better than for the local induction ap-
proximation. However, the component of the binormal,
which is not perpendicular to the symmetry plane of the
dihedral, acts to retard the interfilament velocity which is a
factor (r, /o) larger. We will henceforth understand our er-
rors as measured separately for the average and relative ve-
locities of corresponding points on the two filaments since
they are intrinsically of different orders (I'/o and I'/r.).
Our only significant error (i.e., order 1/log(r./c) vs (o/
r. ), then remains a small reduction in the local induction
velocities when the binormals are not antiparallel. We be-
lieve this to be immaterial.

Denote the arc length by s and the filament by a sub-
script 1,2. Then the integrals for the velocity at r, (s,) will be
broken into a local part |s — s,|</~O(Jor, ) and a remain-
ing “distant” piece. We say integrals, plural, since whenever
two pieces of filament are close one is in the local limit for
each irrespective of whether both pieces are eventually con-
nected at some remote point. Local contributions are evalu-
ated with the aid of the series

r(s) =) + (s — HE)
+1AG) /. 1(s =D + O3 /P), (5)

where t and f denote the unit tangent and normal vectors (at
5) and we assume that the radius of curvature sets the scale of
length. We will need the binormal b = t X below. The ex-
pansion for filament 2 as it enters v(r, (s,)) is centered at the
point s, = 5,(s,) of closest approach, i.e.,

(ry(s3) —r (s))ta(s,) =0. (6)
When arguments are not indicated, we will use subscripts as
int,, to denote t,(s,(s,)), where the relevant value of s, will
be obvious from the context. Let p,; =r,(s;) — ra(s5,(s,)).
Subscripts in the opposite order will apply to quantities en-
tering the velocity of filament (2) due to filament (1).

The local velocity from filament 1 at r; (s,) is

_ I, b, J'[ udu )
MERE A 2r, J_1 (P 4wt/ + 207 )

The fractional errors in the numerator are O(/*/r2)
since the symmetry u<> — u eliminates all odd terms in (5).
The term ©*/#2 in the denominator may be neglected with a
comparable error.

The local contribution from filament 2 to v, reads
(Fz = — r])

/
r, - du

Vo (71) ='4?t2,1 XP21 J_I‘—i/?

b " W du
e st ®

4 2r,, J-1 d3f

where
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dil =u*(1+ pz,l'ﬁz,l/rcz,l )
+p%, + 0% + 0%, +OU/).

The numerators are correct to the same order as before. The
new term in the denominator involving ( p/r. ) is of order
(o/r.) and will be dropped. If the s dependence of o is ex-
panded, the first term vanishes by parity and the remainder
isO0(1%*/7).

The integral in the first term of (8) may be extended to
infinity with an error of order (0?//?). The remaining inte-
gralin (8) must be grouped with (7) in order for the limit to
be taken with an overall 9(02/1 2) error. It is only at this
point where we use |IA)1 —b,| ~O(o/r,). The total local ve-
locity becomes

r, [ b ( ) )
=—11-1_1n
i) 4 [Zrd 207

BZ,I 1 ( "32,1 )]
2ra. 0'% +0§,1 + P31
L ( P21 X’t\z,l )

27 P%,x + U% + 022,1

It remains to bound the “distant” or nonlocal part of the
integral. Consider a piece of filament beginning at T,
IT — r;(s,)| ~/, with tangent t, extending to infinity in a di-
rection away fromF and r, (s;). Its contribution to the veloc-
ity at 7,(s,) is of order

Vo~ [(F— 1) Xt)/1%

From a pair similarly situated, v, is no bigger than o// > and
negligible compared to the last term in (9). The contribution
to the relative velocity at r, and r, , is O(c°/!*) and negligi-
ble compared to the remaining terms in (9).

The local model becomes

(9

r;
——| = cst, (10)

i

dr,;
vy, 2
dt vi(ri)

where v,{r,) appears in {(9) and we define v, by sending the
subscripts 1-2 and 2,1 -1,2. No further approximations
are made and, to evaluate v,, it is necessary to find the closest
point on the other filament for every node.

Itis instructive to examine the stability of the local mod-
el for a pair of straight filaments. This limit is ill posed since
r, is infinite and occurs in a logarithm. We sidestep this
difficulty by replacing In(r2/20%) and In[r?/(20% + p*)]
by two constants 4, > 4, > 0. This would be reasonable for a
pair of circles if we also insisted that k7, > 1. The term b/ r, is
linearized by rewriting it as t Xd t/ds. The arc length is un-
modified when one linearizes, so o is constant. In the same
notation and units as in Eq. (4), one finds the dispersion
relations:

ai = (4, — A)k?[2 — 40%/(20° + p?)
+ (4, —4)k?],

as — (24 (4, + 4,)k?][40%/ (207 +p2)
+ (4, — A4,)k?].

Note that a3 is an inverted parabola in & 2 and qualita-
tively similar to Fig. 2. The antisymmetric mode is never

(1
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linearly unstable. Of course our analysis does not rule out
algebraic growth in time but there is no sign of it in the
simulations of (10) reported in Sec. III B. The change in
stability for the A mode in going from (4) to (11) is a useful
illustration of precisely what a local approximation picks
out. There is no conflict with the stated errors, since r, was
assumed to set the scale on which r; varied with arc length.
Difficulties occur for perturbations on the scale of o and the
A mode is limited to ko ~ 1. Recall from Sec. IT A that the
Biot-Savart A-mode instability does not carry over to the
Euler equations. The local model may be a more sensible
version of the Euler equations than (1) and (2) provided
instabilities that disrupt the cores can be neglected. The ab-
sence of the short wavelength, A-mode instability makes the
numerical solutions of the local model look much more regu-
lar than those of (1) and (2). That is, the ratio ¢/r. is much
smaller, there are not folds on top of folds, and there is only
one point singularity rather than many. Nevertheless, that
one singularity scales with time in the same way we found
with Biot-Savart. Furthermore the reduced value of o/7,
makes it more plausible (Sec. IV) that a similar solution to
the Euler equation can be found. For identical reasons unsta-
ble solutions to Biot-Savart should exist that are essentially
identical to those of the local model.

It is instructive to illustrate the interplay of the intrafila-
ment, local induction, terms with the interfilament ones by
examining a special solution that has no finite time singular-
ity. Consider a vortex ring of radius R that approaches nor-
mal to a free slip plane, at a distance p/2. It will interact with
its image behind the plane and expand radially outward. The
local model (10), neglecting subscripts that are now super-
fluous, reads

R _T
dt 27 p’+20°

dp r ( p2>

= ——Infl +L—), 12)
dt 47R +202 (
o’R = cst.

One sees very clearly that the interfilament velocity is
responsible for the vortex stretching since it expands the cir-
cles radially. The intrafilament terms contribute only to dp/
dt and bring the two filaments together. For more general
initial conditions these two effects remain. When stretching
occurs, the normal vector points inwards and the binormals
are directed to bringing the filaments together. A more de-
tailed view of the processes that bring about the pairing was
contained in Ref. 16.

In the following subsection, we will derive, more gener-
ally than we need for (12), that p*/0° ~1/In(0~ ") as 0 —0.
Hence, neglectinglogs, R ~t%,p ~t ~ ', soultimately p/o gets
arbitrarily small but only as (In )~ 12 Similar slow loga-
rithmic factors that bring the circulation of each filament to
zero will appear when we add viscous effects. They are an
indication that the usual Laplacian damping formula is mar-
ginal. Thus even under the most optimistic assumptions
about all other effects, logarithmic corrections will ultimate-
ly control any singularity. This is not a real limitation since
an immense amount of stretching can occur before (In ) /2
becomes appreciable.
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This is also an appropriate point to illustrate our earlier
remark about how energy conservation has to be imposed on
a filament solution. Two paired vortex tubes obeying condi-
tions (a)—(c) above, with no axial velocity, and whose cross-
sectional shape is constant will have an energy equal to
cst I'’L, where L is the total length, and “cst” a fixed shape-
dependent constant. The density is unity. Note we only insist
on a constant shape; o can vary widely with arc length pro-
vided it does so on a scale of 7... The calculation of § §,;v* is
trivial having made these assumptions. The velocity as a
function of coordinates x,y in the plane normal to the fila-
ment axis scales as (I'/o) f(x/o,y/0), where fis indepen-
dent of £. The volume integral may be rewritten approxi-
mately as dx dy ds. The integral of the kinetic energy over
x,p converges for r, > (x? + y*)'/?> ¢ since we are integrat-
ing over a dipole with p ~¢. The stated result follows with
errors of order O(o/r.) from the variable charge (see Sec.
IV A).

Consider the pair of circular vortex tubes in (12) with
p <R evolving under the Euler equations. Since the axisym-
metry must persist, there is no axial velocity and the core
shape will change when the circles expand. By examining the
energy, it is not difficult to guess that the cores should be-
come more ribbonlike with the short side parallel to p and
the long side along R. Simulations of this flow have recently
been done that confirm these remarks.?® It will be important
to monitor the total arc length when we approach the singu-
larity predicted by the filament models. If nonuniform
stretching induces an axial flow the energy constraint be-
comes that much more stringent.

C. Analytic properties of a simplified local model

While (10) no longer involves an integral over the fila-
ment, it is hardly analytically tractable. This is due to the
intricate way in which the Frenet-Seret data for the two
filaments enter as well as quantities such as p, , #p, ;. The
obvious simplification we will pursue here is to resort to
average and relative variables for corresponding points on
the two filaments. There is then a single p and a single r from
which the tangent, normal, and curvature are derived. There
is general agreement with the paired ring example in Sec.
II B as regards the general effects of inter- and intrafilament
velocities. The important difference is that we now have in-
formation that is truly local in £ obtained without the as-
sumption of axisymmetry that led to (12). The time depen-
dence is completely different and singularities will emerge in
a finite time.

Further reduction of (10) requires the assumption that
7, and #i, are parallel. To the extent this is untrue, the local
induction velocity should be reduced by a numerical factor
as was discussed in Sec. II B. Everything that follows in this
section would be unaffected. The parallelism of the two tan-
gents is obvious from the pictures. Since the approximations
required to simplify (10) are of the same accuracy as in-
volved in deriving the model itself, why should one bother
with (10) at all?

The problem is that these small changes drastically
modify the stability properties at high k. The A mode [cf.

1611 Phys. Fluids, Vol. 30, No. 6, June 1987

Eq. (11) ] remains stable but the second k-dependent term in
the S mode that stabilized it at large |k | disappears, so that
the unstable frequency goes as a, ~cst|k | for all |k |. The
positive constant depends only on (g/p).

Of course we do not believe any of these models for
ko ~ 1. One can also explicitly see for high & why the Crow
eigenmodes for a line violate the condition
|b,-b,| =1 — O(o/r.)> It is not surprising that the eigen-
frequencies for ko ~ 1 change. If one attempted to simulate
this simplified local model, the high & singularities would be
much in evidence and destroy the computation. Since the
local model of Sec. II B does give rise to smooth solutions,
any analytic results we derive from its simplified version
here should apply to O(o/r,).

With these warnings, let us write an equation for

=1(r, +r,) by averaging the v, and v, equations from
(10) and replacing t; and #,/r,; by t = dr/ds and d *r/ds?,
respectively. Only a single p variable is used as well as a
single 0. We chose length factors such that o? ds/d£ = 1 and
adsorb I'/4+ into the time scale. Then

dr 1

—_——— a r, 13
dt  p*+20° P, (132)
dp _ b ( p ) pXd,p

a9 _ D 14 £ ) P2%e 13b
a2, 2w T St (130)
07 des=1, (13¢c)

where d, and d;, denote partial derivatives and b=txh.In
order to consistently identify p as the (normal) distance
between the filaments, we require that if pd,r =0 initially,
it remains so for all time [recall (6) ]. Therefore we compute

d(d;rp) ( 1 ) Ier(pXd;p)
Y o pd | ————pXa,r ) — S

dr P p’+20° pX p’+20°
=0. (14)

In the first term on the right, the £ derivative must act on p
since otherwise it is zero. Derivatives with respect to s or £
are proportional so the entire right-hand side is zero.

Of more interest is an equation for the cumulative
stretching d.s. From (13a),

d pXd,r
ags-d—t (8§s) = agr'ag(m)
_I3,@nxare _ @b
B p+2r (* + 2001,
Furthermore
Lol )
— 2 —pb In[1+—}. 16
Sy = Phr i +202 (16)

By taking the ratio of (16) to (15) and using 0? d;s = 1 we
can derive an equation for y =p?/20” as a function of
x=In(c™ 1),
D= 20491+ + = — 5+ 00,
X
{17a)

It is remarkable that a closed equation for p (o) exists. It
can readily be cast in the form of a Lyapunov functional
which predicts that any y> 0 will relax to y =0 (i.e, the
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right-hand side is negative and monotone decreasing for all
> 0). This is the most compelling analytic argument we can
give for the pairing. In the numerical simulations, a slow
decrease in p/o consistent with

y=1/(cst +x) (17b)

is in fact seen. (Here cst is an arbitrary constant.) Note that
the “binding” implied by y—0 only operates when o —0 or
dg5— w,1i.e., inresponse to stretching and irrespective of the
actual time. The Lyapunov form of (17a) suggests that the
two filaments remain tied together even when various O(a/
r.) terms are restored. There is no guarantee then that y -0
but merely that it remains O(1) or less.

Several more interesting properties of the collapsing so-
lutions follow if we input two qualitative results from the
numerical simulations;

(18a)
(18b)
The two free constants are of course independent and for o/
r. we really only need to assume that it lies between two

constants. Let us further neglect logarithms and setp/o = 1.
Then we find

o/r. ~cst,

— p'b/|p| > cst>0.

4 (dz5) =cstsz, o°~(1*—1).
dt

In the last line, ¢ * is by definition the singularity time for the
point £ and an overall constant of order (o/7,) has been
neglected. In Sec. IV we work systematically in the small
parameter o/r. and show 0°/(t * — t) isindeed of this order.
For the moment note that o is constant for two straight
lines, i.e, 7. = oo.

It will be of some importance to estimate how the total
length L grows due to a single point singularity. Our interest
in this quantity stems from the implicit constraint energy
conservation imposes on the dynamics of a filament if it real-
ly corresponds to a vortex tube. Recall our earlier argument
that the total energy of a vortex pair scales as the length, if
the shape is constant and the axial velocity negligible.

Think of the filament pair as a triangle with the singular-
ity atits apex. Close to ¢ *, the legs are effectively frozen while
the apex moves a distance ~ " (I"/o)dt ~cst-o(t). There-
fore the total length is

L=L*—csto(s).

We will verify this behavior numerically in Sec. II B.

At a purely formal level it may be shown from property
(18b) above that L diverges in a finite time if max|7| is uni-
formly bounded in time. We say “formal” since as we have
just shown point singularities develop first. Any connection
between a filament model and the Euler equations is dubious
after that point. Purely within the context of this model,
since the curvature appears in the equations themselves and
becomes infinite at one point with L finite; the manipulations
we have to perform in order to show L subsequently diverges
may be meaningless. The restriction on |#| is a technical ne-
cessity to rule out the ring pair example in Sec. II A for
which L ~ 2. The long wavelength S mode furnishes enough
instability that any derivation from circular symmetry will
lead to local folding, stretching, and pointlike singularities in

(19)

(20)
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a finite time. The argument for infinite L proceeds as follows.
Assume we have a closed curve parametrized by
£€[0,1] with length L. Then,

L=fds= —f(asf)-rds<maxlr|frc"ds.

Equation (15) implies, with our earlier assumptions (cst >0
is a free constant in each equation),

(21)

d(d.s)'? _cstd.s
dt r, '

Then

L ”2>f(8§s)‘/2 dé = cstf dt (J.r; ‘ds)>cstj L(1).
0 (0]

These inequalities imply that f;L(¢) blows up in a finite
time, and hence L itself does. This collection of simple ana-
lytic solutions has hopefully given the reader some intuition
for the numerical results to follow.

IH. NUMERICAL SIMULATIONS
A. Biot-Savart

In this section we integrate the full Biot—-Savart equa-
tions for a single closed filament with the core size adjusted
locally, (2). Theinitial data was the same as in Ref. 16 where
o was independent of £ and adjusted to maintain the total
core volume constant. Without pictures of 7 for a sequence of
times and certain other diagnostics it would be difficult to
distinguish the two sets of data. The pairing and stretching
look quite similar.

The first singularity obtained with (2) is close to point-
like, so to maintain adequate resolution, we periodically cut
off pieces of filament well removed from the incipient singu-
larity. Occasionally two distant points looked equally singu-
lar in which case only one was chosen. The errors attribut-
able to this procedure are negligible in view of the pairing
and the rapid collapse. These and other numerical details are
contained in Sec. II1 C. Clipping the ends of the filament
permits us to observe a 100 times greater decrease in o than
was feasible in Ref. 16. The reader should keep in mind when
viewing our output that the maximum velocity and vorticity
scale as /o, and /0?2, respectively, where o, is the
minimum value of ¢.

Figure 3 shows the initial data after significant pairing
has occurred and just after the closed loops on the ends were
cut off. Just prior to the cut, the total arc length was 21
compared to its initial value of 11, and o, = 0.076, com-
pared to o (¢ = 0) = 0.2. The stated times give one a qualita-
tive impression of how rapidly the collapse ensues after pair-
ing. The time scale is set by ' = 47.

Figure 4 is a continuation of the previous figure to a time
Jjust before it is necessary to make a second cut. The total arc
length has increased by a factor of 2, o,;, decreased by the
same factor, and the minimum radius of curvature by 4. The
latter quantity is the best measure of the folding, which is
clearly visible and is driven by the instabilities mentioned at
the end of Sec. II A. The lower-middle portion of Fig. 4 is
then cut out and evolved until the time shown in Fig. 5.
While o,,,;, has decreased by 2 and r, by somewhat more
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FIG. 3. (a) and (b). Two views of filament pair produced by evolving the
twisted ellipse in Ref. 16 forward in time according to Egs. (1) and (2). The
time is 0.976, 6,,;, = 0.076, 7. nin = 0.59, and the box size = 3.5.

from Fig. 5, the ratio 7, /o in the region of greatest stretching
is still about 8.

In Fig. 6 we have cut out the lower quarter of Fig. 5. On
this expanded scale the filaments look smooth and analytic.
The integration was continued until o,,;,, decreased by a
further factor of 4.5 and ¢ = 1.161 995. It was necessary to
make two further cuts to achieve this degree of stretching.
The pictures, except for magnification, would look quite
similar to what we have already shown. Note there is no
tendency for the filament pair to pair further in order to
stretch. We observed repeated pairing only at one late time in
one out of several runs and consider it to be coincidental and
unrelated to the singularity.

The next group of figures shows the core size, filament
spacing, and radius of curvature as a function of arc length
for a common time ¢ = 1.158 04. Note (Fig. 7) that the core
size is within 30% of its minimum value over an arc length of
order 100 o,,,;, . This, together with the rapid development of
the instability, justifies our neglect of dynamical processes
that distribute the core area along the filament. We will be
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FIG. 4. (a) and (b). Continuation of Figs. 3(a) and 3(b) to = 1.1127.
The box size is 5.0, 0, = 0.038, and r, ;, = 0.16.

more quantitative in the conclusion where we examine an
actual model from Ref. 23 of how the axial velocity builds up
in response to a nonuniform o?(£). For later use, the one
other dimensionless number we need is
C(t* — t,)/[4m0%,, (1,) ] ~20-50. (This ratio is indepen-
dent of the time origin 1, provided it falls in the scaling re-
gime.)

The filament spacing p is plotted on the same scale as o
to facilitate comparison. It will be seen in Fig. 7 that p/o~1
point by point. The ratio decreases slowly with time as sug-
gested by (17b).

The radius of curvature plots [Figs. 8(a) and 8(b)] are
a convincing demonstration that the filaments are smooth
and there are no unexpected numerical instabilities. What
appears to be numerical noise around an arc length s~ 1.3
when expanded in Fig. 8(b) reveals a series of cusps with a
spacing ~ 80, At other times, presumably closer to the
initiation of the instability, the cusps are spaced by ~4-
5 O nin +

This is a signature of the Crow instability though for the
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FIG. 5. (a) and (b). Further evolution of the lower middle region of Figs.
4(a) and 4(b) to T"'= 1.1475, where o, = 0.021, r = 0.060, and the
box size = 3.1.

¢ min

reasons advanced below it is difficult to tell whether the A or
S mode is really responsible.>* The value of r,/c is main-
tained considerably larger than unity by a sort of dynamic
equilibrium while the filament itself is approaching a singu-
larity with both . and o tending to zero. When .. /o is small
(i.e., ~4) the stretching rate is greatest, i.e., for a circle
r=Ydr./dt~(I'/0?)(o/r. ). The stretching both increases
r. and decreases o because of the constraint on core volume.
It also increases the wavelength of an instability as it grows
rendering it less unstable. What begins as an A mode may
evolve into the region where only the S mode is unstable. For
r./o too large, the instabilities initiate new folding and a
small r.. The rather regular cusps in Fig. 8(b) are evidence
that a considerable piece of filament is going unstable at
once. The ripples in the o(s) curve (Fig. 7) are a vestige of
successive episodes of stretching and folding.

The ratio r. /o can be assessed by comparing Figs. 7 and
8. Looking over all our data we find this ratio to be at least 4~
5 except for ~25% of the times and then only 5% of the
points when it fell to 2—-3. Although a large value of this ratio
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(b)

FIG. 6. (a) and (b). Detail of Figs. 5(a) and 5(b) a short time later,
t = 1.1490. There are approximately 200 computational nodes on each sec-
tion of filament with an average spacing of one-half the local value of 0. The
filaments look no less smooth out to the final time reached by the integra-
tion, t = 1.1620.

0.050

Trrrrrrrr1rrrr 17171 I1Tyr

0.040

-
-

1 4. ¢ ¢ ¢+ 3 & 01 ¢ ¢ 0 ) 30 1+ L

0.030
0.020
oio|o—|11|||111||||11|L1|
o] 1.0 20 3.0 4.0
ARC LENGTH

FIG. 7. The filament spacing p (solid) and the core size o (dashed) as a
function of arc length at 7 = 1.1580, near the end of the run. The small rip-
ples in o are the result of the Crow instability causing renewed folding and
stretching on small scales as explained in the text.
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FIG. 8. (a) and (b). The radius of curvature as a function of arc length s for
the same data as in Fig. 7. A point is plotted for each computational node.
The enlargement for s = 0.9-1.7 shows that what appeared to be a numeri-
cal instability in the previous graph is actually well resolved. The regularly
spaced cusps are a signature of the Crow instability. The ratio r, /o is never
less than 3.5.

is necessary for the approximations through which Biot-
Savart is derived from Euler; there was no guarantee that the
filament would not develop cusps with o > 0. The fact that it
does not is a significant result and clearly necessary for there
to be any hope of recovering at later times solutions to the
Euler equations from those of Biot—-Savart.

Data for o7, as a function of time are shown in Fig. 9.
Linear scales are used and the data points closer to ¢ * are
scaled up and shifted to make them more visible. The values
of ¢® for corresponding points on the paired filaments are
always nearly equal and scale together. There is no doubt
that o,,;, hits zero at a finite # * and varies roughly linearly in
time with corrections that could be fit with logarithms in
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FIG. 9. The minimum of o? as a function of time for the data in Figs. 3-8. A
common value of 7 * is marked with a star on the abscissa and successive
enlargements are offset for clarity. The first two points in each series repeat
the previous one. At the circled points, the location of the minimum has
jumped to another point on the filament.

(¢ * — t). The small breaks in slope in Fig. 9 occur when the
location of the minima jumps to another node on the fila-
ment. Since we know well separated points on the paired
filaments are dynamically independent there will be many
points that collapse. The set of singularities must clearly be
thought of as a subset of space-time.

Since we periodically truncate our filaments, it is diffi-
cult to say by how much the total arc length grows by ¢ *. The
simultaneous presence of many incipiently singular regions
causes the Biot-Savart model to produce much more new
filament than its local version where there is only one singu-
larity evident.

B. Local model

The local approximation to Biot~Savart derived in Sec.
II B does not have the short wavelength A-mode instability
and consequently except for a single pointlike singularity,
the entire curve looks very regular. It was not necessary to
continuously cut off the filaments away from the singularity
in order to maintain adequate numerical accuracy with a
manageable number of nodes. In fact the total length in-
creased by a factor of 4 while o2, decreased by 500. One
awkward feature of (10) as regards its numerical implemen-
tation is the need to identify, for each mode, the nearest point
on the opposite filament. Details of resolution and step size
are relegated to Sec. I1I C.

Itis necessary, in order to apply the local model, that the
two filaments start off reasonably close. Accordingly we be-
gan with two twisted ellipses with o = 0.05, a mean spacing
p = 0.15, and a total arc length L = 4.0. Of course the net
circulation of the pair was 0 and I" = 44r. Simply restarting
the Biot-Savart results at intermediate times using (10)
gave what might be considered more “physical” initial con-
ditions. There was no change in the subsequent evolution
from what we find below.

The entire ellipse at the final time is shown in Fig. 10.
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FIG. 10. A pair of ellipses evolved under the local model (10).

The location of o,,,;,, is determined early in the evolution and
does not vary. An enlargement of the region around the sin-
gularity is shown in Fig. 11. The asymmetry is real and not
an artifact of perspective. It is not understood analytically.
The largest errors in |fi; — fi,| occur just to the left of the
singularity.

Figure 12 shows the core size and separation as a func-
tion of arc length at the final time. At earlier times the shape
is very similar except that the minimum is less pronounced.
Points to the right of the singularity where o rises most steep-
ly correspond to the left side of Fig. 11 where the filaments
are separated.

Another important property of these solutions is the
value of o/r, (Fig. 13). Near o, 0/r. ~0.05. There are a
few points some 25 nodes away from o,,;, , where o = 70,,,;,
and o/r, gets as large as 0.2. Otherwise, the value of o/7, at
o, 18 indicative of the ratio elsewhere on the curves. The
local model provides the filament solution most likely to per-
sist when we attempt to generalize to the Euler equations
(Sec. IV). Figure 14 plots o, versus time in a manner anal-
ogous to Fig. 9. In spite of the very different gross morpholo-
gies of the two solutions, the time dependence of o2, is very
similar. (Note that the slight positive curvature visible in
Fig. 14 is also discernible in Fig. 9 if one restricts attention to
o” ata fixed Lagrangian point.) This is confirmation that the
dynamics is indeed local and unaffected by the additional
instabilities present for Biot—Savart. The data are also in ac-
cord with Sec. II C where we show that o2, /(t* — ) is
constant to within logs.
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FIG. 11. Blowup of the region around the singularity in Fig. 10.

Figure 15 shows how the total arc length varies in time.
The cusp predicted in Eq. (20) is clearly evident.

C. Numerical methods and errors

Our code for integrating (1) and (2) is identical to the
one employed in Ref. 16, and we do not intend to reiterate
the extensive diagnostics we presented there. The curve was
fit with cubic splines which connected the nodes whose posi-
tion was tracked in time. The spline interpolation facilitated

|
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FIG. 12. The core size (solid) and filament spacing (dashed) as a function
of arc length at the final time # = 0.058 31. Their initial values at = O were
0.05 and 0.15, respectively.
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FIG. 13. Radius of curvature as a function of arc length for the same data
displayed in Fig. 12. Some of the high frequency structure for s<1 and s~7
may be numerical. In the vicinity of s = 2, 7, /o~ 20.

the computation of derivatives. The integrand in (1) was
done by Simpson’s method with one or more points interpo-
lated between the nodes. The local induction piece was sub-
tracted off from the integrand before the numerical integral
was done and then evaluated analytically and added back.
Time advancement was done by a fourthfifth-order
Runge-Kutta Fehlberg'S algorithm with automatic step size
adjustment. When stiffness becomes a problem, which it
does for the local model, an explicit method is inefficient but
the step size was adjusted downward to maintain accuracy.
It is essential that (2) be imposed as a constraint. That is,
whenever the denominator (1b) is evaluated then the cur-
rent value of » must be used to find o (£).

The curvature, stretching, and nodal spacing were com-
puted at every node and every time step. We therefore claim

tohave a priori error bounds on all integration and interpola-
tion errors. The nodes were periodically redistributed and
new nodes added to maintain accuracy. The errors induced
by the remeshing were of order 2 X 10~ in 7 (when the total
length was ~2) and 102 in the tangent vector. The relative
errors in the curvature or d °r/ds® were one percent. In the
region of greatest curvature, where one would expect the
largest errors in computing the velocity, the node spacing
was held to one-half the local o. From the data in the Appen-
dix of Ref. 16 we estimate the relative errors in the intrafila-
ment velocity to be 10~ ° and several times larger in the inter-
filament velocity.

We have never seen any evidence of oscillations on a
scale smaller than r, which is generally at least ten times the
node spacing. In Ref. 30 the internode spacing was bounded
below by 20 in an effort to suppress the spurious A-mode
instabilities (cf. Sec. IT A). Since they seem not to have sub-
tracted out the local induction piece and treated it analyti-
cally, one would surmise that the integral over nearby pieces
of the filament was not done terribly accurately. Neverthe-
less we have no reason to believe that their results are signifi-
cantly in error. We have never seen numerical instabilities
which are not simultaneously real instabilities of Biot—Sa-
vart (Ref. 16, Appendix).

For the local model, o/r, was always much smaller than
for Biot—Savart so our minimum nodal spacing was kept to
the local value of o. The interpolation and time advancement
were the same as employed for Biot—Savart. The remeshing
errors were at worst a factor of 2 larger than for the Biot-
Savart runs. These quantities are probably the best guide to
the accuracy of v in (10) since the expression involves only
derivatives of r.

IV. PERTURBATIVE TREATMENT OF THE CONTINUUM
EQUATION

In this section we set up the asymptotic analysis that
reduces nearly straight vortex pair solutions of the Euler
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I.OF ~ FIG. 14. The minimum of ¢ as a func-
X o \\, tion of time for the local model plotted in
\\ \\\ a manner analogous to Fig. 9.
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FIG. 15. A plot of (dL /dt) 2 versus time showing that the arc length L has

ayt* —t cusp near the singularity for the local model.

equations to local equations for the center of the pair and
core size. We also obtain an indication of the internal axial
flows that are set up when the vortices stretch nonuniformly.
Our expansion does not go far enough to answer the most
significant question as to how much distortion takes place in
the Euler solutions when the filament equations predict a
singularity. Thus while at any point in time a vortex pair
solution with the vorticity confined to an approximately cir-
cular region should initially obey our model equations, the
correspondence may degrade in time rendering the models
inapplicable. It is known in other vortex problems that an
envelope description can go completely wrong in a finite
time due to the formation of discontinuities which invalidate
the assumed separation of scales.”! Preliminary numerical
results point in this direction.®' (The same caveat of course
applies to the derivation of the Biot-Savart model (1) from
the Euler equations.) Granting that shape distortions are
bounded, in Sec. IV B we show that viscous effects are not
likely to modify the Euler solutions.

A. Euler equations

Previous derivations of the Biot-Savart equations do
not apply to paired vortex tubes since the cores of each are
strongly deformed by the other. Of course this is largely a
technicality since our simulations still allow us to assume g/
r. is a small parameter. The fluid mechanics problem is then
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in zeroth order, just two dimensional with the third dimen-
sion entering in next order. Much of the necessary formalism
can be borrowed from the earlier analysis of Biot—Savart
with the important modifications that the “core” is now a
vortex dipole.'®%

It is well known from two-dimensional simulations that
there are many stable vortex dipole solutions to the Euler
equations.'® In Ref. 32, merger was observed between like
signed vortex blobs even while one of them was bound in a
dipole. The dipole was not disrupted and there was no inter-
mingling of oppositely signed regions of vorticity. Of course
the new entity moved along a different trajectory but a
bound configuration of plus and minus vorticity appears
very robust. A convenient form for analytic work is the di-
pole solution obtained by solving @ = V2§ = — ¢ for the
streamfunction ¢.>* If B, is the first zero of the Bessel func-
tion J,, then x = f3,/a and

Y= u(r — %%{%)cos 0, r<a,

(22)

=ua*cos 0/r, rxa.

The vorticity is confined to r<a and the circulation of
either semicircle of the dipole is

B

-1
e u Ji(x)x dx.

Jolka) Jo

In terms of a right-handed coordinate system fi,b,t with
iXb =t, rand 0 are polar coprdinates in the fi,b plane, and
positive 9 is measured from b in the direction of — fi. The
dipole moves with a velocity « along — i.

In contrast to the asymptotic expansion for a single
tube, useful conclusions are obtained in the case of a vortex
pair from the first few orders. At zeroth order one will find
just the translational velocity of the two-dimensional solu-
tion. At next order in o/r, there will be axial flows set up and
the core area will evolve according to (2). The local volume,
o?ldr/dE |, only changes at order (o/r, )"

To implement the perturbation expansion, we define a
toroidal coordinate system centered on the dipole [e.g.,
(22)] and valid within a tube of order r.. We consider only
the restricted case where the space curve y defined by the
dipole center lies in a plane that is also the symmetry plane
for the internal vorticity distribution. This plane is respected
in time. It is sufficient to consider only this case in order to
decide whether the singularities found in the filament mod-
els occur in the Euler equations.

Any point P, within a distance r, off y can be parame-
trized by toroidal coordinates (r,8,s). The arc length s, mea-
sured along y corresponding to P, is the intercept that a
plane normal to ¥ must have in order to contain P,. Within
this plane we locate P, by polar coordinates ry,8, with posi-
tive angles & measured from the direction of the binormal b
at 54 as before. The binormal is always perpendicular to the
symmetry plane mentioned above. An element of arc length
is defined as

dP,=F#dr+r0do + h,i ds,

where
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hy=(1+rsiné/r.) (23)

and 7, is computed at s,. We will occasionally use a Lagran-
gian coordinate ¢ in place of s as was done in Egs. (1a) and
(1b) and use 7 = (7,6,£) to denote the triple of tor01da1
coordinates. The unit tangent, normal, and binormal, t, f,b
all agree with their definitions in Sec. II.

It is now necessary to transform the Euler equations
from a fixed Cartesian frame (coordinate x) to the moving
toroidal coordinates. Let

x=F(nt) =y &) +r(—iisinf + b cos o)
be the variable change. Then, as usual,

o _o| _
otlx  Otl, ox, d

It will be shown shortly that for the problem of interest,
4y = —u(s,2)h. (24)
dt

[This equation essentially defines u since dvy/dt must be or-
thogonal to b. Contributions parallel to t appear at O(€?)
and are not simply unphysical reparametrizations of yy since
(2) keeps track of the local stretching in terms of ¢.] Then

v, =dyv|, + (uﬁ + r—‘;—u sin 9@)%9,}. (25)
s

Note also
df=tdusinb, 3,08=tducosh, dt= —nd,u

The Euler equations are written

Vg vg
atvr|x+ vrar+_89 vr—_+arp
r ¥
( v
r,
d,vg|, + [(v d, +—~89)v9
2

( vsasave)
= cos @ — ————|,
r.h, A

dul, + (v, a, + ”—"aa)us
r

sin 68 — U 851),),
h

s

(26)

d
= — }:p _ (v, sin @ + vycos @) —%-Hsvs,

s SrC s
a.v
s +—!—(u,sin9 -+ v, cos 0)

5 rL‘

1
iar'(rvr) +_at9v9 +
r r

=0

To scale these equations, let o(£,2) be the transverse
dimension of the dipole [e.g., @ in (22)] and 7, (£,) the
corresponding radius of curvature of y. Uppercase Latin let-
ters or ¢ will henceforth denote scaled quantities. We define

R =vr/o, dS=ds/r,.,
dT, = (I'/or,)dt, dT,= (I'/o?)dt,
V=0v/T, P=T%/d &=T¢.

The expansion parameter is e=o0/r, and depends on £ and ¢.
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We have noted many times that the scales of variation
perpendicular to y and along it differ by a factor €. Hence dg
and dg are both order 1. The velocity is scaled by its charac-
teristic value near the dipole. The velocity potential
(v = V¢) and the pressure p are adjusted similarly. Finally
we have introduced two time scales to account for the very
different rates at which the dipole moves (T;) and deforms
and stretches (T ). The scaled equations read

H = (1+€Rsinf),
31, Vrlx + {[Va 9r + (V43/R)3, Vg — V5/R + 9 P}
= —€{dr Vi =97, (In0) (Vg + R Vy)
+€(37.8)(dsVr) — (VI/H,)sin @ + (V,/H,)
X [0,Vr —ds(In0) (Vr + R g V)
+ 05T, 3, Vg +€35T, 3r,Va ]}
VeVe 8gP
]

V
anVOIx + [(VR dr +7€“99)V9 +

= —e(aTIVe —3dr.(Ino) (Vs + RRVs)

V2 cos 8 N V.
R H,

X [8,Vo —8,(In0) (Vg + R 3x V)

—€3;.8535V, —

+ 3,101 Ve +€d,T, 01V, ]),
I Vlx + [Vr r + (Vo/R)3, ]V
= —€e[(1/Hg)3,P — 2(d, In 0)P + (3,T,) (1, P)
+ eo’FSTS(arsP)] + (V,/Hg)(Vy sin 8
+ Vycos0) — (V,/H)[I,V, — (3, In o)V,
+0,T,0r,V, +€9.T, rV.] +drV,
— (@7 Ino)(V, + RIR V) +€(3:.8)d, V,,
(1/R)3x (RVR) + (1/R)3,V,
— (e/H)[3,V, — I, (Ino)(V, + R V)
+ (3, T)) (aT,I/s ) +€(3,T,)(dr. V)
+ (Vgsin@ + Vg cos 9)].
In regions where the vorticity is zero it is most conven-
ient to solve Poisson’s equation V>® = 0 for the velocity po-
tential ® in scaled variables,

1
a;q>+R

(27)

8R<I>+ a [}

+

€ . cos 6 € €
03, 3 <1>) ——as( ascp)
: (sm R P+ R + H H

=0. (28)

Since it is only initially that vorticity is confined to a
circular region of radius o, we must allow this region to
change both area and shape. In toroidal coordinates, we
write the boundary in polar form for each £ as

r= a(gyeﬁt) - U(gyt) + Ea[(gyeat)' (29)

We are restricted to considering small € and smooth depend-
ence on 6. Finally all fields are expanded in €:
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V=V+eV' +eV?+
We chose not to introduce any axial flow at zeroth order so
that ¥ =0.

It is physically plausible and indeed checked perturba-
tively, to the order in which we work, that V at fixed 7, the
core size, and other quantities measured with respect to ¥
depend on T, only. Therefore we can use (25) to rewrite
d,vl, in terms of 37 V|, and a convective term. The zeroth-
order equations read

0
_ U(sineaR + °‘;‘9 86)V% + (Vg O + ’;

02

S+ 3xP°=

VO
- U(sinaaR +M89)V‘; + (Vg 3 +—999)Vg
R R (30)

VOVO
R 9—}—%891’0:0,

Or (RV2) +3,V% =0,

where U = gu/T" appears in the scaled version of (25).
These equations are then satisfied by any two-dimensional
dipole moving with velocity U. Thus to zeroth order in ¢,
each slice through the three-dimensional dipole tube moves
independently with a velocity U as we anticipated above in
(24). This form also agrees with the local model equations
when p and o are frozen, which they are at this order.

To next order in € we linearize the left-hand sides of
(27) and substitute ¥, etc., onto the right-hand sides. The
solution has to be constructed separately in several regions
and then matched. We define

0<r<a, interior,
asr<r., inner, (31)
adr< o, outer.

The two regions r>a may be collectively called exterior.
All vorticity is confined to the interior region [cf. (22)]. The
breakdown of the toroidal coordinate system for » ~ r, forces
one to distinguish the “inner” and “outer” regions. Note
that since a/r, ~0/r. €1, there is a substantial region of
overlap between them on which the respective asymptotic
expansions must match.

We will work from » = « inwards. Clearly in the exteri-
or region it suffices to solve just the Poisson equation (28)
with an interior boundary condition defined at » = a. The
full Euler equations (27) are only needed for r <a.

In the outer region for r>a or R > 1, we can perform the
analog of a multipole expansion in electrostatics for the po-
tential due to a distant charge distribution. The outer solu-
tion is only needed to determine the boundary conditions on
the inner solution so we will impose the additional restric-
tion 7 <r, . Examination of the general integral formula for ¢
in terms of w indicates that we can approximate the distrib-
uted dipole centered on +y by a pair of antiparallel circular
filaments separated by p. At fixed s the potential reads
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Plagr<r,) = % Jr’Xm(n,t)dzr’-V Inr
w

The dipole moment of the tube at the point in question is
defined to be I'p(£,2). The final result is

$(r0,8) = —;ﬂsin o

477'r (

when r/r. —0.

In the inner region we have to work from a general solu-
tion to the Laplace equation (28). The first two orders read
(P=P,+€P,+ )

) — cos? 6} + O(r—’gt), (32)

I2d, + (1/R)8 <1>0+ (1/R )32 ®, =0, (33a)
32D, + - ach - L5y,
+ (sin R cos" agq>0) ~0 (33b)

We can rederive our solution (22)-(30) for r>a by
solving the two-dimensional Laplacian (33a) with
&, = Usin 8 /R. The value of p can be calculated from the
interior solution at zeroth order,

I'p= f(xw:)d2x.
We can therefore match ®° to the first term in (32) by set-
ting

Tp/2mr =T Uo = ud’.

To account for the remaining terms in (32), we write

out a general solution to (33b) with the inhomogeneous
terms and match to (32). One finds

U 8 cos(29)}
&, = |1n(L) 4 052D
' Z[H(GR)+ 2

d &) +d, e
+”ZIC cos(n )R,, sin(n ) (34)

The ¢, d, are fixed at the interior—exterior boundary,
1.e., by imposing that the boundary of the vortex tube move
with the fluid; symbolically,

(% + v-V)[r~a(§,0,t)] 0. (35)
When Eq. (35) is expanded to O(e) one finds
Ox®y|g_ = — 3% <I>0 L+, Ino
a dga
[ 1+aeq’o ed1 (36)

By explicitly substituting ®, into (36) one finds that the
angular average of 3®,/JR is just d In 0/37T,.

Now recalling the form of ®, compatible with the outer
boundary condition (34), we find

dlno U

ar, 2

(37a)
or
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8(02|8§'y|) .
or,

s

O(e). (37b)
We have used (24) [cf. (15)] to derive an equation for
|d¢v|. (The stretching is simply a consequence of the form of
the equation for dy/dt.) The formula for local volume con-
servation (2) we used in our models has been derived to the
indicated order. The remaining unknown angular-depen-
dent term in ® may be expressed in terms of the Fourier
series for a,. Since v is a plane curve and the vorticity distri-
bution is symmetric the terms in @, and ¢, proportional to
cos[(2n + 1)8] and sin(2x'6) vanish. The velocity field just

outside the core, neglecting a,, is just
= — T'p = v ___isinw-
47y, 47r

[

r

In more formal language, the radial term forces us to choose
a o obeying (37b) and therefore (37a) is a solvability condi-
tion for (36). The existence of the quadrupolar term in the 8
direction does not lead to any solvability condition at this
order and merely becomes a boundary condition that we
must impose on the Euler equations in the interior.

Since we imagine that a, = 0, initially its value at later
times is undetermined to this order since it is only a function
of T, and da,/dT, enters (35) at O(€?). We can also solve
for the interior flow with a, 20 as a boundary condition. We
are uncertain whether a solvability condition for the defor-
mation exists at higher order.**

The interior solutions® can be reduced to a set of third-
order differential equations for the radial dependence of
each Fourier mode in 8. We merely state the angular depen-
dences of the corrections to V', which may be read off from
the inhomogeneous terms and boundary conditions. The
ambiguities in overall sign are settled by reference to direct
numerical simulations of the three-dimensional Euler equa-
tions to be published elsewhere. R

The vorticity component parallel to t varies as sin 26.
Since wg o« — cos 8, |@, + €w,| is enhanced with respect to
|| on the side of the dipole in the direction of propagation
(Fig. 16). The @ dependence of »' is simply the signature for
r < a of the quadrupolar term in v’ we found outside the core
[Eq. (34)]. .

The velocity component parallel to ¢ varies like
sin 8 do/ds. The sign of the axial flow can be inferred by
recalling that within the local model the two filaments are
pushed together at a rate proportional to . '. When the
positive core size is taken into account, the back of the tube
has a smaller radius of curvature than the front, so one ex-
pects fluid to be squeezed out from the back. The interior
average axial velocity (denoted by an overbar) is zero to
order € since we expect an equation of the form

9
aT,
to hold. Then (37) implies vt = O(€?).

J  —
(0% 9,s) +—C-?E( vto?) =0

B. Navier-Stokes equations

It has not been ruled out that the core deformation in
successive orders of perturbation theory behaves as (€7 )",

1621 Phys. Fluids, Vol. 30, No. 6, June 1987

0
a 0]

b
(a)

T
f

O

b
(b)

FIG. 16. (a) The shape changes an initially circular vortex core is apt to
undergo when the filament stretches. Positive and negative vorticity con-
tours are shown as well as our conventions for the axis and €. In (b) the
dominant axial flows (dashed) are shown around the point of maximum
stretching. The paired filament moves in the direction indicated by u.

so that the expansion in Sec. IV A ceases to be valid beyond a
certain scaled time and all connection with the filament solu-
tions is lost. Nevertheless, in this section the deformation
will be assumed bounded up until the singularity time in
order to show that viscous effects are ineffective in halting
the collapse. In the simplest possible terms, the time on
which the viscosity v acts to cancel out and diffuse the vorti-
city in the core is 0?/v and thus is always much less than the
time remaining until the singularity [N.B. Eq. (19)1].

To argue more formally, consider the rescaled times giv-
en above (27) in integrated form

T, = [t*T/d*(0)]|In(1 —¢t/t*)|, T, =€T, (38)
where we used in an essential way (37a) in unscaled form,
o2 () ~el(t* — 1) =0%(0)(1 —t/t*).

The ~ sign represents numerical factors of order 1 and ¢t =0
in the second equality can be replaced by any time within the
self-similar regime. The original interval 0 < ¢ <t * has been
stretched out into 0< T, ; < oo. (The logarithms in o that
occurred in the local model of Sec. II C have been neglect-
ed.) Our assumption now becomes, in the notation of (27),
that V(R,S,T,,T,) is a fixed form solution to the scaled
Euler equations for all T, > 0.
The scaled Navier-Stokes equations read

31,V + VWV +eH(V) = — VP + (v/T)V?V,

where H represents the O(¢) termsin (27) and v/I"<€1. One
can now change to a comoving toroidal coordinate system
and equate orders in € as before. The viscous term breaks up
into an order €° two-dimensional piece in (R,8) and O(¢)
terms involving the axial dependence. The zeroth-order
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equation is just the two-dimensional Navier-Stokes equa-
tions in which all the coordinates are scaled.

There are no exact analytic vortex dipole solutions in the
presence of viscosity, but the behavior of a solution such as
(22) when a small amount of viscosity is added for v,/
I' €1 can safely be predicted. Vorticity diffusing across the
neutral streamline down the center of the dipole will cause
thecirculationin each halftodecay as (1 — v7,/I"). A wake
will also be created by vorticity leaving the circumference of
the dipole as it translates. The integral of the magnitude of
the vorticity across the wake is of order v/a. We do not
believe there are any instabilities and that for v7,/I'>1 the
dipole simply diffuses away. Even with instabilities, we do
not see how the dissipation could modify the Euler solutions
forvT,/T" < 1sinceall gradients are order 1 and there are no
rigid boundaries.

Since the two-dimensional limit is unaffected by viscos-
ity and the full Euler solutions exist we presume the pertur-
bation theory continues to work with viscosity for short
times, vT,/T" < 1. We can therefore trust the Euler solutions
until 7, ~T'/v or

o(t) ~exp( —ecstI'/v).

Note that T'/v plays the role of a Reynolds number and must
be much greater than 1 for everything said so far to make
qualitative sense. The velocity and vorticity scale as
I'/o, T'/0%, respectively. In practical terms, this viscosity
cannot prevent o from getting so small (and max|v| so large)
that hydrodynamics is inapplicable.

It would clearly be of interest to rigorously prove that
the Euler and Navier-Stokes solutions remain close under
the conditions we are considering. Crude estimates do exist
for the unscaled equations but they work by bounding how
rapidly the difference velocity can grow in time.? Clearly if
the Euler solution is unstable, the viscous perturbation may
excite the unstable modes and lead to an order 1 difference
for Ty ~In(I'/v). Arguments of this sort tend to be unneces-
sarily pessimistic since small changes in velocity will ulti-
mately cause two solutions to differ even if they are identical
when brought into coincidence. Also our zeroth-order solu-
tions are stable and ultimately we are only concerned with
existence and not stability. Nevertheless a strong enough
comparison theorem between Navier-Stokes and Euler so-
lutions seems difficult to prove.

V. CONCLUSION

It is our contention that singular, though possibly unsta-
ble, solutions to the Navier-Stokes equations in three dimen-
sions cannot be dismissed without serious consideration.
Our arguments in their favor have utilized a variety of mod-
els and techniques so we will recapitulate our reasoning and
justify the significant approximations. We begin with a syn-
opsis of the rigorous constraints that have been placed on
singular solutions to Navier—Stokes.

A. Rigorous resulits

Leray was the first mathematician to seriously attack
the question of whether solutions to the Navier-Stokes equa-
tions exist and are unique.' It suffices to consider a smooth
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initial velocity field, confined to a finite box B with no slip
boundary conditions and no external forces. Then Leray
showed the following (“cst” will denote free unrelated con-
stants).

(i) There exists a unique smooth solution for a finite
interval of time for any viscosity and a solution for all times if
the viscosity is sufficiently large.

(i1) If the solution is not smooth at a time ¢ ¥, then for
any ¢ <t * and after the last singularity,

max, g [v(x,t) | >cst, [v/(t* —1)]"3

3 172
fle(z d3x>cst2(————v ) ;
B (t*—1)

where the cst; are pure numbers [i.e., independent of
v(x,0)].

(iii) A so-called “weak solution” may be defined in
analogy to a 6 function by multiplying the Navier—Stokes
equation by an arbitrary smooth test function and integrat-
ing. The weak solutions may be nonunique but exist for all
times and permit one to continue through the singularity
times.

Serrin® has sharpened result (ii) by showing thatifvisa
bounded solution then it is infinitely differentiable. Hence
singularities, if they occur, cannot hide and the velocity can-
not develop a singularity in a high derivative but must itself
diverge.

The inequalities (39) are established by constructing a
formal iterative solution to Navier—Stokes by inverting the
linear part of the equations for the ith iterate onto the nonlin-
ear terms for the ({ — 1)thiterate. If |v| is bounded, then the
iteration converges and a smooth solution emerges. The var-
ious powers in (39) are just what one would infer dimension-
ally.

Scheffer,® following Leray, bounded the Hausdorff di-
mension of the set of singular times by 0.5. Since the total
dissipation cannot exceed the initial energy,

vfwfquizdtd3x<f w(x0)|? d .
0 B B

Butforeacht¥*, (39) holdsfort*>¢>t¥ ,.Hence thesum
of cst v*/2(¢* — t*_ )2 over all singular times is bounded
by the energy. A bound on the covering of the set of singular
times follows along with the Hausdorff dimension.

Subsequent authors have extended Leray’s results by
considering the singularity as a space-time event.® The dis-
tance from a singularity at ¢ *,x* is measured by

FP=x—x*)?+v(i*—1),

with #<¢ *. Then in the neighborhood of a singularity, (39)
generalizes to

(39)

lv(x,1)| > csty/r,

2
ﬁ(l,vw Vo|*>cst, 7,
jx —x*| <7

and in addition
|Vu| > cst/r.

The inequality on the dimension of the singular times
becomes the statement that when we cover the singular set
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by rectangles of size €” in ¢ and € in x, then the Hausdorff
dimension is less than 1. Therefore the singular set can be
Jjust smaller than a space curve at one time or pointlike in
space on a set of times with ordinary Hausdorff dimension
less than one half.

An interesting generalization of these results is obtained
by considering a modified version of the Navier—Stokes
equations with the dissipation replaced by #( — V2)! €3¢
Then on dimensional grounds the inequality analogous to
(39) reads®

&f v(— V)"t d3x
B
>CSt 95/(2+26)(t* _t) — (1 + 6€)/(2 + 2¢€)

The time singularity on the right does not have a finite inte-
gral for €> 1. Hence by the energy argument, there are no
singularities for € >} since the integrated dissipation would
exceed the initial energy.

B. Summary

Let us for the moment ignore logarithmic terms. Then
the Biot—Savart model with local volume conservation im-
plies that vortex filaments will pair in an antiparallel manner
and generate infinite stretching or zero core size in a finite
time. The ratio of filament spacing to core size remains fixed
and o tends to zero as (¢ * — 7)'/2. There are solutions (cf.
Sec. I1I B) for which o/r. remains small so it is sensible to
think of the filament as the limit of a nonzero core vortex
solution of the Euler equations. The numerical simulations
and the analytic results for local approximations to Biot—
Savart establish these conclusions unambiguously.

For short periods of time, a solution to the full Euler
equations for paired vortex tubes exists that follows the fila-
ment solutions. If the vortex tubes do not deform significant-
ly, then we expect they will continue to track the filament
solutions. The inequality o/7, <1 makes the self-stretching
appear on the scale of ¢ as simply a rescaling.

The time for viscous effects to enter is ¢*/v, which for
small viscosity v greatly exceeds the time remaining to the
singularity, (¢ * — t). Therefore the viscous diffusion will not
halt the collapse until o ~exp( — cst ['e/v), Sec. IV B.

We consider there to be three significant assumptions in
the above train of argument. The most serious, and the one
we cannot justify, is the neglect of secular distortions when
paired vortex tubes self-stretch under the Euler equations.
Limited spectral simulations have suggested that the tubes
flatten into a pair of ribbons that then behave very differently
from a pair of vortex filaments.>' The most crucial step in
generating singular solutions to Navier-Stokes is in fact con-
structing their counterparts with v = 0. The two other as-
sumptions that we consider reasonable, namely the neglect
of dynamics in the vortex cores and the absence of a con-
served energy for filament models, are considered below.

We believe that whenever one has a solution to the Euler
equations that is smooth and contains a single spatial scale
when written in terms of x/y/t * — ¢ , then a similar solution
to the Navier—Stokes equation exists as long as |In(r * — t}|/
R «1,where R is the Reynolds number and « > Ois a power
we are unable to calculate. A partial argument for paired
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filaments was given in Sec. IV B. The reason an exponent
1/2 appears in the Euler equation [e.g., o~ (£ * —t)'/?] at
least for filaments is ultimately dimensional; I" is the only
relevant conserved dimensional quantity.

It is informative to give a physical restatement of the
scaling analysis of Sec. IV B which also suggests why paired
vortex tubes are the most logical candidate for a singular
solution. In the presence of viscosity we rewrite (2) as

da? 2 dIn(d,s) .

—_—— Y —

dt dt

The logarithmic derivative in the second term is just the rate
of strain along the tangent to the filament. It can be estimat-
ed as a velocity gradient ~cst I'/{max(p,0)r_ ]. The factor
r. enters since straight filaments do not stretch and the gra-
dient along the filament involves r,” '. Therefore it is only
because 0°/(pr, ) is time independent near ¢ * that do?/dt
can be negative, and o can hit zero. We are not able to devise
another flow involving vortex sheets or ribbons in which the
velocity and rate of strain scale as I'/o and I'/0?, respective-
ly.

At the level of (40), we can also give an account of why
changing the dissipation function to — #( — V?)' *€ con-
trols the singularity. On dimensional grounds,

do® ¥ cst To?

dt o  max(p,o)-r,

Therefore 0” always has a nonzero positive fixed point. The
rigorous results that currently exist only demonstrate exis-
tence and regularity for € > 1. We conjecture any € > 0 guar-
antees smooth solutions exist for all times. Thus the usual
Laplacian dampening term is “marginal” with respect to
controlling singularities. While we expect in any real fluid
that ¥V* dissipation terms exist, the ratio #/v will be of order
an interparticle spacing squared. Hence singularities could
reach atomic scales before being damped.

Logarithms frequently enter problems in which two dis-
tinct physical effects just manage to balance. Here we found
that (p/0)?>~1/In(c™") so that eventually a paired vortex
filament model becomes internally inconsistent. On a similar
scale, the viscosity would reduce the circulation to zero.
Clearly o can get very small, and the velocity or vorticity,
(T'/a,T'/0?), very large, before In(o™") is appreciable.

Our model for singularities in the Navier—Stokes equa-
tions works only because the two-dimensional numbers in
the problem, viscosity and circulation, have the same units.
Leray' proved that the velocity is smooth unless
max|v| > cst[v/(¢* — t)]"/?. We found the same exponent
since we have o> ~cst T'(¢ * — ¢). It is worth noting that had
we found a larger exponent, i.e., 0>~ (£ * — £)*,a > |, then
the rigorous lower bound would be satisfied near ¢ * but it
would no longer be physically reasonable to consider the
viscosity as a small perturbation. That is, oP/v<Lt* —t, 50
viscosity will dissipate the circulation before the singularity
is attained. Conversely, if for the Euler equations we found a
smaller exponent, then the stretching would not balance the
dissipation.

The correspondence between our model solutions and
rigorous results is close in yet another way. For technical
reasons the mathematicians view the singular set as a subset

(40)
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of space-time and derive an upper bound for its Hausdorff
dimension.® For our model this is natural since different re-
gions along the paired filament collapse independently and
each one has its own ¢ *.

Last we reemphasize our inability to demonstrate that
vortex tubes behave like filaments when they pair and
stretch. The question of singularities therefore hinges on a
delicate problem in fluid mechanics and we doubt that rigor-
ous methods will make much more progress unless they ex-
ploit more subtle aspects of the Navier-Stokes equations
than the energy conservation property of the nonlinear term
and a mere counting of the factors that enter it.

C. Limitations of filament models
1. Energy conservation

It was remarked below Eq. (1) that there is no con-
served energy associated with a vortex filament when the
core varies in time. This is not surprising since the swirling
and axial flows within the core are not accounted for. The
Biot-Savart model may still correctly describe how a vortex
tube evolves even though details of the interior flow are lost
and the energy is not a function of just the filament position
and core size. Lack of manifest energy conservation makes
the connection between filaments and real vortex tubes prob-
lematical if one supposes that paired tubes stretch without
change in shape. Then (cf. end of Sec. I1 B) the energy com-
puted from the Euler equations scales as the total length of
filament L.

For this reason we were careful to show that for the local

model, L goes as cst — ¢ * — ¢ near the singularity. Never-
theless it is not obvious that energy can be transferred into
some small ball around the singularity fast enough so that a
cusp can develop in L with no shape change locally. (The
pairing makes the energy a local function of § or arc length. )

To analyze this problem we have found it productive to
generalize the class of flow fields we consider. Recall for the
paired filaments that the dynamics was local in arc length
and that a section of filament several times r, in length
should behave independently of other similar pieces. Now all
lengths scale as (¢* — ¢)'/?, so imagine making the ansatz
that we search for a solution to the Euler equations in the
form,

v (xt) = (1/yt*—1)

XV X=x/yt*—t,T= —In(l —t/t*)),

for x €1 and X> 1. Clearly v, has to be matched to a smooth
background flow for x<O(1). The total energy in v,,, where
it applies, is just (z * — ¢)'/2, so energy conservation no long-
er appears to be such a problem. By searching for T"indepen-
dent solutions to the Euler equations, one might be able to
argue for singularities without the intermediary step of fila-
ment models. We still conjecture, however, that the contin-
uum solution would have the symmetry as a filament pair.

2. Core dynamics

Imagine a straight axisymmetric vortex tube with a
slowly varying core size. If the initial amplitude of the per-
turbation is sufficiently small and there are no axial flows, its
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subsequent evolution is described by the Korteweg—de Vries
equation.?! Larger perturbations and axial flows can lead to
ajump in o(£) or even vortex breakdown.?' In any case, if a
vortex filament is evolving slowly on a time scale of 27¢*/T
it is unreasonable to fix o with the local stretching as Eq.
(2), since there are faster processes which redistribute area
along the filament.

A phenomenological filament model incorporating cer-
tain of these features has recently been derived by Lundgren
and Ashurst. They modified the Moore and Saffman equa-
tions in an ad hoc way by retaining a term proportional to the
derivative of the tube area with respect to arc length. Its
effect is to smooth out nonuniformities in the core size o
while maintaining the assumption of axisymmetry. The deri-
vation of the Biot-Savart formula in Ref. 18 assumes, cor-
rectly for that problem, a time scale of order r2/T" and then
also assumes that on such times ¢ becomes uniform. The
Lundgren—-Ashurst equations are incorrect for an axisym-
metric jet and a vortex ring with axial flow.”” However, once
the pairing and stretching begin the core and filament mo-
tions occur at comparable rates and Ref. 23 may well capture
the essential physics. In particular, they also found that fila-
ments will pair and collapse with the minimum core size
obeying o2, ~ (t* — ). As a function of arc length, o re-
mained within 50% of its minimum for an interval
As~30, .., long around o,,,;,, . However, there may be a kink
on one side of singularity which we never found for the Biot—
Savart equations. They note that the stretching appears too
rapid for the axial flow to significantly redistribute the core
volume.

Similar conclusions can be reached from our data but
are less convincing since we can only estimate qualitatively
how rapidly axial flows build up. The crudest argument is
simply to take the maximum axial velocity to be I' /27 and
compare its time integral to the arc length over which
O~ O in» 1.€., As ~ 1000, (Sec. III A). If the time interval,
t, —t,, is such that t* — ¢, = (¢* —¢,)/2, then f2(I'/
27ro)dt /o ~20-50, which is not significantly less than As/
Omin - A more refined argument computes the velocity actu-
ally developed by an axial pressure gradient corresponding
to a pressure drop of ~(I'/27o)? over a length As. The
velocity never reaches I'/ (270) and the actual distance tra-
versed is much less than before. Hence local core volume
conservation is a reasonable approximation provided the
tubes remain nearly circular.

One clearly cannot assess whether the vortex cores will
progressively distort and become more ribbonlike without
solving the full Euler equations. The issue of vortex recon-
nection in the Navier—Stokes equations for v/T" €1 only has
to be faced after one has seen infinite gradients in the Euler
solutions. It was emphasized in Ref. 31 that if gradients are
bounded the high Reynolds number limit of solutions to the
Navier—Stokes equations approach inviscid solutions for
which reconnection is impossible. Hence the simulations of
Meiron and Ashurst, which reported reconnection and no
distortion, were simply too viscous, which is not surprising
since they were finite difference on a 32° lattice.*®

Reference 31 reports higher resolution simulations, 64°
spectral, that evidence distortion and moderate stretching.
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Similar distortion is apparent in laboratory photos of
Oshima and Asaka.?* For a number of reasons detailed in
Ref. 31, these simulations do not rule out singular pointlike
solutions to the Euler equations which asymiptotically re-
semble a vortex pair. A more refined code that permits one to
continuously magnify the region around the singularity
should yield more definitive results.

D. Experimental implications

Searching for a pointlike singularity that occurs for a
brief and unknown time seems like a hopeless task. It is
therefore useful to recall several experimental facts about
turbulent boundary layers which are suggestive of the types
of singularities our models predict. The similarity may be
coincidental, but it provides a definite context in which to
ask if singularities do occur, how would one see them. We
will use the term “singularity” even though instabilities or
core deformations may intervene before the ultimate cutoff
of atomic scales or cavitation is reached. Singularities could
be a useful idealization if the real flows look similar and the
maximum velocity and its gradients are larger than can oth-
erwise be accounted for.

Recall that even though the mean velocity profile in a
turbulent boundary layer is accurately described by simple
scaling ideas,’ a finite fraction of the Reynolds stress is pro-
duced by “bursts” in which the velocity gradients fluctuate
to 10-20 times their value in the mean flow.'® There is con-
siderable experimental evidence that paired antiparallel vor-
tex tubes are continuously formed in a turbulent boundary
layer.'? Further observations and several phenomenological
models link the bursts to a breakdown of the hairpins.*

Experiments and numerical simulation show the hair-
pins to be oriented around a 45° angle with the wall which is
precisely the direction in which the vortex tubes extract
maximum energy from the mean flow by stretching.'>'* An
unanswered, and in our view key, question is the ratio of the
tube vorticity to the strain rate of the mean flow. It has gen-
erally been assumed that the hairpin passively stretches in
the mean flow. Within a singularity model, once the internal
vorticity exceeds the background, the mean flow becomes
irrelevant and self-stretching is alone sufficient, and indeed
necessary, to cause singularities. One should be able to ex-
tract from experiment the residence time of the hairpin and
the associated strain and thereby compute the vorticity ex-
pected from a passive stretching model.

Inflection points are considered a typical mode of insta-
bility for nearly inviscid shear flows.*' More specifically, the
Rayleigh criterion for inviscid plane parallel flows requires a
channel that is sufficiently wide, and the spanwise vorticity
to be a local maximum at the inflection. What happens for
later times if the flow is constrained to be two dimensional?
By analogy with the Kelvin—-Helmholtz singularity, which
has been followed for long times numerically,** we expect
the vorticity to roll up into blobs that approximately fill the
channel. This is not a particularly violent or rapid instability
any more than it is for the mixing layer. Of course what
happens in reality is that spanwise fluctuations in the vortex
tubes produced by the two-dimensional rollup get rapidly
amplified by the mean flow. This scenario is just the conven-
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tional argument for how hairpins are produced from the
spanwise vorticity created viscously at the wall. We consider
“hairpin” to be as generic a mode of instability for shear
flows as inflection points are in the mean flow. With this
observation, the occasional speculation that hairpins burst
when the local mean flow develops an inflection translates
into the supposition that big hairpins grow smaller hairpins.
This may be nothing other than a paired filament singular-

1ty.
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