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An exact renormalization group transformation is developed for dissipative systems which describes how the transition to 
chaos may occur in a continuous and universal manner if the frequency ratio in the quasi-periodic regime is held at a fixed 
irrational value. Our approach is a natural extension of K.A.M. theory to strong coupling. Most of our analysis is for analytic 
circle maps. We have found a strong coupling fixed point where invertibility is lost, which describes the universal features of 
the transition to chaos. We find numerically that any two such critical maps with the same winding number are C ~ conjugate. 
It follows that the low frequency peaks in an experimental spectrum are universal and we determine how their envelope scales 
with frequency. 

When the winding number has a periodic continued fraction, our renormalization transform has a fixed point and spectra 
are self similar in addition. For a set of non-periodic winding numbers with full measure our renormalization transformation 
yields an ergodic trajectory in a sub-space of all critical maps. Physically one finds singular and universal spectra that do not 
scale. 
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1. Introduction 

In this paper we show how a quasi-periodic flow, 
with two sharp incommensurate frequencies, can 
be made to bifurcate to a chaotic or turbulent state 
in a quantitatively universal way. The transition we 
envisage is a continuous one and our analyses 
make essential use of renormalization group meth- 
ods which were first introduced in the context of 
dynamical systems by Feigenbaum [1]. There are 
now many experiments in low aspect ratio systems 
that observe quasi-periodic behavior prior to the 
onset of turbulence [2]. Usually, however, the 
actual transition is preceeded by mode locking in 
which the ratio of the two basic frequencies, o91 and 
~o2, sticks at a rational value for some range of 
parameters. The observed flow is then periodic. 

A number of reasonable conjectures can then be 
made about how the invariant 2-torus in phase 
space on which the quasi-periodic motion takes 
place breaks down and gives rise to turbulence. 
Although the actual events that precede this tran- 
sition are quite complex (and are left for an 
appendix), in the absence of period doubling there 
do not appear to be any quantitative and universal 
features that could be measured in a real experi- 
ment. Thus it is difficult to test these conjectures. 

We therefore discuss how to modify the experi- 
ments, in a tractable way, so as to make the 
transition from quasi-periodicity to turbulence oc- 
cur directly and yield a clear experimental signa- 
ture. Our proposal requires that two experimental 
parameters be controlled in a consistent way. (In 
the jargon, the transition is then said to be of 
co-dimension two.) Typically one just varies one 
(i.e., the Rayleigh or Reynolds' number) which 
explains why this transition has not been seen 
before. 

Since it will emerge that the transition to tur- 
bulence approached in this way is universal, it is 
sufficient to study only the simplest nontrivial 
dynamical model. Clearly the model must possess 
an attracting invariant 2-torus to describe quasi- 
periodicity. Theoretically, it is then convenient to 
look at successive intersections of this flow with a 

suitably chosen surface (the Poincar6 section) and 
to work only with maps. Since the universal fea- 
tures of the transition reside only in the long time 
behavior of the system no essential information is 
thereby lost. In an experiment in which the second 
frequency, 092, is introduced by means of a periodic 
external force, the same reduction could be accom- 
plished by observing the quasi-periodic system 
every 2n/092 see. On the map, the invariant torus 
becomes an invariant circle. 

A model system rich enough to include the 
transition we intend to study is the following 
family of invertible analytic maps of the annulus: 

Po,.,(r, ~) = (1 + 2(r - 1) - (a/2n) sin(2nq~), 

~b + o9 + 2(r - 1) - (a/2n) sin(2n~b)), 

(l.1) 

where 0 < 2 < 1 and r and ~b are polar coordinates. 
It will be useful to note that for infinite contraction 
(2 = 0), (1.1) reduces to an analytic map of the 
circle 

q~' = ~b + to - (a/2rr) sin(2rc~b). (1.2) 

The remaining two parameters are both relevant 
to our analysis; a controls the nonlinearity and is 
akin to the Reynolds' number, and co sets the 
rotation rate. By the latter we mean just the mean 
rotation rate of ~b per iteration which in the 
quasi-periodic regime is just O91/(.O 2. (A precise 
definition is given below.) 

When a = 0, r = 1 is an attracting invariant 
circle and Po,,, is a pure rotation with rotation 
number oJ. In fact, this circle is normally hyper- 
bolic [3] and it may therefore be proven that for 
small values of a this circle persists although the 
flow on it may be mode-locked. Since P~,,, con- 
tracts areas uniformly, (its Jacobian is 2), any 
invariant curve is unique. Let p = p(o~, a) be the 
rotation number of the restrictionfo,.o of P~,o to this 
invariant circle. We now ask how this curve breaks 
down as the nonlinearity is increased. 

To refine this question we need to consider the 
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Fig. 1. General structure of the parameter space for the anal- 
ytic circle homeomorphism (1.2). The regions Ip/q are mode- 
locked with rotation number p/q while the continuous curves 
represent irrational rotation numbers. 

bifurcation structure in the (to, a)  parameter space. 
For  small coupling, 0 < a < 1, the picture follows 
from the small divisor perturbation theory of  
Kolmogorov, Arnold and Moser [4, 5, 6] The re- 

gions Ip/q of  parameter space where p(to, a )=p/q  
(p, q integers) and where f,o,o has an orbit of  period 
q are tongues of  the general form shown in fig. 1. 
Each tongue intersects the line a = const. > 0 in a 
nontrivial closed interval. Between the tongues are 
curves of  the form to = u(a), (u a continuous 
function) on which p is irrational and where fo,,a is 
conjugate through a continuous change of  vari- 
ables to a trivial rotation. The union of  these 
curves has positive Lebesque measure. The lp/q are 
the phase locked regions. 

One lesson of  small divisor theory is that it is 
sensible to use the parameter to to control p so that 
we can increase the coupling a and keep p fixed at 
a suitable irrational value. 

Under these circumstances there is good evi- 
dence (to be presented here and in ref. 11) for the 
existence of  a critical value of  a = a* such that for 
a < a* there is an analytic invariant circle, which 
becomes nonanalytic at a = a* and ceases to exist 
for a > a*. The radius of  convergence shrinks 
smoothly to zero as a approaches a* from below 
and our renormalization group is designed to 

extract the universal scaling properties of  the crit- 
ical curve at a = a*. Knowledge of  the conjugacy 
which relates the singular invariant curve to the 
pure rotation is equivalent to determining the long 
time behavior of  iterates of  the map and thus the 
low frequency peaks in an experimental spectrum. 
One result of  our analysis will be to show that all 
the frequency peaks are universal and to calculate 
their relative amplitudes at a = a*. 

The analysis necessary to extract the universal 
data at a = a* encoded in high iterates of  the 
annular map is enormously simplified by realizing 
that we can restrict our attention to maps of  the 
circle. The reduction in dimension from an annulus 
to a circle is ultimately due to the dissipation. Of 
course the annular map could be expanding in 
some region provided only that the average con- 
traction rate along the invariant curve is positive. 
The contraction rate of  the nth iterated map then 
approaches n-times the mean contraction rate. 
More precisely, there will be uniform exponential 
convergence onto the invariant curve along direc- 
tions that intersect it transversely. Thus the an- 
nular map is only nontrivial in the direction along 
the invariant curve. For a <~ a* one can sensibly 
define an analytic and invertible circle map as the 
restriction of  the annular map (or some fixed 
iterate thereof) to the invariant curve. 

Unfortunately for our purposes this simple con- 
struction is not uniformally appropriate as a ~ a * .  
To understand the difficulty, assume the mech- 
anism for the smooth loss of  analyticity at a* is a 
tangency between the contracting direction and the 
invariant curve. Baring accidental symmetries 
there should be a preferred phase ~b* where the 
angle between the two is minimal as a--,a*. Exam- 
ination of  a high iterate of  the map in the limit of  
zero angle reveals zero slope of  ~b* in the associ- 
ated circle map. The difficulty in our construction 
is that to achieve contraction onto the invariant 
curve requires an infinite number of  iterates which 
spread the points of  zero derivative, generically 
inflections, densely around the circle. We would 
like to claim that the circle map so obtained is 
equivalent to performing the same iterations on an 
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analytic circle map with a single point of zero slope 
at ~b*. 

This delicate point as far as we can see can only 
be established with the aid of the renormalization 
group developed here. The complication of an 
infinite number of inflection points is avoided by 
dilating, expanding and truncating the domain of 
definition after each iteration so as to retain only 
the inflection point at ~b*. The difficult step is to 
show that iterates of the annular map under the 
same process of dilating and truncating are de- 
scribed by the same limiting function as character- 
izes circle maps. The limiting annular map has the 
desired property that the foliation is tangent to the 
invariant curve at only one point in the reduced 
domain and further that the contraction rate in one 
iteration is infinite. To make the presentation 
coherent we develop our formalism for circle maps 
first and defer applications to annular maps to the 
very last section. 

In the next section we discuss some of what is 
known mathematically about analytic homeo- 
morphisms of the circle (e.g., (1.2)). We then ask 
how large iterates of the map scale. When the 
inverse homeomorphism is differentiable the an- 
swer to this question follows simply from deep 
results of Arnold and Herman [4, 7, 8]. However, 
when the map in question develops a cubic 
inflection point (i.e., just at the point where it 
becomes noninvertible) a different scaling is found. 
This is reflected in the structure of the nonanalytic 
invariant circle at the onset of chaos. Section 2 
concludes with a synopsis of our numerical results 
for inflectional maps which were found indepen- 
dently by Shenker [9, 10, 11]. 

In section 3 we define a renormalization group 
which reduces questions of scaling and universality 
to the existence of a fixed point with certain 
stability properties. In section 4 we solve for this 
fixed point numerically and discuss the flows in- 
duced by our renormalization group trans- 
formation. By linearizing around the fixed point 
we recover the exponents previously found by 
directly iterating the map. 

In section 5, as a prerequisite to examining 

spectra, we establish a connection between the 
functional transformation generated by our renor- 
malization group and the more conventional de- 
scription in terms of a conjugate homeomorphism 
familiar from K.A.M. theory. A number of precise 
conjectures concerning the degree of smoothness of 
homeomorphisms relating maps with an inflection 
point are formulated. The universal features ex- 
pected in the Fourier spectrum of an experimental 
time-series are identified in section 6. The overall 
scaling properties of such spectra are also demon- 
strated. 

In section 7 we consider situations in which our 
renormalization transformation has no fixed point 
yet there are singular and universal spectra. The 
notion of an ergodic renormalization group tra- 
jectory in function space and its Liapunov ex- 
ponents is discussed. Section 8 indicates how to 
extend our renormalization group to two- 
dimensional maps such as (1.1). In the conclusion, 
we consider how to experimentally test our predic- 
tions and mention several other small divisor prob- 
lems that may be treated by renormalization group 
methods. Related results have been independently 
obtained by Feigenbaum, Kadanoff and Shenker 
[11]. 

The appendix collects mathematical results for 
non-invertible maps of the circle and annular maps 
with particular attention to the qualitative ques- 
tion of how the transition from a mode locked 
state to chaos occurs when the rotation number is 
not controlled. 

2. M a ~  of the circle 

Firstly, we discuss the well known mathematical 
theory for diffeomorphisms of the circle. Then we 
describe the scaling relations obtained in numerical 
experiments for analytic maps of the circle with a 
single inflection point which is cubic (we call these 
cubic critical maps). We leave to section 4 the 
explanatiori of these relations in terms of a renor- 
malisation transformation and to section 6 and the 
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appendix the justification of the connection with 
the transition from quasi-periodicity. 

2.1. Generalities and the rotation number 

We shall represent the circle T 1 as the real 
numbers mod 1 and denote the real line as R. A 
homeomorphism of T ~ (resp. R) is a continuous 
mapping of T ~ (resp. R) onto itself with a con- 
tinuous inverse. An analytic (resp. C r, 1 ~< r ~< oo) 
diffeomorphism is an analytic (resp. C') homeo- 
morphism with an analytic (resp. C r) inverse. Every 
homeomorphism of  T ~ can be represented by a 
homeomorphism f of R such that 
f(O + 1 ) = f ( O ) +  1; the associated circle homeo- 
morphism is then O ~ f ( O ) m o d  1. We denote the 
class of such homeomorphisms of R by 90. 

The rotation number o f fEg0  is 

p ( f )  = lim n-l( f"(O) -- 0) .  (2.1) 
I 1 ~ o 0  

This limit exists and is independent of  0. Another 
useful characterisation is this: 

= p( f )c~ l f " (O)  - 0 - hal < 1, for all n, O. 

(2.2) 

(In terms of the original quasi-periodic flow, p is 
the ratio of  two fundamental frequencies- 
consequently it is accessible experimentally.) 

Some elementary facts about p are these: 
a) if R~(O) = 0 + 2, then p(Ra) = 2; 
b) i f f e g 0  and p ( f ) = p / q  then there exists 0 

such that fq(o) = p + 0 and 0 mod 1 is a periodic 
point of the associated circle homeomorphism; 

c) p depends continuously on f e g 0  in the 
C°-topology: this means that, given f ,  if ~ > 0 there 
exists 6 > 0  such that s u p l f ( O ) - g ( O ) l  < 6  im- 

0 
plies I p ( f ) - p ( g ) l  <~. 

d) if f~ is the l-parameter family given by 
f~ = R~ of  then p(f~) is an increasing function of  

and is strictly increasing at points where p is 
irrational [7]. 

2.2. Conjugation to a rotation 

Consider the map O--}f(O) where re90.  On 
making the coordinate change 0 = h (4), h e 90, this 
map becomes ~b--}h-~rh(q~). We say that f and g 
are conjugate (resp. analytically conjugate) if there 
exists a homeomorphism (resp. analytic 
diffeomorphism) h such that g = h -~rh. It immed- 
iately follows from (2.2) that two conjugate ho- 
meomorphisms have the same rotation number. A 
basic problem is to determine when the converse 
holds and, in particular, to determine when fEg0 
is conjugate (or better analytically conjugate) to 
Rpc 0. Then every orbit of R~ is dense in T 1. And f 
is conjugate to R~ i f fhas  an orbit {fn(0)}~= 0 which 
is dense in T 1 because then we can define h by the 
condition that h(mr)=fn(O). Denjoy [12] has 
shown that if log ( f ' )  is of bounded variation and 
a = p ( f )  is irrational then every orbit of f i n  T 1 is 
dense. This condition is satisfied by C 2 
diffeomorphisms with irrational rotation number. 

Note that the above argument shows that if h 
exists then it is unique up to a translation. Thus for 
a given f one can ask how smooth h is. The 
following basic result about this is due to Herman 
[7]: there exists a set [13] A c [0, 1] with Lebesgue 
measure one such that, if f is an analytic 
diffeomorphism and tr = p( f )~A,  then f is ana- 
lytically conjugate to R~. For our purposes it is 
sufficient to note that A contains those numbers 
with bounded entries in their continued fractions. 

2.3. Continued fractions and scaling 

We now consider analytic diffeomorphisms f 
with irrational rotation number a = p ( f ) .  Since 
we are interested in the rational approximations of 
tr it is convenient to express it as a continued 
fraction: 

1 
tr -- 1 = [nl, n2, n3 . . . .  ]. (2.3) 

n I q - -  
n2 + • . .  

Within the set of all rational numbers whose 
denominator does not exceed a given bound, the 
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best rational approximation to a is Let z /~"~= [;(y) and observe that 

Pm/qm = [ n , ,  rt 2 . . . . .  n,., n m + I = O O ] .  f q . (E(y  )) - p .  = f;(y ) + f; '(y )(q.a - p . )  + (9(or -2.). 

We use this notation henceforth. For the rest of  
this section we restrict ourselves to the case where 
n~+.~ = n,. for some s/> 1. This condition is im- 

posed so that we can speak of self similarity for 

appropriate iterates of  the map. 
Define ~ =  l i m . ~  q.+s/q.. When s = 1, z = a -~. 
By Herman 's  Theorem [7] we have that f is 

analytically conjugate to R. where a = p ( f ) ,  i.e. 
.fu° = hRq.,,h- ~ with h an analytic diffeomorphism. 

Consequently, fq° - p.  = h (Rq¢, - p.)h - ~ converges 
to the identity as n ~ m .  Moreover,  for large n, 
. f q . ( O ) - p .  is closer to 0 than f ' ( O ) - I  for all 
1 ~< k < q. and 1 = 0, 1, 2 . . . . .  Because the points 

f q ° ( O ) -  p. and Rq.,,(O) - p .  are related by this ana- 

lytic coordinate change; 

~" = lim ( f q . ( O )  - p . ) / ( f q  . . . .  ( 0 )  - p .  +.~) 

= l i m  ( g q n a ( O )  - -  pn)/(Rq . . . . .  (0) -- Pn + s) = ( -- ) s'c" 
n~oo 

(2.4) 

Let 1 / ~ ( " ) = ( f q " ( O ) - p . ) / a  and let 2.(O)=aO, 
Note that lim..o~(~"/= (")) exists and is nonzero. 

Elimination of y in favor of  z together with the 
observation that s u p ( y ) ~ 0  as n - - , ~  implies 

(~(n}(,Tqn(z /(~(n)) - -  Pn)  - -  R g ( z  ) 

= ot~")(q.a - p , , ) h ' ( O )  - a + ( 9 ( ~ - " ) .  

The definition of  ~") then insures that the right- 

hand side is (9(~-"). 
Q.E.D. 

It is worth noting that to obtain a universal limit 
for fq"  and in particular R, the scale factor itself 

had to depend on f ,  i.e., we used ~(") and not ~". 
When we consider cubic critical maps we again will 
have to make a non-universal scale change to 

obtain a universal limiting function which replaces 
R~ in (2.5). The analogue of  l i m . ~  ~("+')/~")= a s 

will again exist and be universal. 
A second scale 6 can be defined by asking how 

quickly diffeomorphisms with a p./q.-cycle ap- 
proachf .  More precisely, letf~ = R~ o f  and let 2 . ( f )  

be the value of 2 closest to 0 such that p(f~) = p./q,,. 
Then if f is an analytic diffeomorphism (with 
p ( f )  = a of  course), it follows from Herman ' s  

results [7] that 

- p , s )  ~ con- Lemma 2.1. As n ~ o o ,  )~l,,)(f q'u 2~,,1~ 

verges as an analytic function to R. on any 

bounded domain. 

Proof. Let Ba denote {z~C: IIm z I < 6 }. Since f 
and h are analytic there exists 6 > 0 and analytic 

ex tens ionsfand  h ' o f f a n d  h to Ba so that for zeBa, 
f o h ( z )  = h(z  + tr). We have to prove that 

lim sup [ot(")(fq.(z/ot (")) - p . ) -  Ro(z)[ = O, 
n ~  zEB~ 

- A < R e z < A  
(2.5/ 

where A serves to delimit an arbitrary finite inter- 

val independent of  n. 

6 = l i m  2 . ( f ) / 2 .  + , , ( f )  = - z 2 . 
n ~ c c  

In the special case where the family is given by 

(1.2), 

fi = lim (o9. +s - tn.)/(to. - to._s), (2.6) 

where for a given value of  a ([a[ < 1), it is con- 
venient to define co. as the value of  t .  such that 0 
is contained in a q.-cycle with rotation number  
p./q.. (The same definition of  6 is used for l a l =  1.) 
Thus 6 measures how quickly the phase-locked 
tongues Ip/q converge onto the curve p (f~,a) = tr in 
0 ~< ~o < 1, lal ~< 1. A third rescaling factor 7 will be 
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needed in sections 4-5 to describe how maps that 
are nearly critical renormalize toward the weak 
coupling fixed point. 

The notation 6 was chosen in partial analogy to 
Feigenbaum's study [1] of period doubling where 
a single exponent described both the accumulation 
of periodic 2" cycles and the onset of chaos. Our 
problem is codimension two (i.e., there are two 
relevant directions) which requires us to define 
both 6 and ?. 

2.4. Scaling for  cubic critical maps 

We now consider the scaling relations for cubic 
critical maps analogous to (2.4) and (2.5). These 
were discovered by us, and independently, by 
Shenker, in computer experiments mainly on the 
family (1.2) [9, 10] 

0 

I I I I 

/ 
/ 

f /  

I I I I 
- 2  - i  0 I 2 

g 

Fig. 2. The  universal  scaling func t ion  (2.9) for  p( f )=  aG 
c o m p u t e d  f rom (2.7) a t  a = !. 

0 "*fo,(O) = 0 + o9 - (a/2rr) sin(2n0). (2.7) 

Our conventions are arranged such that (2.7) has 
a cubic critical point at 0 for a = 1. We will look 
for scaling around the origin since it is known from 
general theorems (appendix) that knowledge of the 
orbit of the critical point largely determines the 
dynamics of the map. The numerical method used 
is similar to that of Greene [14]. We worked mainly 
with the irrational winding number that is most 
poorly approximated by rationals, a = a G =  
( x / ~ - 1 ) / 2  for which ni = 1 and ql = 1, q2 = 2; 
q . + l = q . + q . _ l  and p. = q._l. 

By solving the equat ionf~(0)  = p. for co. we can 
estimate 6 from its definition (2.6). With 14-figure 
arithmetic and (r = trG, co. reached its limiting value 
for n = 28 (q2s = 514229). The corresponding value 
of ~ was estimated from the analogue to (2.4), i.e. 

a = l i m  ( fq%- , (O)  - p . _  l ) / ( f q % ( o )  - p . ) .  ( 2 . 8 )  
. - - * o o  

In the same calculation we also determined the 
function 

((x) = lim at")(fq% (x /~(t")) - p.)  , 
n ~ o o  

(2.9) 

where the scale factor ~t (") was determined by 
insisting that ~(0)= 1 for each approximate n. 

The finite n approximations to 0t and ~ continued 
to improve out to n = 17 (ql7- 2584). From the 
fluctuations between successive cycles we estimate 
the error in ~ (fig. 2) to be 2 x 10 -5 using the L1 
norm over the interval bounded by the two 
inflection points that bracket the origin. We 
also found ct = - 1 . 2 8 8 6 2 + 0 . 0 0 0 0 5  and 6 = 
- 2.83361 + 0.00001. We believe our limiting error 
reflects just the loss of accuracy due to the cubic 
inflection point together with a machine accuracy 
of 10 -14. Table I contains a synopsis of our numer- 
ical results for other winding numbers and maps. 
From this one sees that ~ as well as the scale factors 
~t a n d  6 depend on the rotation number and the 
order of  the critical inflection point (e.g., cubic) but 
are otherwise universal and independent of other 
details of the map. 

2.5. Fixed point equations (a = (r~) 

From the definition o f (  in (2.9) and the relations 
fq~ +l =fqn o fq . - '  = f q . - l  ofqn one sees that ~ must 
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TABLE I 
The scaling factors ~ and 6 for the critical sine map (2.7) and the power map  (2.11) 
with a cubic inflection point and for the winding numbers  indicated. Note that the scale 
factor corresponding to a full period of  the continued fraction is ct' by (2.4). The 
convergence to a universal value with the order of  the rational approximate is clearly 
oscillatory for both ~ and 6. No attempt to model the error term was made al though 
it might have added one significant digit to our values. The quoted error is large enough 
to bracket three successive values of  the parameter. We also verified, al though with 
lesser accuracy, that for p = a~ when b ~ l  in (2.11) - ~  tends smoothly to 1/o C. 
Specifically for b = 2 ,  1.3, 1.1, and 1.02, - ~ = 1 . 3 8 8 _ 0 . 0 0 2 ,  1.474___0.002, 
1.5817 + 0.0002, 1.6103_ 0.0002. The corresponding - 8  values are 2.7078, 2.6494, 
2.61978, 2 .618108_ 0.000003 and 2.618052 _+ 0.000002 for b = 1.01. In the opposite 
limit of  b--*oo, -ct--*l ,  e.g., for b = 4 ,  8, 16, - ~  = 1.231 _+0.002, 1.131 _+0.005 and 
1.071 + 0.002. 

Equation (2.7) 

p 1,1,1 . . . .  2 , 2 , 2  . . . .  1 , 2 , 1 , 2  . . . .  
-~t  1.28862 _ 0.00005 1.5868 + 0.0001 1.4032 + 0.0002 
- 6  2.83361 + 0.00001 6.79925 + 0.00005 17.66906 _ 0.00002 

Equation (2.11) 

p 1,1,1 . . . .  2 , 2 , 2 , . . .  1 ,2 ,1 ,2  . . . .  
- •  1.2885 + 0.0003 1.5865 ___ 0.0005 1.4033 + 0.0002 
- 6  2.833 _ 0.002 6.795 + 0.005 17.670 4- 0.005 

satisfy the equations 

(0) = ~t( (ct((0/~ 2)) (2.10a) 

and 

~(0) = ~ 2 ~ ( ~ - ~ ( 0 / ~ ) ) .  (2.10b) 

Feigenbaum et al. [11] have numerically solved 

(2.10) and found nontrivial solutions. However, 
(2.10) is rather confusing because, as we shall see 
from our renormalisation group analysis, (2.10b) is 
essentially redundant and (2.10a) alone specifies 
up to a scale change [15]. Also, this approach 
becomes very cumbersome when one deals with 
other winding numbers as the equations corre- 
sponding to (2.10) become more numerous and 
more complicated. The renormalisation trans- 
formation constructed in the next section provides 
a clear computat ional  tool for calculating ( as well 
as an explanation of  its existence (cf. (3.6)). 

2.6. Other critical maps 

We have also investigated a number  of  non- 
analytic functions of the form 

o - ~ f  (o) = co + 01201 ~ - '  , (2.11) 

where I 1 0e[-~,~] .  In each case we obtain good 
convergence for ct, 6 and ~ but now these depend 
on the value of  b. The entries in table I for b = 3 
are a check that ~ and 6 are universal for generic 
critical maps even when the map  in question is not 
an analytic homeomorphism (e.g., (2.11)). 

Jonker and Rand [16] have proven by means of  
the renormalization group transformation in the 
following section that ~ and 6 are analytic func- 
tions of  b -  1 = E for small E. This makes un- 
ambiguous the numerical determination of  the 
leading coefficient in an E-expansion. Specifically 
for p = a C, --0t = l /a  G -- 0.37~ and - 6  = O'G 2 + 
0.19E 2 with errors of  order 5 ~  in the coefficients. 
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3. Renormalization group analysis of circle homeo- 
morphisms 

We now give an explanation of the above phe- 
nomena by implementing a renormalisation group 
analysis along the general lines developed by Fe- 
igenbaum in his study of period doubling [1, 17]. 
Our construction is slightly more complicated than 
Feigenbaum's since it depends upon rotation num- 
ber and our orbits are not periodic. Nevertheless, 
our transformation is defined on an open set of 
maps that does not constrain the winding number. 

The great utility of the renormalisation group in 
dynamical systems has been to reduce questions of  
existence and universality to a geometric problem 
in function space, which, for period doubling, has 
been brought under sufficiently quantitative con- 
trol to permit mathematical proofs [17, 18, 19]. An 
additional virtue of the renormalisation group for 
our problem is that the universal features of the 
spectra will follow from the coordinate change that 
reduces our fixed point homeomorphism f .  to a 
rotation. There is no need to work backwards from 
f . ,  which controls the iterates near the inflection 
point, to recover the rest of the orbit. 

Although our main interest is with the class of 
cubic critical mappings of the circle (i.e., analytic 
maps with a unique inflection point which is cubic), 
it turns out that to construct a renormalisation 
transformation we have to work in a larger space 
of suitably constrained pairs of analytic homeo- 
morphisms of the line. After studying the renor- 
malisation transformation in this bigger space, we 
obtain the scaling properties etc. of the analytic 
mappings by considering how they are embedded 
in this space and how the transformation acts upon 
them. 

Each element of this bigger space naturally 
defines a piecewise analytic map of the circle. This 
is extremely useful because it allows an immediate 
definition of  rotation number and more im- 
portantly enables us to construct conjugating ho- 
meomorphisms which play an important role in 
our demonstration of the universality of the spec- 
trum. These conjugacies possess unexpected prop- 

erties which are shared by both analytic and our 
piecewise analytic circle mappings. 

The renormalisation group transformation Tn 
applied to a particular circle homeomorphism f 
(and the space we embed it in) depends upon n = n~ 
where 

1 
P( f )  = 1 = [nl, n2 . . . .  ], (3.1) 

n~ + - -  
n2  + • . . 

i.e., n~ is such that nt <~ UP(f)  < n~ + 1. In this way 
arbitrary rotation numbers can be studied because 
the image of f under T~ will have rotation number 
1/(n2 + 1/(n3 + ' "  ")). When the continued fraction 
(3.1) is periodic, say ni+s = n;, we seek a fixed point 
of 

T=T~,_~ . . . .  o T~ (3.2) 

and study the structure of T near the fixed point 
(its linearisation, stable and unstable manifolds, 
etc.). Associated with this fixed point is the univer- 
sal 2-parameter family of  circle maps which corre- 
spond to its unstable manifold. 

3.1. Definitions and formal properties [20] 

We now define T n and the space 6en upon which 
it acts. Let 6 "  consist of  the pairs (~, ~/) of analytic 
homeomorphisms of  R which satisfy the following 
conditions (' = derivative): 

(a) ~ (0) = r/(0) + 1, 

(b) ,1(¢ (0)) = ~ (~ (0)), 

( c )  0 < ~ ( 0 ) < 1 ,  

(d) ¢'(,1 (0)) > O, 

(e) Cn-t(r t (0)) < O, (3.3) 

(f) if ~ "(x) = 0 or rt'(x) -- 0 for x in [7 (0), ~ (0)] 
then x = 0 and ~'(0) = ~'(0) = r('(O) = 
C'(O)=O, but C"(O) and e"(O) are 
nonzero; 
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and 

(g) (¢r/)'(0) = (r/~)'(0), and if ~'(0) = 0 

then 
(~ ' t ) " (0 )  = ( ' t~)"(O).  

Let ~.,~nt denote  the subset o f  those (~, r/) in 6" n 
with ~'(0) = r/'(0) = 0. I f  a = [n, n2 . . . .  ] let S,,cnt 
denote those (~, r/) in 6e,,cn t with p(~, r/) = a. No te  
that (a), (b) and (c) imply r / (0)<  ¢(r / (0))< ~(0) 
and condit ion (e) is redundant  when n = 1. 

Condit ions (a)--(c) permit  us to associate a ho- 
m e o m o r p h i s m f = f ~ , ,  on the unit  circle with each 
pair  (~, r / )ere . .  Define f = ~ on [r/(0), 0] and f =  r/ 
on [0,¢(0)] and associate the unit interval 
[~/(0),~(0)] with the circle by identifying end 
points. Fig. 3 illustrates our  construction.  A rota- 
tion number  p(~,  ~l) = P ( f )  can be de fned  for f i n  
the usual way. Condit ions (d)-(e) ensure that  
n < 1/p ( f )  < n + 1. Let  f ie  be the space o f  homeo-  
morphisms obtained from S,". in this manner .  

N o w  define a mapping T, on S~. by 

T.(¢, ,t) = (=~"-'n= % =~"-'n~= - ' ) .  (3.4) 

The scale factor = = l / (~"-lr / (0)  - ¢"r/(0)) obeys 
< -  1 by (d)-(e). Note  that  the composi t ions 

involved are all well defined. This is not  the case if 
and r /are  interchanged in the r ight-hand side o f  

(3.4). It is easy to verify that  condit ions (a)-(c) and 
(f)-(g) are preserved by T.. Condi t ion (f) restricts 
us to cubic critical points and condit ion (g) elimi- 
nates an uninteresting marginal  direction at the 
fixed point  (see section 4) and is satisfied by all 
those (~, r/) which came from analytic circle map-  

pings since they commute.  
The analytic diffeomorphisms and cubic critical 

maps f are embedded in our  space 6 e as follows: 

with f we associate the pair  (~, r / ) =  ( f , f -  1). 
Let 7~, be the mapping induced by T, on fie.  The 

action of  :r, is most  conveniently illustrated for the 
case n = 1 (fig. 4). I f  f = f ¢ , ~ f i  = f i l ,  then let 
f ( 0  ÷) = r/(0) and f ( 0 - )  = ~(0) and define 

f2,,  on I f (0+) ,  01, 
g = on [0 , f2(0-) ] .  

Then  ~ l f =  ~g~-l  where = = 1 / ( f ( O + ) - - f 2 ( O - ) ) .  
Returning to the case o f  arbi t rary  n it may  be 

,~(0) 

f 
c 

,(0) 

Fig. 3. Construction of a circle homeomorphism from a pair of 
analytic functions (~, t/) satisfying conditions (3.3). The func- 
tions actually graphed correspond to the fixed point of T t and 
satisfy P(fc~) = ao" 

f 

f(o +) o f2(o-I f(o-) 

~f 

¢(o) 

g 

f(O +) 0 f~'(O-) 

afZ(O -) 0 af(O+) 

Fig. 4. Illustration of the action of T 1 on f .  On the first line f 
on [f2(0-),f(0-)) is iterated to give g defined on a subinterval 
of [0, 1). A rescaling by ~t < - 1 restores this interval to unit 
length. 
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shown that i f f  =f~,. then ~ ( f )  is given by 

( f l t f q k f l - t  ' i l k ( f  q, +qk- I)fl-k), 

where fl is the geometric mean of  the first k scalings 

3.2. Behaviour of the rotation number under T 

From this construction it may also be shown 
that P(T1f) = (1/p(f)) - 1. Divide the domain of  
f i n t o  three regions/1 = [f(0+),  0), 12 = [0,f2(0-)), 
and I3=[f2(O-),f(O-)) then f(I~)=I3 and 
f(I3) =/1 O 12. Consider the orbit under f of  any 
point x that avoids 0. The fraction of  points on this 
orbit that fall in 11, and thus in /3, is precisely 
1 - p ( f ) .  But from an orbit o f f  we can construct 
one for g by eliminating all points in/3. Thus the 
map 7~(f) has a fraction of  (1 - p ( f ) ) / p ( f )  posi- 
tive elements on its orbit. 

Q.E.D. 
The same argument effectively applies to arbi- 

trary T~ acting on 6e.  

Lemma 3.1. If  p (~ , r / )=  1/(n + l / ( n 2 + ' " ) )  then 
p(Tn(~, ~/)) = (1/p(~, r/)) - n. 

Proof. Let I 0 = [0, ~(0)], /t = [~1-11~(0), ~1~(0)], 
l = 1 . . . . .  n, Ji = [¢~- b/(0), 0] and ,/2 = [0, ¢~r/(0)]. 
Choose x in J2 such that f k ( x ) #  0 for all k i> 0 
( f= f¢ . , )  and let m(k) denote the number of  ele- 
ments of  x , f (x )  . . . . .  f k - l ( x )  which fall into 10. 
Then p ( f )  = limk~o m(k)/k. 

Now choose a sequence ki such that k~ < k~+~ 
andfk'(x)eJl . Le ty  = ctx, 1/~ = ~-Ir /(O) - ~r/(O). 
Then there are precisely m(k3 elements of  the 
sequence x , f (x )  . . . . .  f k ' - l (x )  in I0 and hence the 
same number in I~, / =  l . . . . .  n. Thus there are 
k~ = nm(k~) in J1. Consequently, k~ = nm(k~) points 
of  the sequence y, (Tf)y . . . . .  (~f)r~k,)-I(y) fall in 
Io(Tf) which proves that 

p(Tf)  = lim (ki - nm(ki))/m(kt) 
ki~oo 

1 
- p ( f )  n. Q.E.D. 

We note the following three immediate cor- 
ollaries of  the Lemma for the case n = 1 and 
a = tr G = [1, 1 . . . . .  ] although there are obvious ana- 
logues for other periodic continued fractions: 

(a) p ( f )  = q,_l/q, implies p(Tf)  = q,-Jqi-1; 

(b) p ( f )  = tr C if and only if p (/~f) = a~ ; (3.5) 

(c) if Tk(~, ~ / ) ~ l  for all k />  0,  
then p(f~,,) = aG. 

The last statement follows from the transformation 
properties of  p and the observation that (~, r/)ESe 1 
implies 1 < p-I(¢,  r/) < 2. 

From the above lemma, it only makes sense to 
search for a fixed point of  our renormalisation 
group transformation when the continued fraction 
of  p ( f )  is eventually periodic. Any integers that 
precede the periodic part may be removed by 
application of  appropriate Tn. Only the tail of  the 
continued fraction is relevant in determining which 
nontrivial fixed point might exist. A number of  
remarks about the application of  Tn to maps with 
nonperiodic winding numbers are reserved for 
section 7. 

3.3. Fixed points of T 

If (nl, n2 . . . . .  ns) are the integers in one period of  
the continued fraction of  a = p( f ) ,  then one 
should look for a fixed point in 5en~ of  the renor- 
malisation transformation T defined by (3.2). Ac- 

tually T must possess a weak-coupling fixed point 
corresponding to rotation by a and we believe a 
second nontrivial fixed point on Sea.on t (which we 
call the strong-coupling fixed point) corresponding 
to the onset of  chaos at the breakdown of  an 
invariant torus with rotation number a. The 
strong-coupling fixed point and associated eigen- 
values are found numerically in the following 
section for two cases nt ~ I and n; - 2. 

Our picture is as follows (fig. 5): The strong- 
coupling fixed point (¢ . ,  r/.) (p (¢ . ,  ~/.) = a), has 
a two-dimensional unstable manifold (correspond- 
ing to two eigenvalues 6 and y of  the linearization 
of  T at (~. ,~/ .))  which contains the curve 
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SCRIT 

\ ' /~..~t ', I \ I v~--q I / \ ~ 2-PARAMETER 

/ /" -/ ,,,,o., 
p =Pn+l/qn+ I p=cr p :pn /q  n 

Fig. 5. Schematic representation of the global structure of the 
dynamics of T in ,~' showing (a) both fixed points, (b) the 
universal family corresponding to the unstable manifold of  the 
cubic fixed point, (c) a 2-parameter family of analytic mappings 
of the circle which is transverse to the stable manifold of the 
cubic fixed point (e.g., 0 + t o -  ( a /2n)s in  2n0), and (d) the 
relationship between the regions p = const, for the universal 
and transversal families. 

= Qtt/~- 1 , 

= ~r/atr/ct-2, (3.6) 

(0) + l 
0C~-- 

~(o) 

Notice that this is a single equation in a single 
unknown ~/. 

Lemma 3.2. Let (¢, ,  r/,) be a fixed point of T in 
~'°crit. Then ~ ,  and r/, are analytic functions of x 3. 

Proof. We show that if r /=  r/, the p th  derivative 
q~")(0) # 0 implies that p is a multiple of 3. A 
similar result holds if ~ = ~, .  Let g ( x ) - q ( ~ x ) .  

Then by (3.6), 

g,x, (3.7) 

{R~, 0 < 2 < 1} in its closure. The eigenvalue 6 may 
be found by remaining on 5cent and asking how 
maps with p(~, q ) ~  a move away from the fixed 
point as T is iterated. Thus, using (3.5a), it tells 
how those f with p ( f )  = a are approximated by f 
with p ( f ) = p , / q , .  To determine 7 we can fix 
p (~, q) = a and examine the flow away from 5ecn t. 
The unstable manifold of (~ , ,  r/,) defines a univer- 
sal 2-parameter family of circle maps. 

The stable manifold of ( ~ , , q , )  is of co- 
dimension two and consists of all elements of 5gent 
with rotation number a. The structure of a 
2-parameter family of analytic maps (such as 
f~,,a(~b) = tp + ~o - (a/2n) sin(2n~b)) which inter- 
sects the stable manifold transversely can be re- 
lated to the universal family by applying T a 
sufficient number of times. The unstable manifold 
of the weak-coupling fixed point is the curve 
{R~, 0 < 2 < 1} and the stable manifold consists of 
all non-critical mappings (i.e., diffeomorphisms) 
with rotation number tr. 

Clearly, it is easy to write down the fixed point 
equation T(~, r/) = (~, q). When tr = trc so that 
T = TI it is 

Differentiating (3.7) three times and putting x = 0 
one obtains 

g'(g(o)) = ~5. (3.8) 

Now assume that the derivative g(P)(0) = 0 when- 
ever p ~< 3n and p is not a multiple of 3. Let q be 
such that 3n < q < 3(n + 1). Differentiating (3.7) q 
times and setting x = 0 one obtains 

ct 2q - lg (q)(0) = g'(g (0))g (q)(0). (3.9) 

Therefore by (3.8) and (3.9), g(q)(o)= 0. Q.E.D. 

A similar result holds for the other a with 
periodic continued fractions. 

Since the stable manifold of (~,,  r/,) contains an 
analytic cubic critical map, the functions ¢ ,  and q ,  
commute. A direct proof of this commutation 
using (3.6) and lemma 3.2 has been given [15] for 
the case a = ac. Using ~ , q ,  = q , ~ ,  one directly 
obtains (2.10b). 

3.4. Existence of  a conjugacy to a rotation 

The existence of a strong coupling fixed point 
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and the associated stable manifold has important 
implications for the orbits of cubic critical maps 
with the prescribed rotation number. We state our 
Theorem only for a = ¢r6 though the construction 
obviously generalizes to other winding numbers 
along the lines of lemma 3.1. The extension to 
general periodic a requires a lower bound on the 
slope of the fixed point over an interval, which we 
have only in a compelling way for tr = aG- 

Theorem 3.1. Let f be in the stable manifold of 
f ,  = (~,,  q , )  with p ( f )  = a~ = a then it is conju- 
gate to a rotation. 

Proof. If  f is not conjugate to the rotation R, there 
is a nontrivial closed interval I such t h a t f " l  n I = 0 
for all n >/0 [7]. We call such intervals Denjoy 
intervals. Assume that f possesses such an interval 
and let I ( f )  denote the length of a longest such 
interval. Note that s incefis  in the stable manifold, 
the origin cannot be in a Denjoy interval because 
as n ~oo ,  fq"(0) approaches 0 from both sides. 
Consequently, f (0)  and f2(0) are not in a Denjoy 
interval. Let I be a Denjoy interval of maximal 
length. Then I must be contained in one of the 
three open intervals on the circle with end-points 
0, i f (0)  and f(0).  I f f  is sufficiently close to f ,  it 
cannot be in (f2(0),f(0)) because f /  is also a 
Denjoy interval which is longer than I because the 
slope o f f ,  is greater than ~ on (f~,(0),f,(0)). But 
then we have that ~I is a Denjoy interval for :rf 
This shows that for all f i n  some neighbourhood of 

f , ,  

l('F(f)) > 0.9l~,lI(f). 

4. The fixed point and its eigenvalues 

In this section we discuss the eigenvalues and 
eigenvectors of the linearisation of the renor- 
malisation transformation T at the two fixed 
points, and the computation of  the strong-coupling 
fixed point. For clarity( we restrict the discussion to 
the case a = tr C = ( x / 5 -  1)/2 so that T = T I. All of  
the ideas presented here generalise immediately to 
arbitrary rotation numbers with periodic con- 
tinued fractions. 

4.1. Formal properties of eigenvalues of T 

Let ,7,, = (~,,  q , )  denote the strong-coupling 
fixed point of T. For an appropriate choice of the 
space of analytic pairs (~, F/) the derivative of T at 
S , ,  d T , =  d T ( ~ , )  is a compact operator [16]. 
Consequently, its spectrum consists of a countable 
set of eigenvalues with no accumulation point 
different from zero. There is no continuous spec- 
trum. 

When analyzing the spectrum of d T ,  it is con- 
venient to replace T, which involves a scaling 
factor which depends upon (~,q) by a trans- 
formation involving only a constant scaling factor. 
The price is the introduction of one eigenvalue 
equal to 1 and some change in the eigenfunctions. 
To do this we decompose T as 

T = P C ,  (4.1) 

where, if fie., = ~ (0) - t/(0), 

, t ) ( x )  = (4.2) 

This leads to a contradiction since on iteration we 
get that I(~"(f))  is greater than one for n 
sufficiently large. 

The result now follows because, if f is in the 
stable manifold and f has a Denjoy interval, then 
by similar arguments 2P"(f) has a Denjoy interval 
and for large n, ~" ( f )  will be in the above neigh- 
bourhood. 

and 

= 

where 

1 
~* = q,(O) - ~ ,¢ , (0)"  
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Since ~ ,  is a fixed point for T and C we have 
P ( E , )  = ~ , .  Also, p2 = p and 

P C  = P C P .  (4.3) 

Lemma 4.2. The eigenvalues 2 # 1 of  d T , =  
d T ( S , )  and d C ,  = d C ( S , )  are identical together 
with their multiplicities. Let Z , = ( x ~ ' , ( x ) -  
~ , ( x ) ,  xrl ' , (x)  - ~/,(x)), then it is an eigenvector of  
d C ,  with eigenvalue 1 but d T , Z ,  = 0. 

Remark.  We will demonstrate numerically that 1 is 
not in the spectrum of d T ,  so the restriction to 
2 ~ 1 in lemma 4.2 is superfluous. 

Proof. The spectrum of d P , =  dP(~*)  consists of  
0 and 1. The eigenvalue 0 has multiplicity one since 
its eigenvector Z = (X, Y) satisfies 

z = - ( x ( o )  - Y(O))Z,. 

We establish the second assertion of  the lemma 
first. Observe that 

d 
Z ,  = ~ s , ( ¢ , ,  ~/ , )  , = 0 '  

eigenvalues of d T ,  and d C ,  which will be useful 
when we come to interpret the numerical results. 
Before proceeding we note the following three 
equalities each of  which follows by differentiating 
the fixed point equations (and the two additional 
equations obtained by composing the two sides of  
~ ,  = T(S,)) ,  three times and utilising 
~:~(0) = ~ ~,(0) = 0: 

~,(r/,(0)) = 0t 2, (4.4) 

~/~,(~,(0)) = 0t4, (4.5) 

t/~,(r/,~,(0)) = ~t 2 . (4.6) 

First we consider which eigenvalues can corre- 
spond to eigenvectors which are not tangent to the 
subspace of  commuting functions ~r/= ~/~. 

Lemma 4.3. If  (X, Y) is an eigenvector of  d C ,  
tangent to (~ r / -  r/~)(k)(0)= 0 for k < v and not 
tangent to (~ r / -  r/~)(')(0)= 0 then the associated 
eigenvalue is -0t  3-v. 

Proof. Let F(¢, ~/) = ~ r / -  r/¢. Then if E ,  = 
(¢ , , r / , )  a simple calculation using ¢ , r / ,  = r / ,~ ,  
shows that 

where s,(¢, r/)(x) = (1 + t)- l(~,  r/)((1 + t )x ) .  Then d(F o C) (~ , ) .  (X, Y ) ( x )  

Cs, = s, and Ts, = Tso . = - col ",(ri,~,(x/~t))" dF(~ , ) "  (X, Y)(x /*t ) .  

Differentiating then implies d C , Z , = Z ,  and 
d T , Z ,  = 0. 

Now if Z is an eigenvector of  d C ,  with eigen- 
value 2; then by (4.3) d P , Z  is an eigenvector of  
d T ,  and if d P , Z  # O, 2 is an eigenvalue. Con- 
versely, if Z :~ Z ,  is an eigenvector of  d T ,  then so 
is d P , Z  and by (4.3) 

d C , Z  = Z + c Z ,  . 

But setting Z = 2, + c Z , / ( 1 -  2) proves 2 is an 
eigenvalue of  dC , .  

Q.E.D. 
We now prove a number of  results about  the 

But by (4.6) r/~(t/,~,(0)) = ~2 so the result follows 
by differentiating both sides v times at 0. 

Q.E.D. 
Note that lemma 4.3 tells us that any eigenvector 

whose eigenvalue is not a power of  ~ is tangent to 
the commuting subspace. 

We now consider eigenvectors which are not 
analytic functions of  x 3. 

L e m m a  4.4. If  (X, Y) is an eigenvector of  d C ,  on 
dT , ,  then either X and Y are analytic functions of  
x 3 or the associated eigenvalue is 2 = + ~3-p where 
p is the least integer which is not a multiple of  3 

such that the pth-derivative X~*)(0)#0. In the 
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latter case the sign of 2 is ( - )P  +1sign 
(x~p~(o). Y(~(o)). 

Proof. By the lemma 4.2 we need only prove this 
for C. Let (X, Y) be an eigenvector which is not a 
function of x 3 and let p be as above. If  2 is the 
eigenvalue, 

(X, Y) is tangent to ( ~ / - t / ~ ) ' ( O ) =  0 with 

d C , .  (X, Y)=  2(X, Y) 

we obtain 

Y'(0)[~ ~s(t/,(O)) -- 2] = 0 

2X(x)  = a Y(x/~t), (4.7a) 

,~ r(x)  = ~,/~,(¢ , ( x / a ) ) .  X(x/~) + ~ r(~, (x /~)) .  

(4.7b) 

In (4.7b) the terms a Y ( ~ , ( x / ~ ) )  and ~rl ' (~ , (x /a) )  
are analytic functions of x 3 since ~ ,  is. Con- 
sequently, we deduce that 

Y(r)(O) = a '  -Pt/~,(~,(O))X(P)(O). (4.8) 

Thus differentiating (4.7a) p times at 0 and substi- 
tuting in (4.8) we obtain 

, l~= , t ; , (¢ , (0) )~-~p.  

and Y'(0) # 0. Therefore 2 = ~,(r/,(0)) = ,t 2. 
Q.E.D. 

Finally, we note that if we let 

s,(¢, tl) = (4 + ttr) -1 o (~, 7)  o (4 + ttr),  

then 

d 
Z(o) = ~ s , ( ~ , ,  ~/,) = ( ~ o  - o ¢ , ,  r / , ~  - or / , )  

is an eigenvector of  dC(~ , ,  r/,) if 

oto(x /a ) =_ 2o(x) (4.9) 

But r/~(~,(0))= ct' by (4.5). Q.E.D. 

Of particular interest is the amount  by which a 
small linear term added to the fixed point is 
amplified by iteration of  the renormalisation trans- 
formation. This describes the "cross-over" from 
critical maps to diffeomorphisms. Later, we will 
obtain information about the structure of  conju- 
gacies from our knowledge of  this "cross-over". 

and then the associated eigenvalue is 2. In particu- 
lar, the coordinate changes corresponding to 
a ( x )  = x" give eigenvectors of  dC with eigenvalue 
2 = a 1- n. The only eigenvalues 2 with 121 t> 1 pro- 
duced in this way correspond to n = 0 and 1, i.e., 
to a shift of  origin and a change of  scale. Recall 
that the eigenvector for the latter lies in the kernel 
of d P ,  and therefore yields an eigenvalue of  0 for 
d T ,  (lemma 4.2). 

L e m m a  4.5. I f  (X, Y) is an eigenvector of  d C ,  or 
d T ,  tangent to ( ¢ r / -  ~ / ) ' (0 )=  0 and such that 
X(0) = Y(0) but X ' (0 )#  0 or Y'(0)# 0 then the 
associated eigenvalue is ? = a 2 and sign(X'(0))= 
sign(Y'(0)). 

Remark.  We will later give evidence for the exis- 
tence of  such an eigenvector. 

Proof. By lemma 4.4, ? = + a  2. By combining the 
linear equation obtained from the condition that 

4.2. Calculation o f  f i xed  points 

We now describe how the strong-coupling fixed 
point (~ , , r / , )  of  our renormalisation trans- 
formation T was obtained numerically. We mainly 
deal here with the case where T = T~ so that 
a = tro. It will be dear  how to generalise the 
procedure so as to treat o = p ( f )  with an arbitrary 
periodic continued fraction. 

Because of the nonlinear nature of  5" and Sea.it it 
is numerically convenient to relax the conditions 
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3.3(b) and (g), extend T to the bigger space and 
then remove those eigenfunctions which violate 
these conditions. In lemma 3.2 we proved that the 
strong coupling fixed point (~, ,  q , )  is an analytic 
function of  x 3 if it exists. We therefore only 
consider the action of  T on the subspace consisting 
of  those (~, q) which are analytic functions of  x 3. 
This subspace is invariant under T. We approxi- 
mate (~, r/) by 

N - I  
~ ( x ) =  ~ a . x  3", 

n=0 

N--1 

r / (x )=  ~ b . x  3". 
n=0 

For a fixed N we can define on the space R 2u of  
coefficients ai, bi an approximation, /~, to T by 
means of  the following equations: 

N - I  

a . (x , . )  . otrl (x ,dot )  , (4.10a) E R 3n__ R 

n=0 

N--I 
E bn(xL)3n = Otrl~ (xL/ot) '  (4. lOb) 

n=O 

where 

l <<. m <<. N , 

R = ( m  -- l~ 1/3 
x~ \ N - l ]  ar/(~(O)), 

L = ( m  -- l~ 1/3 
x.  \-ff-2-i_ U 

and 

-1 = r/(0) -- T/¢ (0). (4.10c) 

The idea of  distributing the matching points x~, x~ 
in this way is due to Feigenbaum [11]. Now both 

and the righthand side of  (4.10b) are nonlinear 
functions of  the coefficients a;, bt from the last 
approximation to (~, ~/). Inversion of  the coefficient 
matrix formed by the powers of x L, x R on the 

left-hand side of  (4.10) yields the new (ae, bi) and 
completes the definition of  T. 

Newton's method may then be applied to find a 
fixed point of  this nonlinear system. With 14-figure 
numerical accuracy the convergence ceased to im- 
prove for N beyond 11 and ultimately Newton's 
method would not converge. For  N = 11 however 
the fixed point equation is satisfied to within 10 -7 
over the entire interval. The series for (¢, r/) how- 
ever does not appear to converge over the entire 
interval since the contribution of  the last term at 
the boundary is only a factor of  10 smaller than the 
first few terms. We suspect that there are singu- 
larities of (~, r/) in the complex plane that deter- 
mine the radius of convergence of  a Taylor series 
and some other expansion point than 0 should be 
used [21]. However, since we can accurately ap- 
proximate a solution of the fixed point equations 
in the space (ai, bi) we can also compute the 
relevant eigenvalues of  d T ,  with comparable accu- 
racy. 

The differentiation d T ( a , ,  b , )  was done numer- 
ically. (It is as easy to compute d C(a , ,  b , )  by 
omitting eq. (4.10c) and fixing ~ at its fixed point 
value.) For  N = 11 we find three eigenvalues 2 with 

1; 

6 = -2 .83362 __+ 2 x 10 -s = - - O ' G  2'16444 , 

21 = 2.1395796, 

22 = - 0.99997, 

while from the fixed point calculation 

= - 1.288575 _+ 15 x 10 -6 = - - O r C j  0"5268718 

The error bars on 0e and 6 are somewhat subjective 
and based on comparison between the approxi- 

mations for various N. 
We believe that 21 and 22 actually equal _~3 

(=2.139583) and - 1 .  These are expected by 
lemma 4.3 since we have not imposed the condi- 
tions (~ / - r /¢) (v) (0)= 0 for v = 0, 3 on the eigen- 
vectors and indeed we find numerically that the 
eigenvectors associated with 21,2 violate their re- 
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spective conditions by an amount  of  order 1. The 
agreement between 21.2 and _~3, _ 1 is an addi- 
tional check on the quality of  our numerics. We 
also infer (and verified) that since 6 is not a power 
of  ~, lemma 4.3 implies it must be tangent to 
~,1 (x) - ,1~ (x). 

The leading irrelevant eigenvalue (in S~ t )  is 
determined to far less accuracy and we estimate 

1231 = 0.52 ± 0.02. 

We therefore conclude this: The spectrum of  
dT(~ , ,  r/,) restricted to the tangent space of  '-'~¢tit 
consists of  an eigenvalue 6 = 2.83362 and a count- 
able number of  eigenvalues 2 such that 121 < 0.54. 

Let R denote the set of  those (~, r/) in '~crit such 
that p(~, ~/)= am. It is clear that the stable man- 
ifold of  (~, ,  r/,) in ~cri t  is contained in R. We shall 
assume that near (¢ , ,  r/,), R is contained in the 
stable manifold. (Merely knowing the eigenvalue 
spectrum of  dT  is not sufficient to exclude the 
possibility that there are small regions of  the R 
manifold close to the fixed point but not in the 
stable manifold. This is known not to occur for 
maps with an E-singularity for E/> 0 small. 

Then we deduce that the eigenspace associated 
with 6 is transverse to R. This is because R is of  
co-dimension one in Se~t and the compact oper- 
ator d T ,  leaves invariant its tangent space. Con- 
sequently, there is a one-dimensional subspace 
complementary to the tangent space of  R which is 
invariant under dT , .  Clearly, this must be the 
eigenspace corresponding to 3. 

With some mild assumptions on the nature of  
the sets p =Pn/qn (see ref. 16) it now follows (by an 
argument similar to that given by Collet, Eckmann 
and Lanford [17]) that if (¢~, r/,) is a one-parameter 
family in '-~crit which is transverse to R and if/~k is 
such that 0 is a periodic point with rotation 
number Pk/qk of  the circle map defined by (~k, r/~k) 
then 

We now argue that d T ,  = dT(~ , ,  r/,) has one 
other eigenvector ? which is transverse to 6ecn t, 
tangent to p = a6 and has an eigenvalue = ~2. We 
know from general principles [22] and find from 
numerical experiments that (~, ,  r/,) is not attrac- 
ting under T restricted to p = aG. For  example, we 
find if fa(O) = 0 + tO,-- (a/2n) sin 27r0 with to ,  
chosen so that p ( f a )=  aG, then T"(fl_(,/~z,)) con- 
verges as n--,oo to a function near (~, ,~/ , )  (see 
section 5). Also by the results described above we 
know that d T ,  has no eigenvalue 2 with 121 = 1. 
Thus d T ,  must have an eigenvector transverse to 
Ae~t in ~e with an eigenvalue ~, such that > 1. By 
lemma 4.4 one must then have that ? = ± ~3-p 
where p = 1, 2. The case p = 2 is not possible, for 
then the eigenvector is not tangent to 
~"(0) = 0 = r/"(0). Thus we deduce that p = 1. 
Then it follows from lemma 4.5 that ? = ~2. 

The same numericalprocedures have been im- 
plemented for the case where the rotation number 
a = (x/~ - 1) = [2, 2, 2 . . . .  ]. Again, in the space of  
functions analytic in x 3, we obtain for N = 8 three 

eigenvalues 2 with 12l > 1: 

6 = -6 .79924 ± 2 x 10 -5 = - o - ° 1 7 4 8 ° ,  

21 = 3.99563, 

22 = -0 .9999989,  

and from the fixed point 

= 1.586822 ± 2 × 10 -6 =6 -o .5~8~  

we again infer that 21 = ~3 = 3.99562 and '~2 ~--" - -  1. 
By relaxing condition 3.3(f), a number of  numer- 

ical experiments were done in which TI was applied 
to a cubic critical map with the inflection point not 
at the origin. No fixed point was found and the 
position of  the inflection point moved randomly 
around the unit interval. 

!im 6J(/~j- lim #k) (4.11) 
./~oo k~ot~ 

exists and is non-zero. 

4.3. Eigenvalues at the weak-coupling fixed point 

The weak-coupling fixed point for T = T1 is 
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given by 

(~,, ~ , ) ( x )  = ( x  + ~ ,  x - cry) ,  

and the associated value of  ~t is - 1/ac. For  the rest 
of  this section we will work with C rather than T. 
If  (X, Y) is an eigenvector of  d C ,  then 

~ Y (x  ) = ~ Y (~ , ( x  /~ )) + (~2/;O Y(x  / ~ )  . 

number trc are conjugate to R, o. We now consider 
in detail the structure of  the homeomorphism h 
which conjugates a cubic critical map f with irra- 
tional rotation number tr to the rotation Ro, i.e., 
h-~fh = R,. Note that if h is known, then time- 
series can be reconstructed because fro(X)= 
h(h-tx + ma). It will be important to extend the 
notion of such a conjugacy to deal with the 
function pairs of our renormalisation group. 

= X ~  ~ o a~x we find that Therefore, if we take Y(x) ~ 

2 = ~-N o r  - 0 ~  2 - N  . 

There are thus four eigenvalues 2 of d C ,  with 
121 >/1 namely +_ 1, - , t  and - c t  2. The associated 

eigenvectors are 

e _ l = ( _ ½ 0 ~ - l _ 2 0 ~ - l x _ o ~ - l x  2, loL-2 

+ 2~t-lx + x2), 

el = (~t, 1), 

e_~2 = ( - -~- I ,  1), 

and 

e_ = ( - - 0 t - l - - t x - l x ,  0 ~ - l + x ) .  

The eigenvector el is an infinitesimal scale trans- 
form and is not an eigenvector of d T , .  Also e_~ 
and e_l respectively are not tangent to 
~r/(0) = ~/¢(0) and ( ~ r / -  r/~)'(0) = 0. 

Thus the only eigenvalue 2 of  d T ,  with 121 > 1 
is ~ = -0 t  2 = - 1~try. The eigenvector o f d T ,  cor- 
responding to e_,2 is tangent to the curve 
/z--,(¢, + #, r / ,  +/~) which is the unstable man- 

ifold of  the weak coupling fixed point. 

5. Coordinate changes and conjugacies 

5.1. Definitions and basic ideas 

In 3.4 we showed that all functions on the stable 
manifold of  the cubic critical map with rotation 

Definition. Let (¢, ~/)e~n be such that p(~, ~/) = a. 
A conjugating homeomorphism of  (~, r/) is a homeo- 
morphism h: (tr - 1, a id(r / (0) ,  ~(0)] such that 

h(0) = 0 and 

~h(x)=h(x +a) ,  t r - l < x ~ < 0 ,  

rlh(x)=h(x + t r - 1 ) ,  0 < x ~ < t r .  
(5.1) 

To be consistent with (5.1) we define R, on 

(a - 1, tr) by 

~x+ a, a - l < x ~ < 0 ,  
R~(x)=[x + a - 1 ,  O<x<~a. 

Note that if f~,, is the associated circle homeo- 
morphism then h conjugates f~., to the rotation R, 
in the usual sense. If  h exists it is unique. When we 
wish to stress the dependence of  h upon (~, r/) or 
f = f ¢ . ,  we will write it h(~,~) or hr. 

The conjugating homeomorphism transforms 
under the renormalisation transformation in a 
particularly simple way. If ~ =(~,r/)¢S~n, a 
straightforward calculation gives 

h ro(z)(O) = ~h~(-  ~rO), (5.2) 

where as before • = 1/(~n-lr /(O)- ~nr/(0)). 
Fig. 6 shows h for p = aG and the critical map 

(2.7). The curve is nowhere continuously 
differentiable since by its definition when f has a 
critical point at the origin, h must have zero 
derivative at tr G and/or an infinite derivative at 0. 
Numerically both singularities are present, and the 
action of  f then creates points of zero derivative at 
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fs(O) 

fs(fs(O}) 

h s 

fs(O)-I 

, /  

o 4 
0 

% 

Fig. 6. The conjugate homeomorphism h, for the sine map (5.4) 
with a = 1 and p = tro. Note  the points of infinite slope at 
0 = nag (mod 1), n ~< 0 and of  zero slope at na o (mod 1), n > 0. 
Under  the sealing (5.2), the region in the box may be inverted 
and expanded to fill the entire figure. Note by (5.2), the 
homeomorphism h ,  for the fixed point f ,  satisfies 
h . ( -  ( - ~ o ) " )  = = ~ - * / ( "  - 1). 

t ~  

" 1 -  i 

J • 

• " ° i 

l 
, S\, l 

0 
f;~s(OI - I 0 f2s(O) 

9 

Fig. 7. The first derivative of  the homeomorphism H,.z, l inking 
the sine map f~ (5.4) and a = ]  wi th the map 
fz,(0) = 0 + to' - a/8~(sin(2n0) + sin(6n0)) on the critical sur- 
face (a = 1). The winding number o f  both maps has a random 
bounded continued fraction, (2, 2, 1, ], 2, !, l ,  2, ], 1, 1, 1, 2, 
2, 2 . . . .  ) based on the binary expansion ofn .  The first derivative 
appears continuous but the second derivative is nowhere con- 
tinuous if it exists at  all. The corresponding graph for a periodic 
winding number  (e.g., trG) would be similar (conjecture A). 

nla - n 2, n, > 0 while f -~ does the same; creating 
singularities at nit)" - -  n2, nl ~< 0. 

If  ~" = (~,r/) and ~ ' =  (~', r/') have conjugate 
homeomorphisms hz and hz, we denote hz o hF ~, by 
Hz,z,. Then Hzz,  is a homeomorphism linking = to 
~"" in particular if H = H~ .-,, 

=A,. 

By (5.2), 

H rgz), r.(z,)(O) = ~ (~)Hz,z ,(a (S  ') - 10 ). (5.3) 

I f f  = f z  and g = f z ,  then we shall often denote/-/z,z, 
by Hf~. We shall be particularly interested in the 
case where ~ ' =  T.(~) and then we call H the 
incremental homeomorphism. 

Clearly if f is a cubic critical map and g a 
diffeomorphism with p ( g ) =  p ( f )  then HI~, if it 
exists, is nowhere differentiable because f - ~  is not 
differentiable. On the other hand, we have numer- 
ical evidence that there is a continuously 

differentiable homeomorphism conjugating two 
cubic critical maps whose rotation number has 
bounded entries in its continued fraction. The first 
derivative (fig. 7) was computed from a cubic spline 
fit to the numerical data and appears well-resolved 
and continuous. However, the same numerics indi- 
cate that this conjugacy is not twice continuously 
differentiable and in addition its Fourier transform 
falls off as 1/n 2 over three decades. On this evi- 
dence we make the following conjecture. 

Conjecture A. Let f and g be generic critical maps 
of the circle with p ( f )  = p (g )  in Herman's set [13] 
A. Then there is a once continuously differentiable 
diffeomorphism H such that H - ~ f H  = g. 

As it stands this conjecture does not cover the 
circle homeomorphism f =f~,, obtained from our 
renormalisation group because this has discon- 
tinuities in its derivatives at 0 and f(0).  However, 
our numerical results indicated that it can be 
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1.3 i 

"1- 

0 .8  
T~ fo.~,(O)-I O T~ fo.5(O) 

8 

Fig. 8. First derivative of the homeomorphism linking the sine 
map for a = 0.5 (5.4) with T~ acting on the same map. The 
rotation number is tr o and the only singularity appears to be a 
jump discontinuity at the boundary. Three additional deriva- 
tives were shown to exist numerically as they must. 

t . 02  

c~ 
i 

I -  
,,.." 

-1- 

0 . 9 4  1 
Tf~ {O) - I  0 Tf~(O) 

Fig. 9. Periodic part of the homeomorphism linking the sine 
map, f, for a = 1 -ct-"  to Tt acting on the sine map, f ' ,  for 
a = 1 - ~t -(,+2), n. = 20.fand Ttf' are close and approximately 
equidistant to the critical surface, H would appear unchanged 
to the eye if we let n~oo. The first derivative of H is similar 
to fig. 7 except for a discontinuity at the boundary (conjecture 
B). 

extended with the following qualification: from 

(5.3) it is clear that the discontinuities introduced 
by T -- T~ force a discontinuity of  the first deriva- 
tive of  H¢z,¢g at Tg(0), but leave H with left and 
right derivatives at that point. With this 
qualification, figs. 8 and 9 provide evidence that H 

remains smooth over the range of  T. 
Let f~ be the map in the family 

f~,a(0) = 0 + co - (a/2rt) sin 2n0 (5.4) 

which is such that p (fa,o,(a))= trG. (We shall often 
refer to eq. (5.4) as the sine map.) Fig. 8 shows the 

first derivative of  the iterated homeomorphism 
H/,r~i when f=f~/2. The numerical evidence indi- 
cates that it has at least four continuous deriva- 
tives, except for the first derivative discontinuity at 

the boundary.  
Fig. 9 is visually indistinguishable from the 

incremental homeomorphism Hf= H/,rf for the 
cubic critical map  f = f ~ .  This homeomorphism 
remains continuously differentiable, but the second 
derivative has singularities (apparently at images 
of  the critical point 0). 

Note that to study the smoothness of  the maps 
Hz~ it suffices to consider the case where g is an 
analytic map. This is because if the only discon- 
tinuities in the derivatives of  H,~ and Hz~ are at 
g(0) then He~: = He~ o H/~ I is smooth except at f (0) :  

thus instead of  Hej we can study He~ and Hi~ and 

choose g to be analytic. Let (~, ~])~:~crit and sup- 
pose that (4, r/) can be conjugated to a cubic 
critical map g, i.e., H -  14H = g and 

H-lrlH = g -  1 where H is continuously 
differentiable except at g(0) = y = x + 1 where 
one-sided derivatives exist. Then (H-lrl)'(O)= 
(H -14 )"(0), o1n)'(y)= (4n)'(x), which together 
imply 0 /4 )" (0 )=  (4r/)"(0). Since some degree of  
connectivity between (4, ~/) is necessary for H to 
have the observed smoothness, we conjecture 

4~/= ~/4 is in fact sufficient. 

Conjecture B. I f  ~t = (~l, rio and ~2 = (42, ~/2) a re  
in 6ecn t, 4i~i:----qi4i for i =  1,2 and p ( ~ t ) =  
P(~2) = aeA then the homeomorphism H = Hz~,.- 2 
exists and it and its inverse are once continuously 
differentiable except at the end-points qt(0) and 

4,(0). 

Note that the (4, ~/) such that 4~/= ~/4 are the 
only physically important  ones. 

Suppose now that f is an analytic 
diffeomorphism with p(f)eA. Then the conju- 
gating diffeomorphism exists and is analytic by 
Hermans '  theorem [7]. Consequently, we can use 
(5.2) to construct conjugating homeomorphisms 
for all the images of  ( f , f - 1 )  under the renor- 
malisation transformation. Clearly, by (5.2) this 
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conjugacy is analytic except at the boundary and 
has an inverse with this property. The incremental 
homeomorphism between any two images can then 

be factored through the simple rotations. One 
thereby established a stronger form of conjecture 
B for diffeomorphisms. 

The universal features in the transition we study 
should not depend upon the particular choice of  
coordinates used to describe the system, i.e., they 
should be invariant under smooth changes of  
coordinates. This is particularly relevant for ex- 
periments for there one usually has no control over 

the coordinate system in which data is presented. 
In this context we will invoke the conjectures of  
this section when we discuss the universal features 
of  an experimental spectrum. Because we allow 
arbitrary smooth coordinate changes, universal 
features must reflect some singular property of  the 

physical process. Precisely how to factor out the 
non-singular non-universal content from real ex- 
perimental data is discussed in section 6. 

For  the remainder of  this section we shall 
confine the discussion to maps with rotation num- 

ber p = tr C = (x/5 - 1)/2; the results apply mutatis 
mutandis to all rotation numbers with periodic 
continued fractions. 

Recall the nature of  the renormalisation trans- 
formation T near the strong-coupling fixed point 

f ,  = (~, ,  q , )  (section 3). The fixed points has a 
two-dimensional unstable manifold U and a co- 

dimension two stable manifold S~. One eigen- 
direction in U corresponds to the eigenvalue 6; the 

other is tangent to the curve Z of  (~, r/) in U with 
rotation number  tr C. The associated eigenvalue is 

= at 2 (see section 4). 

Now consider a one-parameter  family f~_, of  

maps which crosses S~¢nt transversally at E = 0 and 
such that p ( f ~ _ , ) =  ac. Then the numerical evi- 
dence is that the derivative homeomorphism conju- 

gating f~ _, to T~(f~ _q_,) is continuous in both x 
(boundaries excluded) and E as E ~ 0  (fig. 9). For  
E = 0 this amounts  to conjecture B. Furthermore,  
T"(f~ _,~_.) converges for fixed E to a point on Z. 
(Numerically, for n = 1 . . . .  ,6  and E = 0.05 the 
convergence is comparable to that on the critical 

surface ~ c r i t ' )  Thus for diffeomorphisms f and f ,  
one can decompose the conjugate homeomorphism 
into a "horizontal"  part  that conjugates f to a 
point on Z, and a universal "vertical" part  linking 
the latter to Roc. 

Let f , ,  a = 1 - E ,  be a one-parameter  family as 
above. Let ha conjugate f ,  to R~o. As a ~ l ,  h. 

develops structure on finer and finer length scales. 
The length scale as a function of  a can be estimated 
using our renormalisation transformation. It will 

take n ~ , ~ - l o g ( l -  a)/log(ct 2) iterations of  T to 
relate f ,  to a map  whose first derivative at the 
origin is of  order one. Since each application of  T~ 
expands the scale of  h, by tr~ ~, ha has structure on 

"° = (1 - a)" where all length scales down to aG 
s = - log(ac)/log(a 2). 

Finally, we pose the problem of  whether one can 
use Z to understand more about  the structure of  

the fixed point f , .  For  example, what can we learn 
by decomposing the conjugate homeomorphism 
hi, of  f ,  into a series of  incremental homeo- 
morphisms 

h : .  . . . .  o n : . . : . + , o H : . + , j . +  o . . .  

with f ,  e2", f ,+ l  = Tf,, f , ~ f ,  as n ~ - o o  and 
f ,~Ro~ as n ~ + oo? This seems quite in the spirit 
of  K.A.M. theory. Unfortunately,  the incremental 
homeomorphisms themselves become complicated 
near f ,  (fig. 10). 

I.OI 

¢b 
i A 

~ l . o c  

0 . 9  I 
u'(O)-I 0 u'(O) 

0 
Fig. i0. Periodic part of the in~emmltal homeomorphism 
linking pairs of maps (u, u') along the unstable manifold of the 
nonlinear fixed point for p = o o. We have approximated 
u, = lim,~oo T~(f a ffi ~ _,/,:,) by taking h = 5 and f to bo the sine 
map. The figure then compares u = u, to u" = ~,/,~ for E = ~-~2. 
As E--,0 the oscillations in H,~g increase in number without 
decreasing in relative amplitude. 
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6. Universal scaling structure of  spectra 

Perhaps the most striking feature of  the transi- 
tion we study is the Fourier spectrum. Fig. 1 1 
shows the power spectrum [f~(og)l 2 for a time series 
found by iterating the sine map  (5.4) with winding 
number equal to go. The low frequency peaks in 
the spectrum are universal and self-similar. For  
good winding numbers (i.e., in A) [13] with aperi- 
odic continued fractions the spectrum no longer is 
self-similar, but has structure on all time scales (fig. 
12). The low frequency behavior remains universal. 
More precisely, the fractional difference in the 
spectra for two different maps with the same 
winding number is proportional to 09 as o~ ~ 0  (fig. 

13). 

B 8 B, B o 

We have argued above and will further justify in 
section 8 that the universal features associated with 
those transitions involving the explosion of  an 
irrational torus are embodied in those of  cubic 
critical maps of  the circle. There are, however, 
some practical considerations involved in com- 
paring an experimental system with a circle map. 
This section begins with a discussion of these 
experimental issues. 

The rest of  the section analyzes the scaling and 
universality of  the spectrum. We prove a lemma 
bounding the low frequency spectrum for good 
winding numbers. We give numerical evidence for 
a conjecture about  the behavior of  the low fre- 
quency spectrum under coordinate changes. We 

use these results and the conjectures of  the previous 
section to explain the low frequency spectral uni- 
versality for all good winding numbers. We also 
use these results to show for winding numbers with 
periodic continued fractions that the low frequency 
spectrum is self-similar. We study this by reducing 
the scaling law for the spectrum of  the fixed point 

map to that of  a linear system. 

0.5 
to 

Fig. 11. Power spectrum of a time series (6.1) of the sine map 
with a = 1 and p = ao on a log-log plot. A normalisation factor 
of to 2 has been divided out of the power. The lines in each band 
Bj are in one to one correspondence and the associated complex 
amplitudes become universal for j--, oo. The principal peaks fall 
at ~o = a~. 

i 

O.OI 0.1 0 .5  
to 

Fig. 12. Power spectrum of the sine map at a = 1 as in fig. 11 
except now the rotation number is the one of fig. 7 and does 
not have a periodic continued fraction. The low frequency 
spectrum is universal but not self-similar. 

6.1. General  remarks  

In the quasi-periodic regime one chooses two 
base frequencies to~ and co 2, the Fourier peaks then 
lie at n09~ + m09 z, n, me2_. We claim that the univer- 
sal features of  the transition depend upon 
p = 09~/to 2. Now, there is some ambiguity in the 
choice of  the base frequencies; if q, r, s and t are 
integers with qt - rs = ___ 1, then one could equally 
well choose the frequencies qog~ + r(o2, sf, o] -a t- tO) 2 to 
label the peaks. Clearly, the universal properties of  

the transitions associated with p ' =  (qoh + ro~2)/ 

(S~Ol + toh) should be the same as for p. One can 
see this from our renormalisation group by util- 
ising the following result: 

L e m m a  6.1. Let the continued fraction expansion 
o f p  be [k,, k2 . . . .  ] and that o f p '  be [ll, 12 . . . .  ]. Then 
some tail ( k , , k , + l  . . . .  ) of  p equals a tail 
(lm,/m + ~ . . . .  ) of  p '  if and only if 
p" = (qp + r) /(sp + t)  for ]qt - rs[ = 1 all integers. 
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Proof. The property of "having the same tail" is 
clearly an equivalence relation; we shall write 

.c cr' if tr and a '  have the same tail. So also is the 
property of "being related by an integral linear 
fractional transformation of determinant _ 1"; 
compositions of  such transformations are given by 
the products of the corresponding matrices. We 
shall a - ~ a '  if tr' can be written as a ratio 
(qa + r)/(str + t) with Iq t  - rs I = 1 all integers. 

First, p .c ( - k ~ p  + l ) /(p + 0) = (kz, k3 . . . .  ); by 
induction if p .c' p '  then p ~ p'.  Conversely, sup- 
pose p .c p'.  It is easily shown that 
a ~ a -~ ~ a - n ~ - a  for ne7/under  both .c and 
.~. We shall use a sequence of  these transformation 
to construct a p* satisfying p '  ~ p* .c p. Starting 
with p * = p ' ,  we know p '~ '  p * - ~ p ;  Let 
p* = (q,p + r,)/(s,p + t,); if s, # 0, by subtracting 
the nearest integer to q,/s, from p* we may assume 
always that Iq.f < fs.l" Let P*+l = l ip,  minus the 
integer part; then Is, + ,] = Iq, I < [s,I After at most So 
steps s = 0 .  But then qt=+__l,  and we know 
p '  ~- p* = (_+p + r)/(Op ___ 1) ~ p. 

Q.E.D. 
In each application of  our RG transformation, 

one integer in the continued fraction expansion of  
the winding number is removed (lemma 3.1). The 
universal features depend only upon the tail of  the 
continued fraction for p; the initial integers are 
irrelevant. The above lemma demonstrates that 
this formal irrelevance is an experimental ambigu- 
ity; it is a consistency check for our theory. 

6.2. Scaling theory for  spectra 

The arguments in the section proceed as follows: 
1) Using the conjectures of  section 5 and conjec- 

ture C below we conclude for winding numbers in 
A [13] that the behaviour of  the low-frequency 
spectrum is independent of  the mapping, i.e., uni- 
versal. Thus for periodic winding numbers it 
suffices to consider how the spectrum of  the fixed 
point function scales. 

2) We show that for a certain piecewise-linear 
fixed point for a = ac the spectrum is self similar 
and scales as to as to ~0 .  

3) We then show using 2 and conjecture C, that 
the true fixed point f ,  for a = tr C satisfies the same 
scaling relation. 

Consider a Poincar6 map obtained from a cross- 
section of a flow on an attracting invariant torus. 
In the quasi-periodic regime if we adjust our units 
to make 092 = 1 then the experimental spectrum 

1 1 will have peaks at - ~ < t o = n a + m < ~  where 
tr = p ( f )  is the rotation number of the map and n 
and m are integers. Of course, experiments will 
measure only observables which are periodic func- 
tions of  the angular variable 0. 

We shall specifically consider the observable 
J~(O) - R"~(O). Its power spectrum Lf(to)[ z is given 
by 

1 L 1 

f ( t o )  = lim - ~ exp (2n i l t o ) ( f ' (O) -  Rt,(O)) (6.1) 
L ~  L/=0 

a form which is very convenient analytically. For 
numerical or experimental purposes it is best to 
approximate this by 

I q ~ '  exp(2rdlto)(ft(O ) _ Rt(0) ) 
q . t = o  

as this avoids problems with windowing, since q, tr 
is almost an integer. All of  our figures displaying 
spectra were calculated in this way. 

The spect rumf( to)  should not be confused with 
the Fourier transform ~:(n) of  x : ( O ) = h ( O ) - 0  
where h is the conjugate homeomorphism o f f ;  we 
now calculate their relationship. Using eq. (5.1) we 
know that f " ( O ) - R ~ ' ( O ) = x / ( m t r ) .  Thus if 
09 = na mod 1, 

1 L - I  

./'(09) = lim - ~ exp(2ninla)xf(hr)  
L~oc t I=0 
1 

= fexp(2~inO)zAO) dO (by unique ergodicity) 

0 

= • ( n ) .  (6.2) 

(We will consistently denote Fourier series by i) 
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Thus the Fourier spectrum of Z just reorders the 
peaks of f i n  increasing n. Let us consider in a little 
more detail how this occurs when a = aG SO as to 
see why it is possible that, although :~(n) is not 
universal as n--* or, f(og) is universal as co ~0 .  Let 
o9(n) = inf{Ina - m ] :  m~Z} denote the value of co 
corresponding to n. Then using the relation (for 

o = O'G), og(q,)= IqkuG- q,_ 11 (with the q, the Fi- 
bonacci numbers), we have that 

og(n) = calr o - s l ,  

where k = k(n), r < s are positive integers such 
that k is the largest integer such that n can be 
written in the form n = rq~ + sqk_ ~. In particular 
og(n)/> ~r~ +2, so we have that 

og(n )--+O.c~. k (n ) ~  ~ . 

Since one will see that a large k is required for the 
corresponding peak to be universal, f(og), o9--*0 is 
the object to study, and not :~(n), n ~ o v .  

The spectrum in fig. 12 has an envelope propor- 
tional to o9 as 09 ~ 0 .  For good winding numbers, 
this can be proven to be a strict upper bound by 
using the relationship (6.2) between ) rand  ;~. We 
begin with a definition and a lemma which will be 
useful again in proving the scaling laws. 

Definition. The total variation of a function F on 
an interval (a, b) is 

N 

sup ~ IF(x,) - F(xi_ 1)1, (6.3) 
i=1 

where the supremum is taken over all N and over 
all choices {xi} such that a = x 0 < x l < " "  < 

X N ~ - - b .  

If F is differentiable, then the total variation 

equals 

b 

f lF'(x )l dx . 
a 

Lemma 6.2. Let F be a periodic function on [0, 1] 

of total variation B. Then IP(n)l B/4n. 

Proof 

I (n)l 

1 

= f exp(2ninO)F(O)dO I 

0 

1 

< < . ~ f e x p ( 2 r e i n O ) ( F ( O ) - F ( O - 1 ) ) d O  

0 

I/2n 

i i - 1  

0 

B 
~<4n" Q.E.D. 

Now, since it is monotone, h has total variation 
one. Therefore, Z(0) = h(O) - 0 has total variation 
at most two, and thus :~(n) ~< l/2n. If o9 = np - m 
and p is a good irrational then [8] for any E > 0 
there is a C, > 0 such that n 1 +,/> C,/o9. By eq. (6.2), 
 (o9)1 = I (n)l 1/n (o9/C,)  1''1 +" For the 
golden mean Co can be set to am, and therefore 
D~(O))I < O'G2 " O). 

Fig. 13 provides clear numerical evidence that 
the fractional corrections to the universal behavior 
o f f (o ; )  are proportional to o9 as to ~0 .  In section 
5 we conjectured (conjecture A) that any two cubic 
critical maps j;  g with p ( f ) =  p ( g ) =  cr~A are 
related by a continuous change of  coordinates Hi:g, 
continuously differentiable except for a first deriv- 
ative discontinuity at g(0). This implies that the 
difference in their spectra is 

1 L - I  

]'(o9) - g(og) = L~lim Z ,=~0 

x exp(2rc ilo9 )[Hy.g(g ~(0)) -- g'(0)] 

1 L - I  
= c~lim ~ i=~0 exp(2nilog)ZI'g(gt(O))' 

(6.4) 

where Xi¢ is periodic with period one and is 
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O~OI 0.OI O. I 0.5 

Fig. 13. Demonstration that the low frequency spectrum is 
universal  wi th  cor rec t ions  tha t  va ry  a s  to. The compar i son  is 

between the two m a p s  of  fig. 7 wi th  the same wind ing  n u m b e r  

as before. The same results  were found  for all  o ther  good  
i r ra t iona l s  tha t  we studied.  

~ 0. 

0 

I0 

0.01 

0.001 

I i i 

O( 

I I I 
0.001 0.01 0.I 

(,o 
0.5 

Fig. 14. Demonstration that the low frequency spectrum of a 
critical map is preserved by a smooth coordinate change. 
Following conjecture C we have plotted the normalised trans- 
form of the time series of a continuous periodic function, 
l(x) = sin(nx), xe[O, 1], composed with the sine mapf~ for the 
winding number of fig. 7 (see eq. (6.5)). 

differentiable except at g(0) where it has a left and 
right derivative. Thus the following conjecture 
implies that 

f ( o g )  - ~ (o9 )  --- ~ (o9~(o9) )  (6.5) 

and hence that as o9--.0 the structure of  the 
spectrum is asymptotically independent of  the 

mapping f ,  i.e. f is universal for small o9. 

Conjecture C. Let f be a cubic critical map with 
p ( f )  = a in A. Let P be periodic with period one 
and once differentiable except at f ( 0 )  where it has 
left and right derivatives. Then as 09 ~ 0 ,  

lim 1 t -  l L-~ L ~ exp(2rtilo9 )P(ft(O)) = 0(09J~(09))" (6.6) 
I=0 

We have not succeeded in proving this conjec- 
ture. Our evidence for its correctness is based on 

numerical experiments (see fig. 14 and caption). It 
may seem remarkably strong since the left-hand 
term in (6.6) equals P o-~z(q,) when o9 = q,a mod 1 
and we believe that zi(q,)~ 1/q, whereas 
~ohi(q, ) ,~ 1/q~. However, it is easy to see that 
there are many functions P for which (6.6) is true, 
e.g., P(O)=g" (O) -  0. A simple calculation then 
makes plain why (6.6) only applies at small o9 or 
equivalently that in P o--~i(n ) we consider only n for 
which k(n) >> 1. 

At this point we have a clear prescription, To 
analyze the experimental data, one must first ex- 
tract the rotation number p = o9~/o92 at the transi- 
tion to chaos. If  this rotation number is rational, 
the motion is phase-locked and periodic and no 
universality can be expected. One must tune the 
system away from these phase-locked states to an 
irrational rotation number. If p = tr is irrational, 
compare the low frequency Fourier amplitudes of  
the time signal with those of  the sine map (5.4) with 
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a = 1 and rotation number a. Both spectra will 
have lots of structure, but the ratio should asymp- 
tote to a constant at low frequencies, with cor- 
rections that are uniformly bounded by a constant 
times o9. 

For the rest of this section we shall again 
specialize to rotation numbers with periodic con- 
tinued fractions, and in particular to the golden 
mean p = a G. Periodic continued fractions are of 
interest because of  their characteristic self-similar 
spectra (fig. 11). The golden mean, among all 
rotation numbers, will presumably exhibit univer- 
sality fastest in an experiment, since for a given 
length time series it allows the largest number of 
renormalisations. 

Experiments performed with rotation number 
p = a G will be least likely to phase lock, and 
hopefully will be easy to interpret. 

In fig. 11, the main peaks at _ a~ divide the 
spectrum into bands Bj = {o9: a ~  +2 < CO < 0"~+1}. 

Despite the fact that the o9-axis in the figure is 
logarithmic, the peaks in any two bands are in a 
one to one correspondence. (Recall that all 
peaks are of  the form o9 = n a G - - m ;  thus if 

o9gBi then mi+ 1 = - (n + m ) a  G + n = na~  - m a c  

= aGo9gBi + 1, and vice versa.) Band Bo is of  course 
cut in half (n.b., we assume Io91 < 9. Indeed, 
through this relationship the bands Bj partition the 
integers into "Fibonacci sequences", i.e., sequences 
Q~ where Q~ + 1 = Q~ + Q~- 1. The principal sequence 
(Q1 = 1, Q2 = 1) corresponds to the main peaks at 
o9 = a~. In order of  decreasing amplitude, the next 
six peaks in a band correspond to the sequences 
with (Q1, 02) = (2, 2), (1, 3), (3, 3), (1, 4), (2, 5) and 
(4, 4). The peaks corresponding to the sequence QI, 

Q2, Q3 = Q2 + Q1 . . . .  are positioned at 
IraG - sllaol' where r = Ol and r + s  = Q2. 

Pictorially, it is clear in fig. 11 that ~1 scales as 
o9, and if we furthermore examine the phases, the 
apparent scaling law is 

f (o9 )  = - -aGf (o9 /aG)  + 0(O9 2) as 09--*0. (6.7) 

We derive this law first for a piecewise linear fixed 
point of our renormalisation transformation. 

Then, using Conjecture C we shall deduce (6.7) for 
the physical strong-coupling fixed point f , .  Once 
proven for f , ,  the scaling law then holds in general 
by conjectures B and C. 

The conjugate homeomorphism h ,  relating f ,  to 
R,~ satisfies the following fixed point equations: 

h , (O)  = 

{ f  o t - l h , ( - - O / a G ) ,  
'(~-~h,((o/a~)- 1),  

- a ~ < O  ~<a 3, 
(6.8) 

a ~ < O  -..< aG • 

The second equation involves the (nonlinear) func- 
tion f~, 1 on [~-2(~ _ 1)-i, ~-l(~ _ 1)-1]. From the 

fixed point equations for f , ,  one can show that 
f ,  sends [ ~ - 1 ( 1 _ ~ ) - 1 ,  ~ ( ~ - l ) - l ]  onto 
[~ -  :/(~ - 1), ~ -  1/(~ _ 1)]. We shall begin by re- 

placing f ~  1 on this interval by the linear function 

f ~ ' ( O )  = (~2 + c¢)0 + 1/(1 - ~) ,  

~-2(~ _ 1)-I < 0 < ~- ' (~ - 1) -1 . (6.9) 

This function can be extended into a fixed point of 
the renormalisation transformation by inter- 
polating linearly between its values at ~-"/(~ - 1) 
(fig. 15): 

ft(~-2"/(~ - 1))= ~(~ - 1) - 1 -  ((~ + 1)/~) "+t , 

fL(~ -(2"+1)/(~ - 1))= (~ - 1) -l 

- ~ - ' ( ( ~  + 1)/~) "+' (6.10) 

A smooth curve drawn through the vertices (6.10) 
which define f behaves near zero as 0 x, where x 
satisfies 

]~12x_ [~12x- l 1 = 0.  (6.11) 

For a cubic inflection point (x = 3) ~6 + ~5 _ 1 = 0 
implies ~ = -1 .2853,  quite close to the physical 
value -1.288575.  (Note that fL in (6.10) satisfies 
the fixed point equations for any ~ < 0. When we 
compare fL with f ,  it will be for the correct value 
of  ~ and thereforefL will not scale exactly as  03 as 
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o / / : . - - -  
a-_.~ ~ 
a- I  

fL 
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..!._1 
6 - 1  I 

__ 0 a-; -- 
a-i a-~ a-l 

0 

Fig. 15. A piecewise l inear solut ion (6.10) o f  the fixed poin t  
equa t ion  for p = a G. The  func t ion  plot ted here  behaves  as 03 
near  the origin which fixes the  value o f  a at  - 1.2853. 

0-o0.) Indeed, it also takes the correct value tr61 
at x = 1 (no singularity), and remains within ~ 1% 
of its (nonlinearized) physical value at least for 
1 ~< x ~< 8. We attach no great significance to this 
accuracy. 

We now prove the scaling law for the linearized 
fixed point. If  hL conjugatesfL to Ro then 

hL(O ) = 

~ - l h L (  - -  0/O'G) , 

(1 + ~t -1)hL((O/ff2 ) -- l) + 11(1 -- a ) ,  
- ~ < 0  < ~ ,  

(6.12) 

For computational  ease let ~ L ( 0 )  = h L ( 0  ) - -  

0 + ac + a/( l  - ct). (The added constant insures 
ZL(--a~) = XL(tr~)= 0 and changes only the con- 
stant term in the Fourier expansion.) Then define 
XL = Zh + Z~ where 

z i ( 0 )  = 

- (0 + ~r~)(<7~ + :<-l)lac, 
(0 . ac ) (oc  + • - l ) / a ~  , 

- ~ h < 0 < a ~ ,  
a3~ <0 ~<~c, 

(6.13) 

Then L is continuous and its Fourier transform 
)~i(n) ,-~ l /n  2. The function Xh then satisfies 

(~ - I X L  ( -  0 / O ' G )  , 

Xh(O)  = (1 "Ji- ~ - - 1 ) X L ( O / O ' 2  - -  1 ) ,  

-a~<0~<a 3, 
a~<0 ~<%. 

(6.14) 

Let co = Iqjac - qj_ 11, where {q,} for the remainder 
of this section is any integer series satisfying 
q,+~ = q , + q , _ , ,  i.e., a Fibonacci sequence. Then 
co >~ l/qj, so terms tP(1/qj) are ¢(co). Then letting 
O" = tTG~ 

J~L((/)) ---- ~ L ( q j )  = ~ h ( q j )  -~" (~)(('D2) , (6.15) 

~h(qj) = i exp(2rciqjO)x,(O) dO 

_0.2 

~--- t~ -10" i exp(- 2uiqjaO)gL(O) dO 

_ 62 

+ (1 + ~-1)o'2 

×/exp(2niq2(O + I)0"2)~(L(O)dO 
i s  

_0.2 

: O~ - l O ' ~ g  ( - -  q2_ ~) + (1 + a - l )0"2Xg(qj_ 2) 

f f  

+ a-laco ~ exp(-2~iqj_lO)  
a /  

_ 0-2 

X (¢xP(-- 2-~---~0) -- 1 ) Xg(0) d0 

11 

+ (l + 0t-l)a3co -f exp(21ziqj_20) 

_ if2 

× k(exp(2rticotr(Ocoa + l ))--  1)  ZL(O)dO ' 

(6.16) 

The last two integrals are co times Fourier trans- 
forms of functions of  bounded variation; by lemma 
6. l these terms are co¢(1/q,) and thus gT(co2). Using 
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relation (6.2) again, we have finally 

f,_.(09) = ~ '~of~(09I~o) 

+ (1 + ~ - ' ) ~ f ~ ( 0 9 / ~ )  + (9(09~), 

(6.17) 

The eigenvalues of this second order linear recur- 
sion relation which relates fL(09) to fL (09 /ac)  are 
- a c  and ac(l + ct -~) ~ - 0.288trc. The first domi- 
nates, and its eigenspace gives the scaling law (6.7). 
Note that (6.7) implies lY'(09)1 09 and gives a sign 
change between successive bands Bj in fig. 11. 

To show scaling for the cubic strong-coupling 
fixed point f , ,  one must include a correction in the 
fixed point equations (6.1 2), which accounts for the 
nonlinearity o f f ,  l on (ct-2/(~ - 1), a-l /(~ - 1)). 
Let 

f ,~(O)  =fL ' (O)  + X ( a 2 0 ) ,  

~x 2/(~ - 1) .< 0 .< a - t / ( , x  - 1 ) .  
(6.18) 

The first two integrals as before are (9(09 2 ) by 
lemma 6.2. The last integral satisfies the conditions 
of conjecture C; it is thus (9(09:~*(q)) which by 
lemma 6.2 must be (9(09 2) and (6.17) holds for f , .  
Thus if z,(qj)  ~ (l/qj) v then v = 1 and therefore the 
linearised fixed point equations determine the scal- 
ing laws but not the coefficients. 

Thus as in the period doubling cascade, the 
universal features of the onset of chaos are associ- 
ated with small fluctuations on very long time 
scales. Here, however, no new frequency peaks 
appear. Rather, it is the increasing importance of 
low frequency resonances of the principal fre- 
quencies that heralds the transition. Based upon 
reasonable conjectures, we have been able to show 
that for good winding numbers these low fre- 
quency resonances at the transition are universal, 
and that they scale and are self-similar for winding 
numbers with periodic continued fractions. 

where X is periodic with period one and analytic 
except at ~/(ct - 1). The analysis proceeds as be- 
fore, with an additional term. Let X* =X* +Xi, 
(Z*(0) = h , ( O )  - 0 + tr c - ~tl(ct - 1) as before); 
then using tr to denote a~, 

,~*(qj) + (-9(09 2) = z*(qj) 

= ~x - ' o i * ( -  qj_ t) + (1 + o~ - l )o '2i*(q)_ 2) 
c r  

+ ~x-la09 f exp(-27tiqj_~O) 
t /  

_0,2 

a 

a309 t exp(2rdqj_20) + 

--02 

x (exp(2gi09a(O + 1 ) ) -  1)  
\ ~ 

x ((1 + ~- ' )z*(0)  + zO.(0) ) )  

+ rr 2 f e x p ( 2 n i q j _ z O ) X ( h , ( O ) )  dO. (6.19) 
*3 

--a2 

7. Ergodic renormalisation for random continued 
fractions 

Most of the above analysis has been for rotation 
numbers tr = [nt, n2 . . . .  ] with a periodic continued 
fraction. Although conjectures A-C apply to any 
good irrational and were checked numerically for 
non-periodic continued fractions (cf., figs. 7, 
12-14), we have done several numerical ex- 
periments iterating the renormalisation trans- 
formations for a small number of cubic critical 
maps where the entries n i in the continued fraction 
of the rotation number is a random sequence of 
bounded integers. The results of these lead us to 
make the following conjecture. 

C o n j e c t u r e  D.  Let f and g be cubic critical maps 
with p ( f )  = p ( g )  = a = [nt, n2 . . . .  ]~A. Then 

[V.j  o . . . o  To 2 o T . , ( f ) ]  - [T.j  o . . . o  T . o  T . , ( g ) ]  

(7.1) 

converges to zero as j--* oo. 
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There is clearly an intimate connection between 
(7.1) and the low frequency universality of the 
spectra (fig. 14). For example, we find numerically 
that i f f i s  given by (5.4) and g(x) = x 3 + ~o, (2.11) 
and 

a = [ 2 , 2 , 1 , 1 , 2 , 1 , 1 , 2 , 1 , 1 , 1 , 1 , 2 , 2 , 2 , 2 , 2  . . . .  ], 

then fo r j  = 0, (7.1) is 0.02515.. .  (in the sup norm) 
while if j = 9 ,  (7.1) is 0.00020 . . . .  Using our 
numerical methods it is not reasonable to estimate 
(7.1) for higher values of j because of the lim- 
itations of  the machine accuracy in controlling the 
rotation number. 

We believe one should look at this sutiation as 
follows. Let g :[0, 1]~[0, 1] be defined by 

g ( a )  = , t - I  _ [ ; t - ' ] ,  

where [fl] is the integer part of ft. Then g preserves 
a unique probability measure (whose support is a 
set of full measure) # = G(x)dx on [0, 1] where 

G(x) = (log 2)-1(1 + x) -1 

The idea is that Xl corresponds to log]61; all other 
exponents correspond to contraction towards A. 
Thus if the conjecture is correct we have an 
example of an ergodic renormalisation attractor 
with a highly non-trivial structure of stable and 
unstable manifolds [24]. Also, we have the univer- 
sal numbers Xl, X2 . . . .  which are essentially inde- 
pendent of rotation number. However, it is not 
clear whether or not their physical interpretation is 
of any real use. 

A clearer picture emerges if instead of critical 
maps we work with diffeomorphisms. Then the 
maps TI,/'2 . . . .  preserve the one-dimensional sub- 
space {R~:0 ~< 2 < 1} consisting of pure rotations. 
Thus TR maps the space {Rx:AeB} to itself. Iden- 
tifying this space with B, it is clear that the 
restriction of TR to it is just g(2) = 2-1 - -  [ 2 - - 1 ] .  

Thus the derivative of TR at 2eB is --2-2 and we 
can calculate the expanding Liapunov exponent in 
the direction of this subspace. It is 

1 

f log(2  -2)G(~.) dR = rc2/(6 log 2). 

0 

and this measure is ergodic [23]. Let B denote the 
set of all those 2 in Herman's set .4 whose tra- 
jectory under g is distributed on [0, 1] with density 
G(x). By the ergodic theorem, this is a set of 
Lebesgue measure 1. Define a mapping TR as 
follows 

We conjecture that all other exponents are negative 
and that B is the ergodic attractor of TR on 
diffeomorphisms. 

8. Invariant circles in higher dimensions 

2~n(f) = 7~t~_q(f) .  

This mapping leaves invariant the set of those 
critical maps fwi th  p(f)eB. Our conjecture is this: 

Conjecture E. There is an uncountable set A of 
generic critical maps which is invariant under TR 
and has the following properties: 

(i) if f eA  then p(f)eB, 
(ii) if p(f)~B then T](f)~?l as n ~ o o ,  

(iii) the action of  T~ on A is ergodic, and 
(iv) the Liapunov exponents [24] Xl/> X2 f>" " • of  

TR are such that Xl > 0 > X2. 

We now indicate how we believe the above 
theoi'y applies to diffeomorphisms of the multi- 
dimensional annulus R" x T t and hence to 
differential equations. The discussion follows the 
treatment of Collet, Eckmann and Koch [25] for 
the Feigenbaum transformation. For clarity, we 
only discuss the 2-dimensional case (n = 1), but it 
should be clear that our arguments are equally 
valid in the higher dimensional situation. We also 
restrict here to the case tr = tr C. 

Our main concern is with diffeomorphisms of 
the annulus which possess a single invariant circle 
with rotation number tr. In fact, as in the 
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l-dimensional case, it is necessary to work with a 
larger class of  mapping which are defined in the 
following fashion. Let ~ denote the space of  all 
pairs (E, F) of  orientation-preserving maps of the 
plane R 2 to itself. The annulus maps are embedded 
in • exactly as circle maps are embedded in 6e. Let r,- ~ y= r, + 

E,(r,  ~ ) = (0, ~,(~/~3 + r)), 

F,(r, 4)) = (0, q , ( ~ 4 ,  3 + r ) ) ,  

(8.1) 

where (~, ,  t / ,)  is the strong-coupling fixed point of  
T =  Tl. If, as we claim, (~, ,  r/,) exists, then by 
lemma 3.2 it is an analytic function of  x 3 and 
therefore E ,  and F ,  are analytic functions of  

(r, ~). 
Let A(r, 4)) = (0t3r, ~t~) where ¢ = (t/,(0) + 1)/ 

q,(0). Now let ~0 be a small neighbourhood of  
( E , , F , )  in :~ chosen so that the mapping 

9 - - : ~ 0 ~  given by 

3-(E, F) = (AFA -', AFEA -l) (8.2) 

Fig. 16. Schematic representation of the construction of an 
annular mapping from a pair (E, F) of homeomorphisms of R 2. 

F*E 

Fig. 17. Schematic representation of how f f  acts upon 
e = e ( e ,  r). 

is well defined. Clearly, (E , ,  F , )  is a fixed point of  

Moreover (E , ,  F , )  defines a (singular) map of  
the annulus in the way defined by the following 
construction. Suppose that E and F have the 
following special properties: a ) t h e r e  are four 

curves 7o, 7 ( ,  and 72 of  the form 4)=  uo(r), 
t~ = u((r) and 4) = u2(r) where 
u?(r) < uo(r) < u2(r) < u~(r) and (0, 0)~70 such 

that E 0 ' i - ) =  72, E(70)= 7i ~ and F(Ti ~) = 72; b) E 
maps the region Rl between 7? and 70 into the 
region R2 contained between 70 and 7 i ~ and F maps 
R2 into R = Ri O R2 (fig. 16); c) if the mapping 

p = P ( E , F ) : R ~ R  

is such that P = E on R 1 and P = F on R2 (so that 
P is 2-valued on Yo), then R contains a P-invariant 
curve of  the form r = v (4)) for some continuous v 
with v (0 )=  0, and for all x in R, P"(x)--*Fe as 
n ~ oo. Then glueing P along 7 i- and 7 ~- we get a 

piecewise-analytic map of  the annulus. To see how 

5 acts on P see fig. 17. 
If P ,  = P ( E , , F , )  then r = 0 is an invariant 

curve for P , ;  the restriction of  P ,  to r = 0 is just 
the 1-dimension strong-coupling fixed point and 
the curves r + ~b3 = const, are mapped to a single 
point on r = 0 in one iteration of  P. 

(The form of  (8.1) can now be made plausible by 
anticipating several constructions contained in the 
appendix. Below the transition, the strong stable 
foliation of  v intersects v transversely whereas at 
the transition it is tangent. 

Iteration of  the map wraps the tangent point 
around the invariant curve and increases the con- 
traction while applying T then retains only one 
tangent point. The tangency must be cubic by 
construction and at the fixed point the contraction 
rate is effectively infinite; the entire curve 
r + ~b 3 = const, is collapsed in one iteration of  the 

map to a point.) 
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Returning now to the full neighbourhood ~0 of 
(E,,  F,) ,  our conjecture is as follows: the eigen- 
values 2 o f  the linearisation d~-(E,, F , )  of ~r- at 
( E , , F , )  with 121/> 1 are +1, ___~, ~2, ___~3, 3, 
where ~ and 6 are calculated from (~,, r/,). Of 
these we can eliminate all but the eigenvalues ~2 
and ~ which have multiplicity one in the following 
way: 

a) the eigenvectors corresponding to + 1, • and 
~3 are the infinitessimal generators of coordinate 
transformations and therefore are irrelevant and 
can be removed as in [25], b) the eigenvectors 
corresponding to - 1, -at  and - •  3 are not tangent 
to the space EF = FE. The eigenvector correspond- 
ing to 6 (resp. ~2) is ((0, X ( , ~  -3+r) ,  
(0, Y ( ~ ) ) )  where (X, Y) is the eigenvector 
corresponding to 6 (resp. ~2) for dT(~,, r/,). 

Factoring out the coordinate changes as in 
[25] and restricting to the space of commuting 
functions EF = FE, we have the following picture. 
The fixed point (E,,  F , )  of ~" has a 2-dimensional 
unstable manifold and a co-dimension 2 stable 
manifold W s. Any two-parameter family of an- 
nulus mappings which is transverse to I,V s will have 
the scaling behaviour associated with the 
1-dimensional generic critical maps. In particular 
the values of • and ~ obtained by approximation 
by p,/q,-cycles will be the same as in 1 dimension, 
as has been numerically verified by Shenker [1 1]. 
The way an invariant circle with rotation number 
a breaks up is independent of the family. 

A similar analysis can be given for non-critical 
maps and the weak-coupling fixed point. In that 
case we take the scaling matrix to be A = - a L  

9. Conclusion 

Let us review as clearly as possible how one 
might perform an experiment to explore the transi- 
tion to chaos proposed here. Two experimental 
parameters must be consistently varied. The Ray- 
leigh number R is clearly one parameter, while the 
second should permit direct control of the fre- 
quency ratio in the quasi-periodic regime. An 

obvious choice is to periodically modulate (fre- 
quency c02), a periodic regime of flow (frequency 
090. A periodic external force has the added advan- 
tage of making a Poincar6 section trivial to com- 
pute. (In particular the Fourier transform of the 
distribution of points on the section should be 
measurable with an accuracy comparable to the 
power spectrum.) 

The transition should be approached for a fixed 
irrational value of 091/092 by increasing R. Although 
any "good" irrational will do, the optimal choice 
experimentally is 091/092=0"G=(~/c5  - 1)/2. The 
golden ratio is the least susceptible to mode lock- 
ing, which is to be avoided, and for a given level 
of resolution allows the quickest approach to the 
universal limit. Alternatively put, aG gives the 
largest number of self-similar bands for a given 
level of noise. 

It would clearly be of interest to do such an 
experiment for a finite dimensional system such as 
a van der Pol oscillator. Just as for period doubling 
universality means certain features of the power 
spectra will be system independent. 

Only the low frequencies 09 ,~ o91,092 are univer- 
sal so data should be collected for as long as 
possible but in any event for a time which is a 
Fibonacci multiple of 2~/092. The quasi-periodic 
signal will then effectively repeat; facilitating the 
Fourier transform. To within an overall complex 
factor, all the low frequency Fourier amplitudes at 
a transition should agree in magnitude and phase 
as co ~ 0  with the values obtained from a map such 
as (2.7). 

Although the renormalisation group and fixed 
point calculations are highly discontinuous with 
winding number, all our predictions are completely 
continuous in so far as experiment is concerned. 
Small errors in the frequency ratio are only appar- 
ent as co~0. Spectra will approach a universal 
form as 09 ~ 0  and only deviate for to on the scale 
of the error. Similar comments apply to the control 
of R. Just below the transition at R~ the power in 
the principal peaks at oJ = a~ will scale as 092 down 
to 09 , .~const. lg- P~II 1*(°o~/(21°M) and then fall off 
rapidly as exp(-const./09). Above the transition 
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there will be a slight broadening of all peaks with 
the very lowest frequencies indistinguishable from 
the noise. 

More elaborate tests of the universal theory, 
such as a direct measurement of 6, can be devised 
by examining the spectra in the various mode 
locked states that approximate ac. We still expect 
the simplest and most precise experiment to be the 
one above. 

The Couette system would appear to be a favor- 
able geometry in which to test our predictions since 
it does not mode lock [26]. Control over the 
frequency ratio could be achieved by working in 
the wavy vortex regime and modulating the rota- 
tion speed. However, the rotational invariance that 
eliminates the mode locking makes it implausible 
to us that at the transition Couette flow can be 
described by our universality class. It is therefore 
doubtful whether one will observe our universal 
spectrum. We have no hard demonstration of these 
assertions, but it is obvious that if the parameters 
in any non-trivial one-dimensional map are varied 
without constraint within an open set, mode lock- 
ing will result. 

It is still of interest to examine the low frequency 
spectrum for a rotationally invariant system at the 
transition. Model studies indicate that even if 
col/co2 = ac, a singular power spectrum whose en- 
velope is bounded by some power of co might be 
seen that nevertheless is not self-similar in the sense 
of fig. 11. It is also possible that the weight in the 
low frequency peaks will fall exponentially at the 
transition. In this case it is very doubtful whether 
there are any quantitatively universal features at 
the transition. 

The transition to chaos we have examined which 
entails the destruction of an invariant torus in the 
presence of  strong radial contraction is different 
from the example analysed by Ruelle, Takens and 
Newhouse [27]. They examined, in the weak cou- 
pling limit, flow on an n >/3 torus and showed for 
any preassigned degree of smoothness a small 
perturbation could be added to the original quasi- 
periodic flow with n frequencies to render it cha- 
otic. Of course this chaos would only be visible at 
very long times. 

Flow on an n-torus could also mode lock to 
produce a 2-torus; and one might ask whether such 
a 2-torus in the strong coupling limit could break 
down chaotically to a flow that remains on the 
n > 2 torus. We are uncertain whether all models 
of this sort must fall into our universality class. We 
have specific examples where the transition is 
continuous and the rotation number periodic (e.g., 
aG) which exhibit qualitatively different spectra. 
We have also seen in a mapping in which one of 
the variables was constrained to be a simple rota- 
tion a continuous transition to chaos characterized 
by singular power spectra where the position of the 
prominent lines shows no simple relation to the 
rotation number. A simple explanation of these 
findings in the present context is in terms of chaotic 
renormalization group trajectories. This conjecture 
differs in detail from section 7 since the rotation 
number now is fixed and periodic. The relevance of 
this model to any physical system remains to be 
established. 

Mathematically, our paper consists of a number 
of conjectures. The simplest is the existence of the 
strong-coupling fixed point. Presumably, a rig- 
orous proof of this along the lines of Lanford's 
computer-assisted proof of the Feigenbaum con- 
jectures should be possible [18]. But more inter- 
esting are the conjectures A, B and C (and the 
numerical evidence supporting them) where we 
conjecture the existence of C ~ conjugacies between 
certain critical maps. We have no idea of how to 
prove these and it is clear that the techniques 
developed for diffeomorphisms as in [7] are of 
little use here. Finally, we remark that it would be 
interesting to have a proof of the ergodic renor- 
malisation structure conjectured in section 7. New 
ideas will be needed for the proof of this. 

Anyone who has examined the other small di- 
visor problems to which K.A.M. methods have 
been applied would not have failed to notice the 
obvious similarities in proof. It is natural to ask to 
what extent these problems admit a strong cou- 
pling limit where the K.A.M. properties (e.g., 
analytic conjugacies, etc.) disappear continuously 
through a loss of smoothness. 

The first problems to be investigated from this 
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viewpoint were Hamiltonian systems, in particular 
area preserving maps, in action-angle variables 
(r, q~) [14, 28, 29]. The spectra of  the homeo- 
morphism that conjugates the phase variable along 
a particular critical K.A.M. surface to a pure 
rotation closely resembles the one computed here 
for cubic critical maps. There is a natural way to 
generate a critical circle map in the area preserving 
problem by simply restricting the 2-D map to the 
invariant K.A.M. curve. For the golden mean this 
map is found numerically to be C a and have no 
critical points. 

Since the map is clearly critical by virtue of its 
singular invariant measure it is natural to ask 
whether under T it would be attracted to any of the 
fixed points associated with inflectional circle 
maps, possibly non-analytic ones, e.g., (2.11). The 
answer is probably no, on empirical grounds. 

We varied the inflectional exponent b in (2.11) so 
as to obtain the same value of ~ as in ref. 29. We 
found b = 1.82047 gave ~ = 1.41485. The spectra 
however did not agree. Whether anything can be 
said about the Hamiltonian problem from knowl- 
edge of the dissipative case remains to be seen. 

It is worth noting that the fixed point we have 
found in dissipative systems is mnch more robust 
than can possibly be true for conservative systems. 
Whereas universality has been demonstrated for 
one degree of freedom area-preserving maps [28, 
29], a continuum system will possess an infinity of  
frequencies. It is only through imposition of exter- 
nal fields or boundary conditions that a few de- 
grees of freedom can be singled out. We know from 
laboratory experiment and rigorous mathematics 
that continuum dissipative systems can have low 
dimensional attractors (e.g., 2-tori). 

The spectrum of quasi-periodic Hermitian oper- 
ators (e.g., the Schr6dinger equation with a quasi- 
periodic potential) is another small divisor prob- 
lem of current interest [30]. Self-similarity in the 
distribution of band gaps as a function of winding 
number for a particular "critical" potential was 
noted by Hofstadter [31]. The problem of search- 
ing for extended states is equivalent to constructing 
a (n + l)-torus in a nonlinear system for which in 
certain cases n of the phases evolve according to a 

free rotation with mutually incommensurate fre- 
quencies. When n = 2 our renormalization group 
may be used to evaluate the string of matrix 
products (which each depend on a phase, ~b, on 
which T acts), whose trace determines the Li- 
apunov exponent of a particular state. One then 
generates a renormalisation transformation on the 
matrices (e.g., when ~i lies in the interval removed 
by T multiply M(~bi) with its predecessor ~b;_ ~ and 
call it M2(~b~_ 1)). 

After i applications one reduces the original 
matrix string to products of M% Mq~-~. This 
grouping of the matrix multiplications is identical 
to the decimation scheme introduced in a different 
context by Feigenbaum and Hasslacher [32]. 

Finally we note that Manton and Nauenberg 
[33] have observed self-similar and singular behav- 
iour at the limiting radius of  convergence for the 
Schr6der problem. 
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Appendix A 

Transition from quasi-periodicity via phase -locking 

We discuss here some details concerning the 
ways in which phase-locked invariant toil can be 
destroyed and then relate this to the case studied 
above. Firstly, we consider a prototypical example 
involving the creation of a critical cycle. Then 
using the computer study of Aronson, Chory, Hall 
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and McGehee [34] we give a heuristic discussion of 
the bifurcation structure within a single phase- 
locked region. Much of this structure can be 
related to (not necessarily invertible) maps of the 
circle onto itself. After discussing this, we attempt 
to relate this picture to the case where the system 
is not phase-locked, as studied above. 

Consider a two-parameter family Po,,a of  
diffeomorphisms of the annulus A into itself which 
contracts areas uniformly and where the nonlinear 
coupling a and the rotation co enter as in the family 
(1.1) discussed in the introduction, i.e., as the 
relevant parameters of our renorrnalisation group. 
We first consider the bifurcations observed when a 
is small. To do this we need to consider the 
structure of  the saddle-node bifurcation in a little 
more detail. 

Consider a one-parameter family P,  of such 
mappings (e.g., P~, = P~),,~)). The conditions for a 
fixed point x of  P~, t o  undergo a saddle-node 
bifurcation at # = 0 are the following: (a) the 

derivative dP0(x0) of P0 at x0 has 1 as a simple 
eigenvalue and no other eigenvalues of  modulus 
equal to 1; (b) for I/~l small there are coordinates 
(s, z,/~)eR x R × ( -  1, 1) on a neighbourhood of  
(x0, 0) in A × ( -  1, 1) such that (x0, 0) is the origin 
and in this neighbourhood 

e~(x. z)  = (g,(s ). k , (z  )) . 

where g0(0) = 0, g~(0) = 1, g~(0) 4: 0, Og~(O)/ 
0/~l,= 0 # 0 and Idk0(0)l < ~. Then the family g, can 
be conjugated with the family ~ :  R--.R given by 
~u(s) = s + s 2 + #. Thus the mapping 
(s ,z ,#)~(s +sZ+/a ,  z/2, I~) is a universal local 
model for the saddle-node. 

II 
tl 

lit rt rl rIj+ 
Fig. 18. The local structure of a saddle node. The "vertical" 
lines represent the strong-stable foliation. 

At # = 0, locally near x0 the situation is as 
shown in fig. 18. Near x0, the outset {x :Po"x~x  o 
as n ~ }  consists locally of the curve {z = 0 ,  
s >/0}; near x0, the inset {x:Pgx~xo as n--*~} 
consists of  the half-space {s <~ 0}. Moreover, there 
is a strong stable foliation of the local inset defined 
as follows: it is the partition of the inset into curves 
(called strong stable leaves) defined by the follow- 
ing rule: x and y lie in the same leaf if and only if 
dist(Pgx, Pgy) converges to zero exponentially fast 
as n ~ ~ .  This foliation is invariant under P0 in the 
sense that the P0-image of a leaf is contained in a 
leaf. Moreover, along z = 0, the tangents to these 
leaves depend continuously upon the base point. In 
some neighbourhood of x0 the leaves are all trans- 
verse to the centre manifold z -- 0. For a proof  of 
all these facts see Newhouse, Palis and Takens [35]. 
The saddle-node bifurcation for periodic orbits is 
covered by the above description (if the period is 
q, replace P by Pq). 

We now consider the sequence of bifurcations 
involved in phase-locking when a is small and the 
invariant circle is preserved (see fig. 19). (Again, 
without loss of  generality we can restrict to the case 
of a fixed point.) The bifurcations at # = ~ and 
#1 are saddle nodes. We shall only consider the 

bifurcation at /~ = #1. Assume # , - -0 .  Here the 
invariant circle is the outset of the saddle-node. 
Since the outset is contained in the inset we have 
a cycle and this will force the bifurcation to have 
a non-trivial global structure even though the local 
structure (at the fixed point) is simple. 

Assume that the outset (9 is transverse to each 
strong stable leaf. Then using invariant manifold 
theory (Hirsch, Pugh and Shub [3]) one can prove 
that (9 is smooth and normally hyperbolic. There- 
fore for small # ~> 0 there are smooth invariant 
circles (9~ near (9 = (90 which depend smoothly 
upon #. 

At p = 0, P0 has a fixed point (on (90). For small 
p > 0, Pu has no fixed point. Therefore for all E > 0 
there exists a set K in (0, E) of positive Lebesgue 
measure such that if #~K then the rotation number 
is irrational (Herman [8]). One expects that gener- 
ically the closure of  K is a Cantor set. If  # ~ K the 
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Fig. 19. The bifurcations creating and destroying a phase-locked (periodic) attractor on the invariant circle while staying within the 
quasi-periodic regime (i.e., preserving the invariant circle). 

a t t rac tor  is the whole circle (9~. Thus  we see that  
even in this control led s i tuat ion there is an ex-  

plosion f rom a point  a t t rac tor  to a circle a t t ractor .  
Nevertheless,  for/z > 0, the behaviour  is still quasi-  
periodic. Thus  we see tha t  to des t roy the quasi-  
periodici ty we mus t  not  have t ransversal i ty  o f  (9 to 

the s t rong stable foliation. 
Consider  again the sequence o f  bifurcat ions 

shown in fig. 19 above.  We discuss the simplest  
change to this which produces  a bifurcat ion away  
f rom quasi-periodicity.  This  is achieved i f a t  some 

intermediate  value of /~,  say p =/~2, P0 </~2 < Pi, 
the invar iant  circle loses its smoothness  by be- 
coming tangent  to the (local) s t rong stable foli- 

a t ion defined near  the sink so tha t  for  P2 </~ < P~ 
the circle has quadra t ic  tangencies with some o f  the 

leaves o f  this foliation. (The foliat ion is defined as 
follows. Assume that  the eigenvalues of  the sink 
are such that  0 < 2 1 < 2 2 < 1 .  Then  define the 
leaves by the condi t ion that  two points  x and y lie 
in the same leaf if d i s t (P 'x ,  P ' y )  d i s t (P 'x ,  

P ' y )  ~ 27.) The  leaf  through the sink is called the 
strong stable manifold. 

Then the impor t an t  point  to note is that  at 
p = p~ = 0, (9 is tangent  to the s t rong stable foli- 
a t ion o f  the saddle-node and the tangencies are 
quadra t ic  (fig. 20). Then  (a) for  small p > 0 there 
is no invar iant  circle, (b) for all E > 0 there is a p 

in (0, E) such that  P ,  has a horseshoe,  and (c) there 

exists a sequence ~tL i > 0 such that  limi.o~ [A i : 0 and 
P,, has a homocl inic  tangency for  each i [35]. 

Thus  one sees that  here the dynamica l  behav iour  

Fig. 20. The simplest sequence of bifurcations creating and destroying the phase-locking and destroying the invariant circle. At/z = P0 
there is a generic saddle-node creating the (phase-locked) periodic solution. At/z =/h the outset of the saddle becomes (cubically) 
tangent to the strong stable foliation of the sink. For/z 2 </t </~, the outset is quadratically tangent to this foliation. At/~ =/z 2 the 
outset is quadratically tangent to the foliation defined by the saddle node point. 
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for # > 0 is very different from that in the previous 
bifurcation. In that case there was always an 
essentially global attractor which was periodic or 
quasi-periodic. In this case for many # > 0 there 
are infinitely many periodic orbits and also one can 
expect that associated to the homoclinic tangencies 
will be the Newhouse phenomenon of infinitely 
many sinks (Newhouse [36]) and behaviour similar 
to that of the H6non attractor (H6non [37]). 

Now we consider all these bifurcations in a more 
global context. Recall that Ip/q is the closure of the 
set of (to, a) such that Po,,, has an attracting 
periodic orbit (sink) whose rotation number is p/q. 
We now turn to consider the structure of P~.a when 
(to, a)~Ip/q. The essential ideas are again captured 
by the simplest case where p = 0 and q = 1; i.e. a 
fixed point. Then our picture of what we believe 
happens in Io/i is summarised in fig. 21. The 
discovery of such a structure is due to Aronson, 
Chory, Hall and McGehee [34] who discuss this in 
detail for a particular two-parameter family and 
for the case wherep/q  = 1/8. We have only drawn 
one half of Io/~ because one expects that what is 
happening in the other half is qualitatively similar 
and related by a symmetry. This is what is happen- 
ing in the various regions and curves marked: 

Along BA: The fixed point undergoes a saddle- 
node bifurcation. 

In I: The invariant circle is smooth, and in the 
interior of I it contains a sink and a saddle. The 
strong stable manifold Ws~,k of the sink and the 
inset or stable manifold W~d of the saddle intersect 
the boundary of the annulus in the way shown. 

On ct: The outset of the saddle has become 
cubically tangent to the local strong stable foli- 
ation of the sink. 

In H: The outset of unstable manifold of the 
saddle is now quadratically tangent to the sink's 
local strong stable foliation, but does not intersect 

Wsink. 
On fl: The outset is quadratically tangent to 

Wsink. 
In III: The outset intersects W~,k transversally, 

but does not intersect W~d. 
On y: The outset intersects Ws~,k transversally 

and has a quadratic tangency with W~d. 

In I V  and VII: The outset intersects W~nk and 
W~d transversally. 

On ~: The outset is quadratically tangent to W~nk 
as shown, and moreover, W~nk does not intersect 
one of the boundary curves of the annulus. 

In V: The outset of the saddle does not intersect 
Wsink. Both branches of W~n k cross the same 
boundary curve of the annulus. 

On q~: As in V, except that the outset of the 
saddle is now quadratically tangent to its inset. 

In VI: As on ~ except that the outset now 
intersects the inset transversally. 

On ~: The outset is again quadratically tangent 
to the inset, but with the opposite orientation to 
that occuring in ~b. 

In VII: Both W~nk and W~d cross to one side of 
the annulus and the saddle's outset does not inter- 
sect W~nk and W~d. Moreover, W~d separates the 
annulus into two invariant region. 

In IX: The sink has complex conjugate eigen- 
values. In crossing from I to IX the real eigenvalues 
of I become equal, then complex conjugate. 

In X: These eigenvalues become real again. 
On crossing from X into XI: There is a generic 

period-doubling bifurcation, and presumably a 
cascade of these as a is increased. 

We note that the fixed point remains an attractor 
throughout the regions I to VIII but is not neces- 
sarily unique in III to VIII. 

Now one can see why the global excitation 
caused by a saddle-node with a critical cycle will be 
ubiquitous in systems depending upon one param- 
eter #. 

Suppose that the system starts from some phase- 
locked situation as in I. If  it leaves I by crossing BA 
then the system remains quasi-periodic. Another 
possibility is that it leaves I by crossing • in II. If  
the path followed by the system then leaves II by 
crossing BA transversally one observes precisely 
the bifurcation discussed above. Thus, in this 
scheme, this bifurcation is the simplest mechanism 
for a bifurcation from quasi-periodicity to chaos. 

We now discuss the relationship with maps of 
the circle. Each of the regions in fig. 21 except V, 
VI and VII has a counterpart in, for example, the 
following two-parameter family of maps of the 



S. Ostlund et al./Transition flora quasi-perio~city to chaos in dissipative systems 339 

C ~ A 

I....~ 60 Y 

E3 
Fig. 21. Some details o f  the summised bifurcation structure in the tongue Io/~. See the text for a description of  the various regions. 
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circle: 

fo~,~(O) = 0 + 09 - ( a / 2 n )  sin 2n0, 

though one has to be careful in the exact inter- 
pretation of this correspondence. Essentially, the 
correspondence is obtained by thinking of the 
circle mappings as the infinite-dissipation limit of 
the annulus mappings. All points are mapped onto 
a circle after one iteration; the contraction in the 
radial direction is infinite. On taking this limit the 
outset of the saddle-point converges to the circle. 
The strong stable foliations converge to the foli- 
ation by radial lines and points at which the outset 
is tangent to a stable leaf converge to images of the 
critical points of the circle mapping. (Of course, the 
sinks of the circle and annulus mappings corre- 
spond, and the saddle-point of the annulus map- 
ping corresponds to the unstable fixed point of the 
circle mapping.) 

We have discussed the family fo,,a for 0 ~< a ~< 1 
in the previous sections. Let 1"o/i denote the 
closure of the region of  (o~, a)-space in which fo~.a 
has a sink (i.e., an attracting fixed point). The 
region consisting of the intersection of I~/, with 
0 < a < 1 corresponds to L The curve in I~/, where 
a = 1 corresponds to the upper boundary o f / ,  so 
that the mappings in II and IX are respectively 
analogous to circle mapping like (a) and (b) in fig. 
22. In fig. 22a the critical points c, and c2 are such 
that f~,,~(ci), i = 1, 2, converge monotonically (i.e., 
from side to side) to the sink as n ~ oo. In fig. 22b 
they converge to the sink, but in an oscillatory 
manner. These properties correspond respectively 
to the fact that in I and II the outset of the saddle 
converges monotonically to the sink while in IX it 
spirals towards it. In III the outset has penetrated 
the strong stable manifold of the sink. The anal- 
ogous property for the circle mappings is that the 
sink lies between f~,a(C,) and fo~,~(c2) in in fig. 22c. 
(The stacked folds that bracket W~,k in region III 
of fig. 21 correspond to images of the two critical 
points.) Any annulus mapping sufficiently close to 
such a circle mapping will be like those in III. The 
circle mappings corresponding to 7 have the prop- 

///// 

b 

,,// / 

A 
/ // e / 

,,/// / 
Fig. 22. Three mappings illustrating the properties described in 
the text. 

erty that f~,a(cO is the unstable fixed point. This 
corresponds to the fact that on 7 the outset is 
tangent to the inset of the saddle. Clearly, the 
annulus mappings in, for example, V, have no 
similar 1-dimensional analogue because the strong 
stable manifold of the sink only meets one bound- 
ary curve of the annulus, whereas in the infinite 
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dissipation situation this curve is a radial arc and 
hence meets both boundary curves of the annulus. 
In particular, we see that the curve 7' consisting of 
those (co, a) such that fo,,,(Cl) is the unstable fixed 
point (i.e., the analogue of  7) extends across I~/l as 
far as the region analogous to IX. Below 7' the 
rotation number, 

p ( f ,  O) = lim sup n -I( fnO - -  O) 
n-*oo 

o f f  =fo,,. at 0 is independent of 0 and exists as a 
limit; while above 7 it depends upon O. 

In fact, identifying numbers which differ by an 
integer, it can be shown that 

o 
0 cr I 

Fig. 23. The conjectured structure of F(¢ o) and its approxi- 
mation by the tongues l'pn/q .. 

R ( f )  = {p(f,O):O ~<0 ~< 1} 

is a closed interval [p_(f) ,  p+(f)]  and that p_ and 
p+ are continuous functions off (Newhouse ,  Palis 
and Takens [35], Ito [39]) .  Above 7', 
p _ ( f ) # p + ( f ) .  In particular, there are some 
points 0 with irrational rotation number. 

Consider now the general structure of such 
mappings. In contrast to the diffeomorphism case 
(i.e., when 0 < a < 1 for the fo,,~), when a > 1, the 
mapp ing f  =fo,.~ always has a periodic orbit (Block 
and Franke [38]); thus R ( f )  always contains a 
rational number. In fact, if p _ ( f ) #  p+(f) then 
there are infinitely many unstable periodic orbits 
for f ,  because i f p / q e R ( f )  then it is easy to show 
that one can solve the equation fqO = 0 + p and, 
moreover, the solution 00 can be chosen so that if 
U is any neighbourhood of 00 in the circle then U, 

f U , . . .  , f ' U  cover the circle for some n >f 0 (New- 
house, Palis and Takens [35]). On the other hand 
f =f~,,~ has at most two stable periodic orbits, and 
if there are two then these contain the critical 
points in their basins of  attraction. Moreover, from 
work of  Jacobson [40], one expects that such 
mappings are structurally stable (and hence the p+ 
and p_ are locally constant) if and only if the 
critical points are contained within the basins of 

stable periodic orbits. Newhouse, Palis and Takens 
[35] show that if f~ is a generic one-parameter 
family and if ~ is such that not both of p÷(f~) and 
p_(f~) are locally constant at go then in every 
neighbourhood o f ~  there is a point # such that for 
some n > 0 the f"-image of a critical point is an 
unstable periodic point. This is the one- 
dimensional (infinite dissipation) analogue of  a 
homoclinie tangency. 

Now consider the set F(aG) consisting of those 
points (co, a) for which P(f~.a,O)=t7 G= 
(x//-5- 1)/2 for some 0. As we have seen, for 
0 < a < 1 this is a curve of the form co = u(a), u 
analytic. For a > 1, if (co, a)eF(~G) then 
P - ( f , J  # P +(f~,,a) because R ( f , J  contains a ratio- 
nal and an irrational. We can approximate F(a¢) 
by the regions l~,/q. Therefore we expect that F(ao) 
will have the form depicted in fig. 23. We conjec- 
ture (a) that the boundary curves of  F(aG) are the 
limit as n-~oo of boundaries of I~q~, and 
I'p2 ~ + ,/q~ ÷~ and (b) that for (co, a) in this boundary 
curve there is af~0,~-invariant Cantor set A which (i) 
is the closure of  the orbit of a critical point, (ii) is 
attracting, and (iii) has the property that if OeA 
then p(fo,,o,O)=~. (Presumably, an invariant 
Cantor set satisfying (iii) exists if (co, a) lies in the 
interior of F(a~), but then it would not be an 
attractor.) 
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