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The Gross-Pitaevskii equations are generalized to finite temperatures by 
means of the self-consistent Hartree-Fock and Bogolyubov approximations 
that are derived through a variational principle for the optimal set of one- 
particle eigenstates. A number of sample density profiles are provided for 
spin-polarized atomic hydrogen when the external potential depends on the z 
coordinate only. 

1. I N T R O D U C T I O N  

Spin-polarized atomic hydrogen (H$) at densities less than or of order 
1019 cm -3 is a weakly interacting Bose gas. 1 To stabilize the ato~ns against 
recombination into molecules requires a strong magnetic field. In practice 
the magnetic field is nonuniform and serves to confine the gas. 2'3 It is of 
interest, therefore, to study theoretically the behavior of a weakly interac- 
ting Bose gas in an inhomogeneous potential. 

This problem has of course been examined previously, in the context of 
superfluid 4He, both at low temperatures, where the mean field equations of 
Gross and Pitaevskii apply, and near the critical point T = To, where scaling 
ideas a r e  u s e d .  4 In 4He away from Tc healing lengths are very small and of 
largely theoretical interest. In H$, however, Walraven and Silvera pointed 
out that the change in the density profile that accompanies Bose conden- 
sation is dramatic and susceptible to direct experimental measurement )  '5 
Our goal in this paper will therefore be to generalize the Gross-Pitaevskii 
theory to finite temperatures but avoid temperatures so close to T~ that 
critical fluctuations are important. 

This is naturally accomplished through the finite-temperature self- 
consistent Har t ree -Foek  equations that we derive variationally in Section 2. 
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Within this approximation, Bose condensation corresponds to the macro- 
scopic occupancy of the lowest one-particle eigenstate. Neither the deriva- 
tion nor the results of Hartree-Fock are entirely trivial and the correct 
equations are rather more complicated than the corresponding theory for an 
inhomogeneous Fermi system. For physically reasonable parameters below 
To, one finds a nearly discontinuous change in density near the condensate 
edge and a pseudo-gap in the density of states of order the mean inter- 
particle potential that would be visible in the low-temperature specific heat. 
Both these features are unphysical and disappear when we derive the 
Bogolyubov-Hartree-Fock theory in Section 3. The resulting equations are 
sufficiently complicated, however, that quantitative density profiles appear 
to require considerable numerical analysis. 

We will ignore the hyperfine structure of H~, here and treat it as a 
spinless boson. It would be relatively easy, though, to include the second 
hyperfine state which would necessarily be part of the "normal"  fluid. It was 
argued in Ref. 6 that if the conditions necessary for both hyperfine states 
individualy to condense were ever achieved, rapid phase separation would 
ensue. 

Some of the results of Section 2 were obtained simultaneously by 
Goldman et al. lo 

2. HARTREE-FOCK APPROXIMATION 

The Hamiltonian for an interacting Bose gas in a potential u (r) is, in 
second quantized notation, 

H = I dar ~*(r ) [ - (h2 /2m)V2  + u (r)]~(r) 

+~ d3rdar'~O (r)~b*(r')V(r-r')~O(r')~(r) (1) 

We will approximate the interparticle potential as a delta function with 
weight v = h241ra/m, where a is the s-wave scattering length. For H~, the 
triplet potential has a = 0.72 ,~.7 The variational principle says that for a 
given temperature T (/~ = 1 / k B T )  and chemical potential /x the grand 
potential 

f~ = - k B T  In (Tr e -~H-~N))  (2) 

satisfies f~ -< ~(Ht) for any trial Hamiltonian H,, where 

f i (H,)  = l'l, + (H) t  - (H,),  (3) 

Ot is the grand potential of the system obeying the trial Hamiltonian, and 
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(~)t is the expectation value of t7 in the ensemble defined by Hr. A trial 
Hamiltonian with many free parameters may be used and the best approxi- 
mation to the true system is obtained by minimizing ~(H,).* 

We first consider a general one-body trial Hamiltonian in diagonal 
form, 

H t = ~  t akekak (4) 

where 
t 

ag = [ d3r ~Ok(r)0(r) (5) 
f d 

and the {Ok} are a complete orthogonal set of single-particle wave functions 
normalized to unity. To avoid macroscopic density fluctuations in our trial 
ensemble when the system is Bose-condensed, the lowest energy single- 
particle state must be treated specially; the trial ensemble will have the 
restriction a*oao = No. In the thermodynamic limit (nk/N = 0 for all k # 0) 
we obtain 

~I(Ht, No) = kBT ~, In (1-e-~C~-~))+No((0lHol0)-tz)  
k ¢ 0  

+ Y~ nk((klHo[k)-ek)+½Ng(OOIVJO0) 
k ~ O  

+2No ~ nk(OklV[Ok)+ Y~ Y~ njnk(fklV[lk) (6) 
k ~ 0  ] ~ 0  k ~ 0  

where nk = {exp [13 (ek --/Z)] -- 1}-1 are the usual boson occupation numbers, 
Ho is the one-body part of the Hamiltonian, 

(f[Ho[ k) = ; d3r O* [-(h2/2m)V 2 + u (r)]ffk (r) (7a) 

and V involves the interparticle interactions, 

= v f d3r O~ (r)O* (r)0t(r)0m(r) (7b) (jkl Vl lm ) 

Note that the integral in (7b) is of order an inverse volume. We define the 
condensate density to be po(r) = Nol~o(r)l 2, while the total density is p(r) = 
p0(r) +pl(r),  where 

pl(r)= Y nkl~0k(r)[ 2 (8) 
k ~ 0  

When lrl is minimized with respect to No and ek we obtain 

(01/4o+ 2vpl + vpo[0) = IX (9) 

*This is done in detail for the uniform system in Ref. 8. 
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and, for k # 0, 

(klHo +'2vp Ik) = ek 

respectively, where (/IVpolk)=-No(/O] VIk0) and 

(] lvmlk)-  Y ndfllVlkl) 
l~O 

(lO) 

(11) 

The wave functions {Ok} are also free "parameters" in Ht subject to the 
constrain that they remain a complete orthonormal set. It is not practical to 
consider arbitrary variations in the {Ok} and then impose the orthonormality 
constraints by a sufficient number of Lagrange multipliers because for 
arbitrary {Ok} the trial Hamiltonian is not necessarily diagonal, so l~ is 
difficult to obtain. The permitted variations in the {Ok} are basis changes that 
leave Ht diagonal. We therefore demand that l~ be stationary under an 
arbitrary infinitesimal basis change of the form 

Ok ~ Ok +Y rhkOi (12) 
/ 

with ~7*k = --r/kj for unitarity and [~7ik[ << 1. The resulting equations are 

(k [Ho + 2vpl + vpo[O) =/XSk0 (13) 

and, for j # 0 and k # O, 

(flHo + 2vplk ) = ekSjk (14) 

The above two sets of equations may be satisfied if the single-particle states 
are all eigenstates of the effective single-particle Hamiltonian 

Beg = no + 2vp -]0)(0]Vpo- vool0><01 + 10><01vpol0><0[ (15) 

with H~a[k)= ek[k) and So =/~. Note that H~ff is a nonlocal operator. The 
condensate, however, is also an eigenstate of a local operator, namely 

(1to + 2vp - vpo)lO) =/z]O) (16) 

To summarize, in position space we have the following infinite set of 
self-consistent integrodifferential equations: 

-(h2/2m)V2Oo(r) +[u(r)+2vpffr) + vNolOo(r)]2]Oo(r) = tz0o(r) (17) 
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-(h2/2m)V26k(r) + {u (r) + 2v[pl(r)  + No16o(r)t2]}6k (r) 

-vN°6°(r){[160(r)[ 2 -  f dSr' 

× J d3r" 6*o (r") 6k(r") 

+ f dr' 6*o (r')i6o(r')126k(r')} = ek6k(r) (18) 

The effective Hamiltonian (15) may be written as H~a = Ho + 2vp + H1 
and the nonlocal part H1 may be treated as a perturbation. In fact, in a 
macroscopic system /-/1 is an extremely small perturbation for all but 
possibly a very few k # 0 single-particle states. Therefore  we will ignore the 
perturbation for all states other than the condensate. Formally, however, it 
must be included to guarantee that (kl0) = 0. In a macroscopic system with a 
smooth potential the kinetic energy of the condensate in (17) is also 
negligible, so we may approximate the condensate density as 

Vpo(r) = [Ix - u (r) - 2vpl(r)]O (Ix - u (r) - 2vpl (r)) (19) 

everywhere except near the edge of the condensate, where the argument of 
the above theta function vanishes. The validity of this approximation is 
examined below. 

Let  us adopt a further approximation suggested by recent experi- 
ments 2,s and assume that the external potential u (r) is a function only of z. 
This approximation may be used because the sample chamber confines the 
gas to the vicinity of the z axis. Since the true potential is proportional to a 
magnetic field with zero curl, however, it will have an x and y dependence, 
and the absolute minimum, where the condensate will first appear on 
cooling, must be on the surface of the chamber. 

If the potential is a function of z only and varies on a sufficiently slow 
scale it is sensible to use the semiclassical or WKB approximation for the 
wave functions {6k, k # 0}. The errors inherent in using this approximation 
are significant only near the edge of the condensate and are examined below. 
Assuming periodic boundary conditions in the x-y plane, each single- 
particle state is identified by a momentum hk in the x-y plane and an energy 
eigenvalue ez for the motion in the z direction, The wave function to first 
order in the WKB approximation is 

6k,~ (r)oc [exp ( ik .  r)]{2m [e~ -Ueff (z) ] /h2}  -1 /4  (20) 

where the local effective potential is 

u~ee(z ) = u (z ) + 2vp (z ) - I-* (21) 

In integrating Eq. (8) with the above expression for the wave functions, the 
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density of  states and normalization of the wave function conveniently 
cancel, leaving 

m I °~ kdk [ dez {2m[ez -ueef(z)]} -1/2 
pl(z)  = 2--- ~ o ,uo.(z~ {e--~p [-~e~ + ~ ~ 1  (22) 

= A-3g3/e(exp [--flUefe(Z)]) (23) 

where A = (2rrh:/mkBT) 1/a is the thermal de Broglie wavelength and 
g3/2(z) is the usual Bose function. 9 

The first-order WKB approximation will not be valid at z for the states 
with the lowest ez, say for ez - u,er(z) <<- g(z). Assuming that the error made 
in (20) is then a factor of order unity, the error  in the above expression for 
pl(Z) may be estimated as 

f ~'°'~(~)+~(:) dez {2rn[e~ - u~i~(z)]} -1/2 
6Pl(z) '~e(h Io kdk_.o.(~) {exp[fl(e~+h2k2/2m)]}_lj 

_[[2m[(z )]X/2'~ 
= ~  W ) (24) 

The last estimate follows from the assumption fl[u,~(z) +/(z)] << 1, which is 
appropriate in the regions where this error  may be Significant. 

Within certain approximations we then have a relatively simple set of 
coupled equations for the local densities, namely (19), (21), and (23). The 
derivation of Eq. (23) depended on having translational invariance in the 
x-y plane. However,  the same equation (with r substituted for z) may be 
obtained in a somewhat less rigorous fashion for an arbitrary, albeit smooth 
and gradual, potential by using a Thomas-Fermi-l ike approach. 

The theta function in Eq. (19) separates the solutions of the coupled 
equations into two types. Those with po(z) = 0 are only possible for 

u (z) --> u (z,) ---- tz - 2v,~ -3((3/2)  (25) 

because pl(z) is bounded above by ~(3/2)/,I  3, where ~'(3/2)= Y. n -3/2~- 
2.612. For po(z) # 0 we see that u~(z) = Vpo(Z). Three examples of solutions 
to the coupled equations for the densities are shown in Fig. 1. The quadratic 
potential of Walraven and Silvera = u(z)= tz,Bo(z2/I 2-1) has been used, 
with B 0=  1 0 T  and l =5 .1  cm. The discontinuities in the densities are 
discussed below. 

Our analysis is only valid for a dilute Bose gas, which means vp << kBTc, 
where T~is the Bose condensation temperature.  Thus in the region where 
p0 ~ 0, we have flu~ = flVpo < flvp << T~/T, so we may assume flu~n << 1 as 
long as the temperature is not too far below T~. For  flu,~(z)<< 1-the 
expansion 9 g3/z(e -~) = ~(3/2) -2( r ra)* /2  + ' . "  may be used in Eq. (23) and 
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0 i i \ i  L 
0 0.02 0.04 0.06 

z (cm) 

Fig. 1. Density profiles of a weakly interacting Bose gas in a quadratic 
potential as calculated in the finite-temperature self-consistent 
Hartree-Foek approximation. Three different temperatures and total 
amounts of gas are illustrated, using the potential of Walraven and 
Silvera, 2 u(z)=/x,Bo(z2/12-1),  with Bo = 10T and I = 5.1 cm. The 
solid lines denote the total density p (z), while the dashed lines indicate 
pl(z), the density of particles not in the Bose condensate. 

the coupled equations for the densities are thereby reduced to a single 
quadratic equation in the dimensionless variable [hZA4u~e~(z)/2mv2]l/Z. As 
noted above, there are two types of solutions. When inequality (25) is 
satisfied there is a solution with p0 = 0 and 

[ h2h4u~(z)]ln={1 - 1  (26) 
J 

h Z A 4 F  

There are also solutions with u~ef(z) = Vpo(Z) ~ 0 and 

[h2X4ueff (z )  11/2 " h2A 4 2mv 3 1/2 

'2my2 j =l±{1-~mv2[U(Z)+h-~(( -~)- . ]}  (27) 

When the inequality (25) is violated the solution with the plus sign in (27) is 
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unique. However, for z such that 

u (za) <-- u (z )  <- u (zb) =-- u (z,~) + 2 m y  2/h2A 4 (28) 

all three solutions to the coupled equations for the density are present. This 
is illustrated in Fig. 2. For u ( z ) > u ( z b )  only the solution (26) exists. 
Somewhere between za and zb the densities must therefore have a dis- 
continuity of order mv/h2A 4. Precisely where this discontinuity occurs is 
determined by searching for the m i n i m u m  of ~ in (6) rather than just an 
extremum. In doing so one notes that the "middle" solution, the minus sign 
in Eq. (27), corresponds to a maximum in the free energy and so is not 

po(z) 

: 1  

~ J 

p(z) 

x3 

p, (z) 

I I i 
z o ze Zb 

Z 

Fig. 2. Detail of the density profile at the edge of the Bose condensate in the 
Hartree-Fock approximation for a su~ciently gradual potential that may be 
approximated as a linear function in the region shown. The points za and zb 
are defined in (25) and (28). The actual condensate edge lies atze. The dashed 
lines represent the continuation of an extremal solution of fl into a region 
where it is no longer a minimum. The solid lines represent realizable densities 
as marked. 
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physical. The result obtained is that the discontinuity is at Ze, where 
u(z,)=u(za)+(O.92)2mvZ/h2A 4, at which point the total density p(z) 
jumps by 1.5mv/h2A 4. Clearly, a true discontinuity cannot occur. Therefore  
we now examine our approximations to see just where they are consistent 
with the results obtained. 

The first approximation made was to ignore the kinetic energy of ~b0 in 
(17). This is clearly appropriate except where ~O0 ~ 0. To estimate the error 
made near the edge of the condensate at z = ze we can use ~0o(Z) from 
Eq. (27), 

vNo~O 2 (z) = ~(mv2/h2A 4 -I-](z - Ze)TU [) (29) 

where Vu is evaluated at z = ze, the edge of the condensate. We therefore 
see that the local kinetic energy near z = ze is 

~ L  ~-~~-z) J L ~ J  I 

The assumption that it may be ignored then amounts to 

h 2 ( IVul 
m <<  oo(z) 

If h2AZ/mv<<(rn[7ul/h2) -1/3, this is satisfied for all z. Otherwise it is 
satisfied only for z >> (m 17u [/h2) -1/3. I n  the latter case the discontinuity in 
the densities is not to be taken seriously. In the former case, which 
corresponds to the T ~ 0 plots shown in Fig. 1, the discontinuity in po(z) will 
occur on a length scale of order the "healing length" of Eq. (17), 

ml3pO(Ze)1-1/2 ~/2A2 X ~ " -  5 , / 2 0  m K \  
-~ J = my =(1.7  lu cm)~ k - - - ~  ) 

and the density profile indeed features a slightly rounded step. 
The error in the WKB approximation for pl(z) was estimated as 

(7([rn~(z)]l/2/hA2). The above analysis that leads to (26) and (27) depends 
on knowing pl(z) accurately to order [muefr(z)]l/2/hh 2. Thus our approxi- 
mations are valid provided g(z) << uen(z). To estimate g(z) we recall that the 
first-order WKB approximation for a wave function is reasonably accurate 
unless one is within order one wavelength of the classical turning point or of 
a serious discontinuity in the effective potential. Noting that 17 ue~[ = 617 u I, 
we then obtain 
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Therefore, Eqs. (26) and (27) are insensitive to the errors in the WKB 
approximation provided 

m v___~ 2 
max ,l'tmlz_zel2, << h2A4+ I(z-ze)Vul (30) 

Condition (30), which is identical to the condition derived in the preceding 
paragraph that justified the neglect of ~7260 in (17), can be rewritten as 

IZ_Zel>>min I h2A2, [mtVu[]-l/3 l 
t m y  L ~ J  J (31) 

It must be noted that the discontinuity in the densities at the edge of the 
condensate arises due to properties of the very low-lying single-particle 
states. Figure 3 shows the effective single-particle potential u~  correspond- 
ing to the T = 30 mK density profile in Fig. 1. It is clear that the lowest lying 
single-particle states do not penetrate into the region occupied by the 
condensate. This explains the drop in pl and the consequent step up in p0 as 
one enters the condensate. 

It is also apparent from Fig. 3 that the uncondensed eigenstates with 
energies, measured from #, less than v times some average of p0 will be 
localized on the surface of the condensate. Thus the low-temperature 
specific heat will be effectively proportional to the sample area and not its 

T= 50inK O.4 

ue"(z) 
(mK) 

0.2 

o 
0 0.02 0.04 

z (crn) 
Fig. 3. The effective single-particle potential ue~(z), (21), cor- 
responding to the T = 30 mK density profile in Fig. 1. 
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volume. Even in a translationally invariant Bose system, the Hartree-Fock 
equations are inadequate for kBT<~vpo since they predict a gap in the 
spectrum of excitations of order Vpo. The Bogolyubov generalization of 
Hartree-Fock developed in the next section eliminates both the dis- 
continuities in the densities and the curious density of states. 

3. BOGOLYUBOV-HARTREE-FOCK APPROXIMATION 

Let us now consider a more general trial Hamiltonian that allows 
"quasiparticles." The quasiparticles are bosons with creation operator 

bk = ak ch Ok + a +-k sh Ok (32) 

where ak is the usual particle creation operator and tP-k = ~k*. The trial 
Hamiltonian is then 

H t - l z N =  Y b~Ekbk (33) 
k~O 

and the restriction on the ensemble is now No = (a~ao)t = (aoao),. The trial 
ensemble is diagonal, so 

(b~bk)t -~Nk ----- (e ae~ -- 1) -x (34) 

which results in 

and 

1 2 1 + = (Nk + ~) ch ( o k ) - ~  ( a k a k ) t ~ n k  

(aka-k), = (a~a+-k), = --(Ark +½) sh (2Ok) 

(35) 

(The hyperbolic sine, cosine, and tangent are denoted by sh, ch, and th, 
respectively.) 

In the thermodynamic limit we then obtain 

l~(H,, No) = k~T Y. In (1 -e-aE~)+No((OIHo[O)-~) 
k ~ 0  

+ Y, [nk((klHolk)-tz)-NkEk]+½N~(OOlglo0) 
k¢O 

+No Y. (OklVlOk)[2ne--(Nk +½) sh (20k)] 
k ¢ 0  

+ Y. ~. (fk]Vlyk)[njnk+(Nj+½) 
]#0 k~O 

× sh (2Oj)(Nk +½) sh (2Ok)] (37) 

Demanding that ~ be stationary under variation of No, Ek, Ok, and the {~bk} 

(36) 



1 4 8  D a v i d  A .  Huse and Eric D.  Siggia 

results in 

(01Ho + 2 vp  - v (Oo + f i ) l k )  = ~ o k  

E~ = (klHo + 2vp  - lz lk ) 2 - ( k  Iv (po - ~ ) l k )  2 

sh 20k = (k l v (po - f i ) ] k  ) /Ek  

and, for j #: k -# 0 # L 

where 

and 

(38) 

(39) 

(40) 

(jIHo + 2vp - & v ( p o -  fi)lk ) = 0 (41) 

(nj +~) th (20 j ) -  (nk +½) th (2G) 
/% = (42) 

n j  - n k 

~(z)  = ~, IOk(Z)I2(Nk +½) sh (20k) (43) 
keo 

Since our calculation is to first order in the interparticle interaction v, 
and t7 is higher order in v than po, the t~'s in the above equations should be 
neglected. The equation for the condensate wave function (38) then 
becomes the same as in the Har t ree-Fock  approximation (16). The remain- 
ing single-particle wave functions are more elusive. How to solve a set of 
equations like (41) is unclear. However,  a first approximation would be 

(Ho + 2vp -- fkvPo)]k ) = eklk ) (44) 

where fk to lowest order is just the limit of (42) as/ '  ~ k. [Note that (44) 
defines ek.] We then note that for the lowest lying states, with ek << (vpo), nk is 
very large, th 2G  ~ 1, so/% ~- 1 for almost all L Thus we expect these lowest 
lying states to see an effective single-particle potential almost identical to 
that seen by the condensate (16). Consequently, they are not localized just 
outside of the condensate as is the case in the Har t ree-Fock  approximation. 
It is precisely these lowest lying single-particle states that cause the dis- 
continuities in the densities seen in the last section. We therefore believe 
that these discontinuities are merely an artifact of the Har t ree-Fock  
approximation and are not physical. 

The nonlocal Har t ree-Fock equations for the single-particle wave 
functions (18) were approximately solved by ignoring the nonlocal part, 
resulting in an expression very similar to (44), namely (H0 + 2vp)lk) = ek I k). 
For ek >>(vpo) it is clear that to leading order the {Ok(Z)} and the {nk} 
obtained will be the same in the Bogolyubov-Har t ree-Fock approximation 
as in the Har t ree-Foek  approximation. As was noted earlier, for a dilute 
Bose gas at temperatures not too far below Tc the Bose condensation 
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t e m p e r a t u r e ,  we have  k B T  >> (Vpo), so the  s t rong  d i sc repancy  b e t w e e n  the  
two t r e a t m e n t s  will a lways involve  on ly  a mino r i t y  of the  s ing le -par t i c le  
s ta tes ,  affect ing ne i t he r  the  c o n d e n s a t e  nor  s ta tes  wi th  ek >> (vpo). Thus  we 
be l i eve  the  dens i ty  prof i les  of  Fig.  1 o b t a i n e d  f rom the  H a r t r e e - F o c k  
a p p r o x i m a t i o n  are  i n d e e d  cor rec t  to l ead ing  o rde r ,  bu t  f ea tu re s  tha t  a re  
h igher  o r d e r  in the  in te rac t ion  v, n a m e l y  the  de p re s s ion  of p l  wi th in  the  
c o n d e n s a t e  and,  of course ,  the  d iscont inui t ies  at the  edge  of the  condensa te ,  
a re  p r o b a b l y  incorrec t .  A dis t inct ive  f ea tu re  tha t  we be l i eve  to be  cor rec t  
and  tha t  migh t  he lp  in ident i fy ing  Bose  c o n d e n s a t i o n  is the  change  in the  
g rad ien t  of the  to ta l  dens i ty  at  the  edge  of con de nsa t e  by  a fac tor  of o r d e r  
two.  
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