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The Painlev6 property for discrete Hamiltonian systems implies the existence of a symplectic manifold which augments the 
original phase space and on which the flows exist and are analytic for all times. The augmented manifold is constructed by 
expanding the Hamilton-Jacobi equation. A complete classification of the types of poles allowed in complex time is given for 
Hamiltonians which separate into the direct product of hyperelliptic curves. For such systems, bounds on the degrees of the 
(polynomial) separating variable change, and the other integrals in involution can be found from the pole series and the 
Hamilton-.Iacobi equation. It is shown how branching can arise naturally in a Painlev6 system. 

1. Introduction 

The study of exactly solvable or integrable dynamical systems has provided valuable insights into 
problems lacking closed form solutions as well as unexpected connections between geometry and analysis. 
While it is possible to prove a system is not integrable, say by exhibiting a homoclinic point, there seems to 
be no general way to prove integrability except by explicitly producing integrals. Numerical methods can 
be of assistance, but the need for an analytic test has long been appreciated. 

Kovalevskaya [1] was the first to search for integrable examples by assuming they would have 
singularities no worse than poles when continued to complex times. Painlev6 systematized this type of 
analysis and found all equations within a certain class with this property, (plus fixed essential singularities). 
The connection between what is now called the Painlev6 property and integrability was only made quite 
recently [2]. The essential correctness of the Painlevt-Kovalevskaya procedure has been demonstrated in 
many examples [3-7]. Weiss and others have used an extension of this analysis to calculate key properties 
of many of the canonical soliton equations [8, 9]. 

Integrability places strong restrictions on the geometry of flows in phase space. The above referenced 
papers are largely analytical and local in content, while geometric constructs are global and more 
qualitative. Our aim in this paper is to show how more intensive use of the geometry of phase space 
enhances the power of the Painlev6 test and adds to its plausibility. Another geometric approach to this 
problem has been undertaken by Adler, van Moerbeke, and Haine [6, 7, 10]. 

In this paper we will restrict our attention to systems of differential equations on a complex Euclidean 
space C 2n, of even dimension, which are Hamiltonian. In conjugate variables { q,, p, }'/__~ on C 2n these have 
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the form 

#+- ap,' 

aoV' 
.b, = - aq~' 

(1.1) 

where ~'=,,vt'(p,q) and is independent of time. We will further assume that ~ is a polynomial in these 
variables. 

The results of this paper fall into two categories: 
(i) Construction of a partial compactification of the phase space, C 2", for eqs. (1.1) which have the 

Painlev~ property (defined below). We call this an augmentation of C2n; it provides "coordinates at 
infinity" which regularize the blow-up of solutions and permit their continuation for all time. 

(ii) Several approaches to bounding the degrees of polynomial integrals for a ~ystem (1.1), if the system is 
in fact integrable. Precisely, we provide an algorithm for deciding whether or not a system is separable 
in the sense of Jacobi. 

We will give a fuller description of our results, and the layout of this paper, after developing some 
background. 

1.1, Basic concepts 

Our results are framed in terms of the singularity analysis of solutions to (1.1). We briefly recall the 
ingredients which we will use. 

One constructs formal Laurent series solutions 

q, = + etit + " "  ), 

p,  = t -s'( fl6 + fl{t + " . . ) ,  

a ,0, 

B~*0 
(1.2) 

by direct substitution of these series into (1.1). These solutions may depend on up to 2 n -  1 free 
parameters. (We have suppressed a parameter, t o, corresponding to time translation which can be restored 
by substituting ( t -  to) for t in (1.2).) Each parameter can be assigned an order, O, which is defined by the 

t') coefficient, ao , where the parameter first appears. For a given formal solution, (1.2), these numbers O, 

counted with multiplicity, are referred to as the resonance orders or degrees of the solution. 
We can now define some terminology. 

Definition 1. A formal solution (1.2) of (1.1) with at least one diverging (q+) or (Pi) is called a balance. The 
numbers (f, gi) are called the leading exponents. 

A balance is principal if it depends on ( 2 n -  1) free parameters (t o excluded). Balances with fewer 
parameters are lower and may be ordered by the number of parameters present. 

Definition 2. The system (1.1) is Painlev6 if the solution is meromorphic in the vicinity of any singularity. 
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Remark 1. We need not restrict ourselves to "movable" singularities, (those whose position depends on 
initial data), in definition 2 as is conventionally done, since our equations of motion are polynomial, and 
therefore have no fixed singularities. 

Remark 2. For any Painlev6 system, the leading exponents and resonance orders must all be integers. Also 
singularities can only occur when some variable blows up, again because (1.1) is polynomial. To show a 
system is Painlev6, once the formal balance series are known, requires a convergence proof which follows 
from the result of section 2. 

Remark 3. We consider as Painlev6 systems whose solutions are entire in time. Actually, the considera- 
tions in section 2 suggest that if one initial point (q, p)  blows up in a finite time, so will an open set of 
points containing it. In all examples we are aware of, only codimension one or higher sets of initial data 
remain entire; however, a general proof is lacking. 

We will have little to say here about the practical aspects of calculating the resonance orders O. Once 
consistent leading exponents and coefficients (a 0,/~0) are known, the allowed p may be found by 
linearizing (1.1) about the leading terms. An eigenvalue problem for the "Kovalevskaya" matrix results, 
whose non-negative solutions are the desired O. Actually, the Hamiltonian form of (1.1) imposes additional 
structure on the set of resonance orders if they are defined more precisely. The necessary details and their 
consequences are left for the appendix as is an illustration of certain subtleties that extracting p from the 
linearization may entail. 

1.2. Augmentation 

The use of flows to construct and complete a space has appeared in many geometric contexts ranging 
from Morse theory to moduli spaces. A simple example, though not exactly of type (1.1), will serve to 
illustrate how our augmentation is built from flows. 

The Riccati equation is 

.fc = a2 X2 + a l x  + a o ,  

where the a~ are entire functions of t. The dependent.variable x is analytic whenever it exists and has only 
first order poles. Define .¢ = 1/x and observe that ~ also has Riccati form; ~(t)  is analytic whenever it 
exists. The original coordinate domain { x ~ C }, augments to 

M={x~C}U{~=O}. 

The "point at infinity" ~ = a l i~ i,, an open coordinate a, , , , , i , ,  { ~ ~ C }. These two neighborhoods, 
together with the transition function ~ = l / x  on the set where x, ~7 do not vanish, give M the structure of 
a manifold; in fact, M is just the Riemann sphere. 

The systems we consider entail more than a one point compactifieation. The general augmentation 
involves adding a stratified set to C2"; that is a disjoint union of manifolds (strata) possibly of varying 
dimensions. The different strata correspond to different classes of asymptotic solutions. In fact these strata 
and their relative configuration provide a complete geometric picture of the range of singularity behaviour 

of (1.1). 



306 N. Ercolani and E.D. Siggia / Painlevd property and geometo' 

The algorithm which constructs the augmented phase space recasts in a very detailed way all the local 
anal)sis that led to the formal series (1.2). Section 2 formalizes these remarks. Our method associates a 
coordinate neighborhood (called a patch) to each stratum and a transition function between this patch 
and the original coordinates. This data is constructed by a canonical transformation which is generated by 
an asymptotic solution of the Hamilton-Jacobi equation 

a S )  (1.3) .,'f' -~ . ,q  - -E 

associated with (1.1). 
The use of pole series to complete invariant sets of Painlevd systems has already received extensive 

treatment in particular cases. In particular, for two degree of freedom, Liouville completely integrable 
systems, Alder, van Moerbeke, and Haine [6, 7, 10] use pole series together with the polynomial integrals 
to embed a level set into a large ambient projective space where, by methods of algebraic geometry, they 
show that it completes naturally to an Abelian surface. Also Okamoto [13] and later Miwa and Jimbo [14] 
studied the two-dimensional systems classified by and named after Painlevd. By a sequence of o-processes 
(better known as blowing up and blowing down) they construct an extended phase space for the flows. 

Our approach, besides being different in method from previous treatments, has greater scope. We 
require no special properties for the system (1.1) other than that it be Painlevd and polynomial. No use is 
made of other integrals so we can handle Painlevd systems without regard to whether or not they are 
integrable. The construction is intrinsic, it is not necessary to work through an ambient space. Also the 
method is algorithmic and terminates in a prescriptible number of steps. Furthermore the coordinate 
patches at infinity produced by this procedure have a natural symplectic structure. Hence, it is easy to 
write Hamilton's equations in the new coordinates. 

1.3. The search for separable systems and their integrals 

In sections 3 and 4 we relate the concept of a Painlevd system to that of an integrable system in the 
sense of Liouville. Explicitly, we do this for systems in which the Hamilton-Jacobi equation, (1.3), has a 
solution, S, which separates under a change of variables, q = q(~), into a sum of identical terms, i.e., 

s =  h ,h, . . . . .  h , ) ) l / 2 d l ~ , ,  (1.4) 

where the h, are parameters and P is a polynomial in all its arguments. Under these assumptions it is 
possible to be very precise about the number and types of balances (see section 3). 

As an example of our results, we show that when the variables ( p,, q,) are given degree weights equal to 
the leading exponents (j,, g,) of a principal balance (these exponents are unique even if there is more than 
one principal balance), then 

cdegdf ' l (p.q)  = 1 + sup (f, + g,), 

where deg means "weighted degree" in the above sense and J('~ is the integral of lowest weighted degree, 
and c = 1 or 2, depending on whether there are 2 or 1 principal balances. (Because of the hyperelliptic 
form of (1.4) there can be at most two principal balances.) Moreover, having found the first integral, J~'l, 
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the degrees of the other polynomial integrals are given by 

where Pj('J~'I)(P~ < Pj for i < j )  are the resonance degrees of a lowest balance of the oX/'~-flow. 
Given such bounds, the search for integrals, and hence separability, reduces to a finite search. In section 

4 we also present an alternative formal scheme for reading off integral bounds from an asymptotic 
expansion of the Hamilton-Jacobi equation. 

All these methods are in the nature of solving an inverse problem. Thus one requires a thorough 
characterization of the direct problem; that is of separable systems*. This we do in section 3. Some of this 
development overlaps existing results (in particular, see Adler-van Moerbeke [7] when n = 2). What is new 
here is: 

(i) application of Painlev6 analysis to the ~-odes (i.e. the system (1.1) in separated variables) to give a 
systematic description of all balances; 

(ii) use of Hartogs' theorem to show that for separable (1.1) with polynomial .,'F, there exists a complete 
set of integrals in involution with .,'f' which are polynomial. 

(iii) a complete description of a new separable hierarchy, the Htnon-Heiles systems, which exhibits a 
locally separable variable change that is globally a finite covering of phase space. 

As an extension of the results in section 3, we were able to explain a class of examples constructed by 
Ramani-Dorrizi-Grammaticos [5], which are separable but not Painlevt. Rather, they admit asymptotic 
solutions which are developed in fractional, non-integral, powers of ( t -  to). In fact, these turn out to be 
projections, of the separable, Painlev6 systems of section 3 onto lower dimensional sets. The level sets of 
these separable systems are not Liouville toil but rather a certain symmetric product of a Riemann surface 
with itself which has a complicated topology. The explanation of these examples is developed in the 
conclusion. 

2. Phase geometry of a Painlev6 system 

2.1. Augmented phase space 

We will now introduce the notion of "adding points at infinity" on the phase space C 2'' of (1.1). It is 
actually natural to define this for an arbitrary autonomous system of ordinary differential equations (ode): 

Yt=F(x), x~-C m, (2.1) 

with F entire, analytic on C". Eq. (2.1) has the Painlev6 property if the solutions 

x=x( t - t o ;Xo )  (2.2) 

have singularities which are at worst poles. 

*Actually, we place some technical conditions on our definition of separability. A precise definition is given at the start of section 
3. Some of these conditions are made for simplicity and could be removed, while others are essential. However, the definition is broad 
enough to include all separable systems of type (1.1) that have so far been discovercd. 
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It follows from standard ode existence theory that if U is a relatively compact subset of C",  there exists 
an open disc z~ c C such that 

x , _ , o ( x 0 )  -- x ( t  - to; x 0 ) '  ,a x u --, C m. (2.3) 

in other words xt_to is a family of holomorphic maps on U parametrized by t - t o ¢ a .  It is a geometric 
consequence of the Painlev6 property that the phase space of a Painlev6 system can be augmented so that 
the flows exist for all time; i.e. we can replace the righthand side, C", of (2.3) by the augmentation, M, so 
that z~ - C. Thus xt-t0 becomes a 1-parameter group of holomorphic maps on M. 

We now give an implicit but precise characterization of M. 

Defini t ion 2.1. The augmented phase space, M, is, if it exists, the unique complex manifold such that: 
a. C "  is an open dense complex submanifold of M; 
b. M -  C" is a finite union of irreducible analytic hypersurfaces of M; 
c. there exists a complete analytic flow 

x ' C X M ~ M ,  

which extends the "chunks" A X U ~ C "  of (2.3); 
d. two orbits LIt~cXt_to(Xo),UtGcXt_to (x~) either coincide completely or are disjoint; 
e. (minimality condition) i f / ~  is any complex manifold satisfying the above properties, then M c_ ~ is a 

complex submanifold. (This condition is included to make M unique.) 

For a Painlev~ system we propose to construct M as a union of coordinate patches which consist of 
U o = C",  the original phase space and a patch U, c C m (i >_ 1) for each balance (as defined in section 1) 
Let ~/= { U 0, UI, . . . .  U~ } denote this open cover. 

For i ~:j, consider U, n Uj, an open subset of U,. To construct a complex manifold M from ad we must 
define biholomorphic maps or transition funct ions  

,u: ~ n  ~(_c ~) -, ~ n  ~(c_ ~) (2.4a) 

such that 

#j~t =#~j, (2.4b) 

and 

~u o %k o ~k, = id o n  ~.n ~n  v~= (~n  ~) n (~n v,). (2.4c) 

In effect the ~u"glue" U, to Uj along the open set U, n Uj = Uj n U~, (fig. 1). 
We now show that M is unique if it exists. Suppose that M l and M 2 are augmentations that satisfy 

definition 2.1. M , -  C"  is the hypersurface at infinity which the augmentation adds to C". Both M~ and 
M 2 contain C m as a common open subset. Thus, in the coordinate patch for the k th balance, U k, we have 
the following identification, through this common C m (see fig. 2): 

v~\( M,-  c ~) = v , \ (  M~- c~), (2.5) 
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ui U| 

Fig. 1. Patching of U~, Uj by the transition function ¢,j. 

'°% O 
Uk~(M,-Cm) Uk\ (Mz-C m) 

MI M2 

l-C m 

m 

Fig. 2. Two nominally distinct patches in M l and M 2 are identified through C"'. The dashed line in the upper pictures is M, - C"' 

and not part of C".  

= _ for va~ous where A \ B  d/A - - ( A  n B). The idea of the argument is to use backward time flows, x ,o 
times t 0, to pull the respective hypersurfaces M , -  C "  back into C °' where 2.5 can be used to identify the 
respective images. Fixing an arbitrary time t o, condition (b) of definition 2.1 requires that ( M, - Co') n Uk 

is an analytic hypersurface in b~. By (c) and (d) of that definition, the puii back x ,,,( M , -  C ' ) N  U~ is 
also an analytic hypersurface which is locally biholomorphic to M , -  C"'. Off of the codimension two set 
( M  i - C o ' ) N X _ t o ( M ~ -  Co')N Uk, X_to(M~- C o ' ) n  U k is the set of points in U k \ ( M  ~ - C ' )  which exit 
the original phase space in time t o (fig. 3). Hence X-to((mt - Co') n Uk) = X-,o(( M2 - cm) n U k), since 
viewed from either M~ the two sets are subsets of Co" and may be identified trivially. Composing with the 

biholomorphic map Xto we get ( M  t - c m ) n  U k = ( M  2 - C o ' ) n  U k off of ( M , -  C " ) N X _ t o ( M , -  C m ) n  
U k. But then by varying t o we extend the isomorphism between ( M  l - C m) n U k and ( m  2 - Co') n O k 
everywhere except subsets of (M~ - Co') n U k which are invariant under the flow. However, such subsets 
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(Mi-C m) n ;.to(Mi-C m) n u k 

C m ) 

/ 
;.to(Mi-C m) fl U k 

n u k 

Fig. 3. Effect of the flow x t,, ~n the hypersurface at infinity as seen in the patch U~. 

can be deleted from M~ without affecting conditions (a)-(d). Hence, since M r satisfies condition (e), these 
sets cannot exist. Therefore M t - M 2. 

W e  return, now, to the setting of Hamiltonian systems so that m = 2n. The above characterization 
provides a geometric interpretation for the balances. Since balar~ces describe, at least formally, the ways in 
which solutions ca~ blow-up, they correspond to what happens  when the solutions "exit" the phase space 
C 2". M - C  2" consists of a locus of points added to C 2" which correspond in a one to one way with 
"places" where the orbits exit and re , :m to C 2". The topology of M is determined by how the p and q 
series blow up. Thus a principal balance is a ( ~ , -  1)-dimensional sublocus of M - C  2". In general, a 
lower balance depending on r parameters, exc ~uding t o, is an r-dimensional submanifold of M -  C2". In 
section 2.2 we provide an effective procedure for constructing an augmentation, M, for a Painlev~ system 
(subject to a mild technical constraint). 

2.2. Painlev$ completion of phase space 

In this section we outline an algorithm to construct an augmented phase space M and in section 2.3, 
illustrate it with a number of examples. When lower balances are involved we are not able to demonstrate 
abstractly, using only the Painlev6 assumptions (and a nondegeneracy condition), that all properties of M 
are satisfied. In particular it is very hard to show that certain consistency conditions on the transition 
functions between various patches are satisfied. Nevertheless in any example, the requisite checks are quite 
explicit. The Painlev6 property and virtually all aspects of the pole series are exploited to build M. Even 
though we cannot prove, in general, that the existence o t M  follows from the Painlev6 assumptions, the 
connection between the two is very tight. 

With these reservations the construction of M proceeds in four stages. 
(1) For each balance, one develops a corresponding formal expansion of the Hamilton-Jacobi equation 

for S(q) which contains n free parameters if continued beyond a calculable order. 
(2) A truncation S of S then defines a canonical variable change from { q, p } = U o to a patch covering 

that portion of "infinity" corresponding to the balance in question. The patch vari~,bles are the n free 
parameters in S and their conjugates. 
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(3) The Hamiltonian is rewritten in terms of the new patch variables and the flow extends unambiguously 
through infinity. 

(4) The final and most complicated step is to derive transition functions among the patches that were 
added to cover infinity. If there are no lower balmaces, then all required transition functions were 
constructed in (2). Otherwise, starting from each principal balance, enumerate all lower balances in the 
closure of the principal balance submanifold in M -  U 0. This is accomplished concretely by rewriting 
Hamilton's equations in the principal balance patch and seeking singular solutions which limit to the 
boundary region in question. All attached lower balances must occur this way and by repeating (1) and 
(2) transition functions follow. 

Before discussing these four steps in more detail we work through a simple example consisting of the 
Weierstrass elliptic functign. 

The Hamiltonian is 2 3 F = p 2 - 4 q 3 - a q  where a is constant and p ,q  are canonically conjugate 
variables. There is precisely one principal balance, 

q =  1 )2(l+e(t_to) + . . . ) ,  
( t  --  t o 

and thus one patch to add. There is just one resonance with p - 6 corresponding to the energy. 
The most expeditious way to integrate the Hamilton-Jacobi equation is to exploit the fact that there is 

only one degree of freedom to rewrite E =~f(aS/aq ,  q) as 

s -  + f (2E + aq + 4q3) 1/2 dq. 

The integral can be expanded for large q up to at least order q-t~2.. ( t -  t o) so as to capture the 
dependence on E. More generally one has to inspect the Laurent series for p and q and use the equation 
p = i)S/Oq to infer p - 2q 3/2 (ignoring an overall +). One then sets aS/i)q = 2q 3/2 + OS'/aq and solves 

2q 3/2 aS' /aq = a 1 )2 + E.-  (as'/aq 

recursively for S'. The first reasonabl,' approximation g to S is 

S ( q , v ) =  + ( 4 q S / 2 + ; q l / 2 - v q - 1 / 2 ) .  (2.6) 

Since we are truncating S at the order shown, E is no longer constant and becomes the variable t, at 
infinity. Clearly if more terms in the expansion of S were retained v would approximate E to higher order 
i ~  i ~ D,,  A+=~..,;..,-. ~ , -  10). ~ y  '.-.,,...'=u-=I5 

u = bg/av,  p = bg/i~q, (2.7) 

we obtain the transition functions 

- 2  q - - u  , 

p =  - - 2 u  - 3  
a 1 - - v u  3 .  

2 

(2.8) 
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Note that the + in S disappears. The points added to augment the manifold are { u -- 0, v ~ C }. One can 
also verify directly that dq ^ dp  ffi du ^ dr.  The Hamiltonian in the principal patch reads 

a 2 a 4 1 
,3~(U.V)--O+ ~'U 2+ ~'OU + ~'V2U 6, (2.9) 

and one  can verify that 

a = a /av = t + + ( u ) .  

It might appear that the inverse of (2.8) is multivalued around u ffi 0, but this does not follow once one 
realizes that the domain of  (2.8) and thus the patch covering { u = 0, v ~ C } is restricted to a tube around 
u = 0. Therefore we can find u recursively by solving 

/( " . ' )  - 2 q / p = u  l + ~u  +'~t,u ~ , 

and obtain v by solving the quadratic equation o'~'(u, v )~o~' (p ,  q). The desired root is the one for which 
v --* 00 as u -~ 0 and ~ is fixed. 

We now discuss the four steps required to construct M in more detail. 

2.2.1. Hamilton-Jacobi expansion for a balance 
Given a balance, weight the variables { p, q } according to their leading exponents in (1.2) i.e., q~-- t-f,, 

p , - - t - re .  The principal balances are singled out in our discussion since more is known about them. In 
particular, by suitably partitioning the constants we can find the first few terms in the expansion for S by a 
variable change (appendix A) based on the series. It is at this point also where one has a precise but not 
necessarily unique criterion again based on the pole series as to which variable in a conjugate pair is p and 
which is q. With this done, we set p = OS/Oq and solve 

(+s) ~-, q = E (2.10) 

iteratively. The terms in S will be ordered by their degree, I, with respect to t, i.e., St - t I, (I is an integ2r), 

S -  S _ r +  S_r+l'Jt- S_r+ 2 + . . .  , (2.11) 

where r > 0. For a principal balance, the first term, S r, is frequently a mo:~omial ,,~ ,,~2 • 11~'t2 -.. vi ~ Q but in 
general is a homogeneous function of q with no free constants, i.e., it has a precise homogcneous degree. 
The iteration is done by linearizing (2.10) about the piece of S known up to that point and inverting the 
r e R i l l t i n o  l i n o n r  ~r~or~tt~r 
. . . . . . . . .  ~ [ . , , s . , a  ~ l ,  v A .  

In the appendix it is shown for principal balances that free parameters only enter S through S i with 
i > 0 (i.e., S, is bounded as qj ~ infinity). The diverging terms, Si<0, in (2.11) are therefore finite sums of 
monomials with well defined coefficients. Free parameters only enter through the free functions in the 
kernel of the linearization of (2.10). (With one degree of freedom systems the one free constant is the 
energy which appears explicitly in the equation.) 

To determine the free functions exactly would be equivalent to having the other integrals in involution 
and it is unreasonable to expect local analysis to yield this information directly. (Recall that from n 
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integrals in involution we can solve for 8S/8q~ as a l~tmction of { q } and compute S by quadratures.) For 
the purposes of constructing transition functions, we can choose an arbitrary free function so long as the 
constant thereby introduced matches the constant introduced at the analogous order in the pole series. At 
a principal balance it should be remembered that the transition functions are just a symplectically 
consistent truncation of the pole series. For any balance, we expect to obtain n - 1 free constants from the 
free functions in the kernel, which together with E determine the new canonical momenta. It thus appears 
impossible to have a balance with fewer than n resonances for a Hamiltonian system. 

The parallels between the Painlev6 analysis of a system of differential equations and our Hamilton-Jacobi 
expansion should be noted. One first enumerates all "balances" by examining all pairs of monomiais. Free 
constants or functions then enter through the kernel of a linearized operator. 

There will be generating functions S which satisfy (2.10) and appear to give rise to lower balances with 
fractional exponents in time. These do not exist as true solutions of Hamilton's equations for ~"  since the 
leading coefficients are all zero; however, they will correspond to acceptable lower balances for one of the 
Hamiltonians in involution with o~". (Two Hamilton-Jacobi equations are compatible if and only if 
the associated Hamiltonians are in involution.) 

2.2.2. Transition functions 
For any balance, the Hamilton-Jacobi equation for 3~"(p, q) will generate a transition function, which 

is canonical, from (p ,  q) to the coordinate patch coveting that balance. At a principal patch, we define for 
an n parameter truncation of S, S(q, v , , . . . ,  %,_ 1), 

U -" Og/OO2n_ 1" 

02n-  l -" E. 

vi-- OS/Sv.+i_ i, i = l , 2 , . . . , n - 1 ,  
(2.12) 

Although E is one of the n parameters in S, it would be notationally confusing to use it as a variable on 
the coordinate patch since using (2.12) to express ~" in terms of u, { ,, } results in a nontrb,ial polynomial 
which is linear in v2,_ ~ but contains the other coordinates as well, i.e., " E "  is no longer a constant. The 
submanifold added to M -  U 0 (i.e., the piece of M at "infinity") for a principal balance is just u = 0, 
{ v } e C 2"- 1 in local coordinates; we now establish this. 

The Hamilton-Jacobi expansion can always be continued to a sufficiently high order such that in u, { v } 
variables Hamilton's equations read 

~ = 1 + O ( u " ) ,  
(2.13) 

= o ( , , " )  

for any integer m > 0. The function S accomplishes in a canonical way the variable chan~. . tom { p } as a 
Laurent series with 2 n -  1 constants to { p } as a function of { q } and the n constan,o with largest pj, 
(o,,_ 1,-.-, v2,-1 above). The variable, u, conjugate to E becomes identical to t -  t o plus small corrections 
of order (t - to) "+1. Similarly, all the other v i approximate the pole constants with corrections that can be 
made of order (t - to) "+ 1. The transition functions derived from 5~ must agree with more and more terms 
in the pole series when we substitute in a solution of (2.10) up to some high order. Hence p, q( u, { o }) are 
rational in u and polynomial in { v }. "Infinity" is just the surface u = 0. 

For the lower balances, a 2n to 2n variable change is still required since these balances have to be 
adjoined as patches on M to the original { p ,q}  phase space. However, en 'y a submanifold of 
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codimension two or higher is actually added. Local variables can be chosen so that its equation is 

U! = M 2 - "  ""  " U./.-- 0 

for a balance with 2n - j  resonances. Furthermore, uj # 0 corresponds to the next higher balance. 
Let v t , . . . ,  v2,_ J be the other local variables. The expansion for the generating function can be carried to 

an order such that { v } agree to ¢9(t - to) ' '+ t with the resonance constants in the series as before. Hence 
we have 

= I + 

i= I,...,2,-j. 

However the equations for the remaining local variables u2,. . . ,  uj cannot be controlled by reference to the 
pole series. In the examples, we find equations of the form 

a~=lg(u~'~,), u ~ Q ,  0 < u ~ < l ,  i = 2 , . . . , j .  

The u~ ~:  are analogues of the Kovalevskaya resonances with negative exponents. 

2.2.3, Flows at infinity 
For the principal balance patch, the flows obviously extend through infinity. Furthermore ~ is 

polynomial in u l, { v }. It is polynomial in { v } since the transition functions are, and their poles in u t must 
cancel since u~ ~ t -  t o and Jff is invariant. 

Since the u l, { v } differential equations are polynomial, analytic solutions exist around u~ = 0. Hence the 
original pole series for { p, q } converge to meromorphic functions in (t - to). The most reasonable way to 
prove a singular series solution to a differential equation exists is to change coordinates to obtain a regular 
equation around infinity to which Picard iteration can be applied. Constructing an augmented manifold 
systematizes this,  :ocedure. 

The lower balance flows have contact of order greater than ore  with the hypersurface at infinity 
( M -  C 2") (e.g. the hypersurface is u 1 ~ u 3 if ~'2 = 2/3 in section 2.2.2 above). One may have to check on 
a case by case basis that the { ut~ 2} equations do not branch around infinity, but the pole series for the 
corresponding lower balance are single valued by the Painlev~ property. 

2.2.4, Transition functions between added patches 
The Hamiltonian equations of motion in the principal balance patch are well defined for all u, 

{ v } ~ C2" but we will only need them for u small. Clearly any singularity we find with u ~ 0 and some 
v ~ oo should not be considered in this patch ard can be ignored. The true singularities in u, v variables 
are those for which v --, oo as u - ,  0 and these lie in a lower balance patch. In general we only have to use 
the principal balance patch in a tubular neighborhood of u = 0 whose radius tends to zero as v--, oo. 
Fortunately it is precisely under those conditions that we can show from the differential equation (2.13) 
that the transition functions p, q(u, v) are uniquely invertible. 

The next set of lower balances will appear, attached to some principal balance, as singularities 
u - ,  0, v ~ oo. A Painlev6 analysis can be done on the u, { v } differential equations to find pole series with 
the appropriate number of free constants. The associated Hamilton-Jacobi expansion can then be 
performed and transition functions determined. The process of enumerating all the singularities of 
Hamilton's equations in each patch defines a natural inclusion relation on the set of all balances. 
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2.3. Examples 

The general discussion in the preceding section and the appendix will be illustrated with a series of 
examples of increasing complexity. The pole series are brought in to verify (A.1) and the pairing between 
resonance degrees (A.2). 

2.3.1. Jacobi elliptic functions 
The Hamiltonian is 2oY¢'--- p2 _ q, _ aq2 and there are now two principal balances 

1 
q =  + ( t - t o )  (1 + . . . ) ,  (2.14) 

p - O  

and two patches, + .  As above we derive 

1 a ) - +  -~q + ~ q - o q - t  

and apply (2.11) to obtain the transition functions 

q =  :tZu~l ' (2.15) 
p = + + 

The two balances are distinct and we must add to p, q ~ C both sets { u _+ = 0, v + ~ C }. 
The transition functions are globally uniquely invertible wherever they are defined. Therefore we can 

take the patches covering infinity to be just { u, v } ~ C2. The Hamiltonian in u, v variables is just 

 =o(1 + + 

for each balance, so again the ~ equation has the desired form, k = 1 + O(u). 

2.3.2. Painlev~ II 
The equation of motion is ~ = 2q 3 + tq. To conform with the definitions in section 1 we will make it an 

autonomous Hamiltonian system with 2 degrees of fieedom. Let 

ZM'= p~ - q ~ -  q2q~ + 2p2, (2.16) 

so that q2 is the time, q~ = q, and p~ = q- 
There are two principal balances in direct analogy with the Jacobian elliptic functions, 

1 
q ! = + , .  . , ( 1 + . . - ) ,  

~t - *0J 

Pt =Ol, (2.17) 
q2 = const + (t - t o), 

- 1  
P2 = t _ t o ( ~  + " " ) ,  

and no lower balances. 
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The explicit calculation of pole series is facilitated by using the nonautonomous form of o~. Set 
q2 - ct + t, P2 = c2 + ,/t~tq~ dt and assume ql, Pl blow up at t --- 0. Then 23f'= p~ - q4 _ ( t  + cl)q~ admits 
the symmetry (qtPt)  ~ -(qlPl)  so we need do the calculation only for one choice of signs. The series is 

then 

qt = t - t  ct 1 t2 3 +c3t + . . . .  

One can verify, (cf. A.1), 

dp~A dq~=dtoA dE(ct, c2,c 3) + dc2 A dcl, 

and E ~ - 5c~. + c2 + !32 ct2 (i.e., E is ~ evaluated for the pole series). The resonance degrees of t o and c3 
satisfy Po + #~ = 3 = gt + fl and for c t and c 2 we have P: + P2 = 1 = g2 + f2 in conformity with (A.2). 

The Hamilton-Jacobi equation reads 

( ~ S )  ~ ~s 
2E = -~1 + 2"~2 - q~ - q2q~. (2.18) 

If we assign qt a weight 1 and q2 a weight 0, then the largest monomial in S when differentiated and 
substituted must cancel q~. Hence to leading order S ~ + ~q~. This result would also follow by observing 
from the series that Pl -~ q~. If we now expand (2.18) by setting S = + 13 ql3 + S', it becomes 

:0S '  20S ' ( ~ S ' )  2. 
+ 2ql "~t + aq2 = q2q2 + E -  ~i~h (2.19) 

Only the first term in the linear operator on the left has to be retained since the second is of lower weight. 
An iteration can now be done, and the kernel of O/Oq~ acting on S'  is clearly an arbitrary function of q2. 

It is expedient, however, to simply solve (2.18) for OS/Oqt and iterate as in the elliptic case, viz., 

~ + ~q2 qi- + Eqf 4 + "'" dql + f (q2 ,  a) ,  

where a second free constant a, has been introduced through the free function f in the kernel of O/itql. 
We have immediately 

S =  =l=(l 3 3ql + ~q2ql) + 0(1),  

which is then to be used to compute OS/Oq2 in the integral to continue the iteration. We therefore obtain 

if= +(~q~+½q2q t )_~ ln (q l )_ f+(  Of i 2) l ", - E + ~ q 2  q{ + O ( q ~ ' ) .  (2.20) 

Now set f =  - a q 2 -  ~q~ and compute the symplectic variable change from 

0S 0S 
u = - ~ ,  b= Oa. 



N. Ercolani and E.D. Siggia / Painlevd proper~ and geometn. ' 317 

One obtains (suppressing the 5: subscripts on all variables) 

u -  T-q~ 1, 

b -- q2 ~= q {  l, 

Pl - :!: ( q2 + q2 ) - ½qi -1 5: ( a + E)  qi- 2, (2.21) 

P2 +ql + a +  x 2 -- 8q2" 

While (2.21) satisfies the technical requirements for the variable change to the principal balance patch, 
more attractive transition functions are obtained by a further canonical variable change to (U, v) 
coordinates, 

U 1 ----04" 1 2 sq2, 

v 2 = b + q i  - l  = b -  u = q 2 ,  

o 3 - a + E ,  

for which 

dp~A d q ~ = d E A  d u + d a  A db 

= d v  3 A du + dv I A d v  2. 

Finally the transition functions are, (suppressing + subscripts on u, v) 

ql = q:u- t ,  

Pl = + (  u-2 + v2/2 + u/2 + u2v3), (2.22) 

q2 = O2' 

P2 = - - u - l / 2  + Vl" 

We can again use for the two principal balance patches, { u _+, v + } = U.±= C a, since the transformation 
(2.22) is globally invertible wherever it is defined. Comparable transition functions were obtained by 
Okamoto [13] after a lengthy sequence of local algebraic transformations. The Hamiltonian is identical in 

the two new patches and reads 

..,~._ .~O2q. O l q _ O 3 . a t . l  2 102//q- 1//2/3302 -t- 11/2 .]_ ///303 -t- ~I/! 403 .2 

2.3.3. Integrable " H$non-Heiles " 
The Hamiltonian reads 

~'= ½( P~ + p~) + q2q2 + 2q 3 + [( q? + q~). (2.23} 

The Painlev~ test for (2.23) was done in [3] and Greene found the second integral in involution. We will 
omit the quadratic terms in q~ in most of what follows to simplify the algebra. Also the transition 
functions are taken only far enough make 6,-- const, rather than O(u) which is adequate to show in this 
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example that the transition functions are invertible and separate the flows at infinity. Our discussion is 
broken into several subsections for clarity. 

a. Series and resonances 

There is a single principal balance with leading exponents f,  = (1 ,2) ,  g~ = (2 ,3 )  and series 

ql - ct t - l  + ~(Sct + c~)t + c2 t 2 -  (~cSt + la~c3 t + 7~2oct)t 3 

- ~,,~(a + , ,~ ) t" -  ~(~c~ + V~(c~) ) t~+  . . . ,  

q2 = - t  -2 + ~ ( c ~ -  1) + (~c~  + ~ c ~ -  2~,o)t 2 + ~clc2t 3 + c3t '  + " " " . 

(2 .24 )  

For simplicity we have written t for t - to. When (q~ + q~) is omitted only the highest powers of c~ remain 
in each of the coefficients. (P7 is a seventh degree polynomial in cv) By inspection, resonances occur for 
p--- - 1 ,  0, 3, and 6. 

There are two lower balances with two free constants. The series begin as 

ql = :k6it-2( 1 + " "  ), 

q2---- - 3 t - 2 (  1 + " '"  ) 
(2.25) 

and there are resonances for p -  - 1 , 6 ,  8. 
The resonance constants in the principal balance series satisfy the relations in the appendix. The energy 

becomes 

t5 -6  E = 14c 3 + 4.~c 1 

and 

dp,  ^ dq, = dt  o A d E  + 3 d c  2 A dq .  
i 

(2.26) 

Furthermore the resonance degrees obey (01.2 correspond to ct.2) 

P, + PE = 5 = f2 + g:., 

P~ + P2 = 3 = f~ + g~. 

b. Transition functions for  the principal patch 

The Hamilton-Jacobi equation with x = ql, Y= - q :  and the quadratic terms c~mlttacl reads 

E = ~  ~ + - f f~  - x 2 y - 2  (2.27) 

The expansion begins as 

S --  4 ~,5/2 2 y 1 / 2  5~" + ½x. + . . .  
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and the linear operator .2' acting on S that must be inverted at every iteration is 

• ~ P ( S )  ---- 2 y  3 / 2 0 S / O y  + xy  1 / 2 0 S / a x .  

Both terms are of the same order. 
The kernel of .Z is any function of the form f(xy-l/2, a) and enters S at order t °. (It is not 

coincidental that z --- xy-~/2 picks out the leading free constant in the pole series, see below.) There are no 
inhornogeneous terms in the linearization of (2.27) at this order and no logs enter S. 

Suppressing an overall :t:, 

_ e y - V 2  + a_[./ + Oz (2.28) 

If we include terms only up to Ey -1/2 in S, set f -  --o2xY -1/2, 0 3 = E, u " -  0g//003 , and v~ = OS/Ol)2, we 
obtain the transition functions 

-1  
q l  --'-- OlU , 

- 2  
q2 - "  --It  , 

P l  -- Vl/A-2 q" I 3 -I- 02// -" SO1 , 

1 2 - 1  3 4 1 3 P2 = 2 u - 3  + ~v lu  + ~Vl14 q" lVlV2 g/2 -4- ~o3H , 

(2.29) 

and as usual E dq~ A dp~ = du A do 3 + dv~ A do 2. 

By truncating S where we did, an O(t) term was omitted which is comparable to Ey -t/2. As a 
consequence 62 = 0(1) at u = 0. If we compare t~i from (2.24) with p from (2.29), then the first occurrence 
of v2. 3 matches that of c2. 3 to within numerical factors. Also v~ - ,  c~ as u ~ 0. 

It is of some interest in this example to find the exact kernel of ZP, f in (2.28). By eliminating p, 
between (2.23) (with q2 + q22 omitted) and the second integral 

G = 4ptp2qt - 4p2tq2 + 4q2q 2 + q4, (2.30) 

one finds 

Of/O(xy -1/2) = - ~ ( G -  ~xSy -a + 2 E x 2 y - ' )  1/2. (2.31) 

We can also express G in terms of the pole constants in (2.24), 

G = 36c~-  2c~e + ~c~. (2.32) 

To evaluate f near infinity we observe from (2.24) that x2 /y  = c~ and substitute (2.32) into (2.31) with 

the result 

af/a(xy- /2) = _ 3 c 2 .  

This precisely agrees with our choice of f below (2.28) which was made on the grounds of simplicity (the 
factor of 3 can be checked by comparing the expression for E dq, A d p, in terms of u; v against (2.26)). 
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Without appealing to "simplicity" an adequate expression for f can always be found by comparing the 

series with the transition functions and demanding v~ appear as c~. 
The domain of (2.29) consists of o, ~ C 3 and u restricted to a tube around the hypersurface at infinity, 

u = 0. The Hamiltonian, with (q2 + q2) omitted, in local coordinates reads 

I 2 6 202 q- 8-'i~/31 -I- 80103)W 2 v3 + + !,v v2 u + ( l 2 

"1" "l~t'~O2 u3 + [ £.,2. 2 _.L.~- 4. .4. ~OlO203tl$ ~. at/3 ~ . ~, Suit ,2 "1- 1280103)/A 4 1.,2, 6 (2,33) 

The only singularities of Hamilton's equations for (2.33) as u ~ 0 are v I ~ u-1, v2 - u -4, and v3 ~ u -6 
which must represent the lowest balances. These powers can be obtained by demanding that (2.29) match 
(2.25). It may be explicitly verified that (2.29) is invertible on a sufficiently large tube around u -  0 to 
encompass the lowest balances. 

c. Lower balance transition functions 
We now consider how to add a codimension 2 set to M - U o corresponding to the lowest balances (2.25). 

This requires that we solve the Hamilton-Jacobi equation (2.27) for x, y ~ ~ and x / y  finite. Evidently 
all terms on the righthand side of (2.27) are of the same order so the leading term in S is of the form 
y5/2a(x2/y2) ,  where a satisfies (with z = x2/y2 ,  ' = d / d z )  

4 + 2z = (4z + 4z2)a '2 - lOzaa' + 25a2/4.  (2.34) 

Since we will want to examine the crossover from the principal balance to (2.25), we have written the 
argument of a as x2 /y  2 rather than y2/x2 .  Hence we seek a solution to (2.34) which is analytic out to 
- = - 4  and satisfies a(0) = 4 /5  from (2.28). We will assume this can be done; to prove it for this example 
one would exploit the separability of (2.18). 

We know from the resonances calculated for (2.25) that free constants enter S at order y-1/2 and y-3/2 
i.e., at orders t and t 3 relative to a leading order of t-5. (Recall that the transition functions we derive 
from S must match the series.) The first three terms in (2.28) together with a piece of f (cf. (2.31)) all fall 
into a. 

We next linearize (2.27) about S -yS/2a and observe that the next term is of the form y- t /2b(z )  where 
b(0) = - E  in order to agree with (2.28). Since S = yS/2a satisfies (2.27) exactly with E = 0, there are no 
correction terms until E appears. The next free constant enters S in the form y-3/2c(z ,  02). The precise 
forms of b and c are not needed to match the pole series. It suffices as before to take just the first nonzero 
term around z = 0, 

g = yS/Za(z)  - Ey-  1/2 _ v2y3/2/x3" (2.35) 

(In this example we did not actually compute (2.25) out to order 8, which could be done, but rather 
expanded (2.31).) 

The remaining variables in the patch at infinity are defined by 

U I = E. 
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Then, 

qt = u~ l / 3 / u  t, 

q2 - - ~1~  2 .  
(2.36) 

Obviously when u 2 ~ 0 (2.36) again describes the principal balance. The lowest balance occurs for 
~1 ----" U2---- 0 ,  01, 02 ~ C 2. 

The Hamiltonian in { u, v } coordinates is compficated but the leading dependence on v, is simple and 
permits us to derive for q z / q t  ~ 0(1), 

i l l = l ,  

fi2 = ulu~/3" (2.37) 

Numerical constants have been ignored in (2.37). Therefore the lowest balance flows pass infinity 
according to u 2 - t  3, u t - t .  In the vicinity of the lowest balance, the hypersurface at infinity in local 
coordinates is just u~-- u 2 (i.e., qz /q t  " const.). The flow (2.37) is therefore tangent. 

d. Balances and resonances for G 

It is an interesting exercise to repeat the preceeding discussion for the integral G, (2.30) which is in 
involution with .,~', (2.23). Actually it is more illuminating to do so taking account of the separability of 
this system as we do in the next section. At this point we will merely make an observation about the lower 
balances to illustrate a remark made at the end of section 2.2.1 above. 

The Hamilton equations for G ( p ,  q)  appear to have a balance in which 

q, -- t~ 2/3, p~ .. t2 l, 

where t 2 is the flow generated by G (and we use t 1 in place of t for the J f  flow). However, although the 
exponents balance out, there is no solution other than zero for the coefficients. 

Actually this "phantom" balance should not be a surprise since in (2.35) v 2 - G and u 2 ~ t 2. Hence if 
(2.37) is solved for ul(u2) and substituted into (2.36), a - 2 / 3  exponent is found. Similarly from (2.37), 
p~'--t~ " 3 ~  t f  l. But separability for Htnon-Heiles implies there are no fractional powers, hence the 
coefficients vanish. 

It will be useful later on to remark that integration of the equations for (2.32) is another way to 
complete the principal balance submanifold at infinity and obtain all of M -  U 0. The flow found in this 
way is nothing but the full t 2 flOW projected onto infinity. From (2.26) we can write Hamilton's equations 
for (2.32) and find 

C1 ~ t2 1/3 . - 4 / 3  • , C2 -- z 2 

and 

0 t l / 0 t  2 = aG/OE,  t 1 -- tiE/3. 

We will explain in the next section why both ~ and G are homogeneous when { p, q } are weighted 
according to the lowest balance exponents of .,~. Yoshida, [15], has also explored the implications of 
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homogeneity in Painlev6 systems. Certain of his arguments assume that if one can assign { p, q } exponents 
which render an integral homogeneous, then the same exponents lead to a balance. This is false in 
separable systems except for the "lowest" Hamiltonian of the system (i.e., ~ )  and the "phantom" 
balance for G illustrates what goes wrong; the leading coefficients vanish. 

There are actually two additional lower balances for G which do not resemble (2.25) at all (see section 

3.5.4). 

3. Separable systems 

3.1. Definition 

Definition 1. The Hamiltonian system (1.1) is hyperelliptically separable (h.s.) if there is a transformation 

q = q ( ~ )  

such that 
a. q, is a symmetric polynomial function of the { ~j }; 
b. under this transformation, the Hamilton-Jacobi equation separates and the resulting action becomes 

P! 

s = Z h, . . . . .  h.), 

s, = f "nd i, 

where 

W' = ~a + al~d- l + . . .  + ad 

is a polynomial of degree d_> 2n + 1; 
c. the free parameter, hi, is just aj, where [(d + 4)/2] < j,~ < Ji: < " "  J,,.; * 
d. the induced transformation on phase space is 

where ~ = (71(~.~) . . . . .  rl(~,,)) = i~S/~. Over the finite part of phase space, (q, p ) ~  C 2'', we view this 
transformation as a map 

O: f i '  ---, C 2", 

where . ~ ' =  unordered n-tuples {(~l, 7,) . . . . .  (~,,, ri,,)}. (Later, when we augment C 2", we will let (~, 71) 
become infinite and denote the corresponding augmentation by M.) Also we will denote the level set of 

*[ ] denotes "the integer part of". 
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fixed h i by Mg. • is required to satisfy the following nondegeneracy conditions (which are explained in 
the subsequent remarks): 

i. Off of a codimension two subset, Z, of C 2", • is a finite, unramified covering. Also ~ ( O -  ~(E) c~/~g ) 
has codimension two in • (,~g); 

ii. near ~ = oo, q(~) is an invertible transformation almost everywhere; 
iii. on an open dense subset of constant values e ~ C ' ,  the determinant 

a2s 
a ,ahj 

along the level s e t /~"  but away from O- l (F , )  (this non-vanishing also applies to locations at which 
~i - oo, where the determinant is evaluated in local coordinates at infinity- see remark 4). 

R e m a r k  1. In part d(i) of the definition, "finite, unramified cover" means that there is a finite number, m, 
such that for each (q, p )  in the range of • there are exactly m distinct preimages in AI' which map to that 
point. This condition is required to insure that the integrals of the separable system are all analytic (see 
theorem 3b). 

R e m a r k  2. Condition d(ii) is a technical assumption• To give it a more precise statement we expand each 
qi as a polynomial in ~l with coel~cients involving ~2,---, ~n: 

q, q ° ( ~ 2 . ,  ~,,)~' + .. ~,,)~,-~ = , - -  q ~ ( ~ 2 , -  , + " "  

and set QO = qO. ~{,; then 

det ( - ~  ° ) = ~ei,~-t det 

llq ° i)qO . ~qO 
" 

l . q°  i~2 "'" i)~. 

I 

Condition d(ii) is equivalent to the determinant on the right not being identically zero. 
For these expressions to make sense we must have i i > O. If li = 0, then q, is independent of ~j~. But q, is 

symmetric in ~ and therefore this would imply that q, is constant. This violates d(i) since • could not then 
be a finite map. 

R e m a r k  3. Condition d(iii) will insure that the series soiutio,1 of a separable system will be Laurenl. 
Without it one could not preclude the possibility of the leading exponents being non-integral. In fact they 

can be fractional• 

R e m a r k  4. The "points at oo" in (~, ~)-space have local coordinates given by the variable change 

1 p 
= ~ ,  71 = hal~2 when d is even 
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and 

-" ~ ,  ~1 = when d is odd. 

In the first case there are two points at oo, (h, p) = (0, ± 1) while in the second there is just (h, p) = (0,1), 
i.e., infinity is a branch point. 

Remark 5. Part c is more restrictive than need be. In general %, j > [(d + 4)/2], could be more general 
functions of ht , . . . ,  hn; i.e., we just need that a(h)  embed an open dense subset of h ~ C" as a complex 
submanifoid of C t(a- x)/2i. (We must require that %, for j < [(d + 4)/21, be independent of h in order that 
8S/8h be finite at infinity as d(iii) requires.) The arguments of this section can be extended to the more 
general situation by setting %, . . . ,  %n equal to the first n coefficients of ~12 which constitute a functionally 
independent set as functions of h. 

3.2. Examples 

In this subsection we present two hierarchies of examples which will serve to illustrate the preceding 
definitions and which will also be used throughout the remainder of this paper to motivate our results. 

(i) The Gelfand-Dikii ( G.D.) hierarchy 
(This also corresponds to a special class of higher stationary solutio',as for the Korteweg-deVries 

hierarchy [161.) This hierarchy is indexed by the number of degrees of freedom, n. It is completely 
specified by saying that for n, the polynomial TI 2 in definition 1 is given by 

~12 "- ~ 2"+1 + h:~ '~-l + . ' .  +h ,  (3.1a) 

and for the variable transformation, q -  q(4), one simply sets 

q ,= o,(~) (3.1b) 

where o~ is the ith symmetric polynomial in the variables (~,  . . . .  tin). This is the simplest example in that 
the degree of ~12 is minimal: d = 2n + 1. One could modify this hierarchy by allowing the coefficients of 
~2, . . . .  , ~n in (2.1a) to be non-zero but fixed (i.e. independent of parameters h,). This just causes the 
integrals of motion to be not "homogeneous" in a sense that will be specified later. 

As an example, consider n = 2. The corresponding system (1.1) can be given by the Hamiltonian 

3~1 = - q , P ~ -  2p2P, + 3q2q?- q t -  q~ (3.2a) 

corresponding to h~, and another integral of the motion is 

3~., = 2ptp2q, + q?P2 + P~- q2P~ + q2q31 - 2q~qt (3.2b) 

corresponding to h 2. Equally well, any linear combination of .,~'~ and ~2 could be taken to be 3~' in 
defining (1.1). In any case the separating change of variables is 
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(iJ) The H~non-Heiles ( H.H.) hierarchy 
The nth level in this hierarchy is specified by 

n2= _ ½~,tn + h11~2n-2 + h:zl~2.-4 + . . .  + h ,  

and the variable transformation is 

;½ Z 
i t < i 2 < . . .  i k 

ql = i~ l . "  ~.. 

325 

(3.3a) 

2 < k < n, (3.3b) 

As an example, again consider n-- 2. The Hamiltonian can be given by 

.,,~, - p~ + p~ + 2q?q2 + 4qi 

corresponding to h~, with another integral 

2 2 1 4 "~'2 = 2plP2ql 2p2q2 + 2qlqz + - ~ q ~  

that corresponds to h 2- These were denoted by 2o~ and G/2 in section 2.3.4. 

(3.4a) 

(3.4b) 

3.3. The Abel map and the linearization of flows 

Here we briefly review some standard results from the theory of Riemann surfaces in the context of our 
problem. For further details the reader is referred to [18, 19]. Given the separated action (definition lb) 

n 

s= E fendS. 
j = l  

the linearized flows are implicitly given by 

as " f~,  an 
t, = E = y" J E d~j. (3.5a) 

j=l 

In the Gelfand-Dikii example this is just 

j=i + ;, 4_ . .. 4-h r ' lma . . . .  n 

(3.5b) 

while for H6non-Heiles this is 

?1 

• = ~/ 1 / 2 ~  4" + h~tj 2"-2 + - - .  + h .  
(3.5c) 
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If these flows are assembled in a vector t = ( t t , . . . ,  t ,) T, we have 

if,0n aS (3.6) 

We define, for a fixed value of k, 

~ , =  ( ( l i .~ ) l~2=~d+at~a- t+  "'" +ad} O {points at oo}. (3.7) 

which is a hyperelliptic Riemann surface of genus g -  d / 2 -  1 (resp. ( d -  1)/2) if d is even (resp. odd). 
(We will often delete the subscript k and just write ~.)  Eq. (3.6) gives a map 

~ ( " )  -'* Cn, 

where ~(")  is the nth symmetric product of ~ with itself. This is not quite well-defined because the 
integrals on the LHS have 2g independent periods. 

When n - g and 102S/Oq 0kl * 0 the set of all such periods forms a maximal lattice A c C s, and CS/A  
is a complex g-dimensional toms. We have the following classical theorems [18, 19]. 

Theorem 1. CS/A is an abelian variety (i.e. it can be analytically embedded into some sufficiently high 
dimensional complex projective space) called the Jacobian of ,~ and denoted , ,¢(~).  

Theorem 2. The map (3.6) induces the Abel map 

. l :  

((~,,  7,) . . . . .  ( ~ ,  ~.,)) ~ t (mod periods A ). 
(3.8) 

A, restricted to points where (~j,, rl,) * (~jj, -~lj)  for i * j ,  is 1 : 1. 

When n < g we can define an extension of (3.6) 

' ~ l f  ~'i~l d~j= i~S = ~ ~ = ( t (  . . . . .  t~), (3.9) 

where/~ = (a[td+4)/21 . . . .  , ad) (see definition 1). This gives a map 

A(.): ~ ( " ) ~  C s. 

Then projection p ~ h, which just freezes those a , ,  h k for some k, induces a projection H: C s ~ C'. The 
original map (3.6) is just the composition /-/o A(,). 

Since the Abel map is invertible off of the codimension one subvariety {(~j~ = ~j, ~ = -~lj) for some 
i ~ j }; it follows that we can, in principle, solve for the ~, as functions of t. What we can do in practice is 
to write down differential equations for this dependence. Differentiating (3.6) w.r.t, t we have 

(3.10) 
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Inverting, this gives 

- -  ~)'h" ( • ( 3 . 1 1 )  

' ~ the ~odes, (3.11), for the For our special examples we can be more explicit. For the G.D. hierarchy (3 
~k+~ flow are 

O~t ( - 1 ) k 2 ~ l o ~  0 

"atk+, = l ' ] j . t ( ~ , -  6 )  (3.12) 

where o~ t) = kth  elementary symmeuic polynomial in ( t l , . . . ,  t t - t ,  ~e1+1,..., t , ) .  When n = 2 (see (3.2)) 
these equations are 

2( o ,312a  
~2,., ~2,,  = ~ 2 - ~  -t~n2 n2 " 

For the H.H. hierarchy (3.3) the ~-odes for 3g' k + 1 are 

at,  ( -  1) k2"r/,,8~ t 

where ~1)= kth elementary symmetric polynomial in (t~, . . . .  t L t ,  t2+~ . . . . .  t~). When n = 2 (3.4) these 
a r e  

t i t  2 t i t  1 

t2 t  2 t2q 

2 ( t 2 + h - + / 1 )  
~ -  ~,~ ~ 

- 61112 ~2 
(3.13a) 

If  w e  set pC0 = ~/i, then  d S  = ET/i d t i ,  and  

(q, p)-" (¢, e~) 

is a canonical variable change. Explicitly 

~S ~S aqj aqj 

Thus, 

p,= ~ .p~,. (3.14) 

Note, in particular, that if the qi equal the symmetric functions o i, then p, as a function on ~ is 
singular if and only if t j  = oo or (ti, ~/i) = ( t j ,  -~/j) for some i :~j. 
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3.4. The structure of balances 

We will now characterize the structure of balances for a (h.s.) system. 

Theorem 3. For a system, (1.1), which satisfies definition 1, the following are true: 

(a) The Augmentation 
The minimal augmentation, M, of the phase space C '~" can be given in terms of the separating variables 

(~ ,  ~ )  and hi,; a preliminary augmentation is given by 

~ =  {(hz, . . . .  h.:(~z,n~),...,(~.,n.))lh~eC;($~,n~)~}. 

We let M~, denote the level set for fixed h#. 
(i) If n ~ g, the genus of ~ ,  then A4 is an augmentation of C ' .  

(ii) If n < g, then ~ is a finite cover of an augmentation. 
In either case, M, the minimal augmentation, is the image of M under the Abel map A(,,). 

(b) Integrals 
The parameters h~ can be expressed a~ global analytic functions on M. When restricted to C 2" these 

functions are polynomials 

h, 

(c) Level sets 
If 102S/Oq 0hi ~ 0 along M,, then MA is an Abelian variety (i.e. a complex torus such that M~ n C 2n is 

defined by polynomial equations)*. (Remark: If 102S/Oq Ohl vanishes somewhere along Ml~-¢o then this 
level set is singular and is in fact a "generalized" Abelian variety, but we will not go into that here.) 

(d) Irreducible components of M -  C 2" 
When d is odd, M - C  2"= A(,~(~,ll~.oo ) consists of one irreducible component; when d is even 

M -  C 2" consists of two irreducible components. (Note that M[t,-oo is just the symmetric product of 
(n - 1) copies of the curve.) 

(e) Principal balances 
Let G = al3e' ~ + . . .  +a,3~ '  n be any linear combination of the integrals. This generates a flow which 

commutes with that of any ~.~f~ on any level set. The principal balance submanifolds for G are contained in 
M -  C 2". If ~ is a connected component of M -  C 2", then it contains a principal submanifold for G, ~¢,  
which is open and dense in ~ .  Moreover, if Gt and G 2 are two integrals, then G~ and G 2 have orbits 
. . . . .  " " " " '  ' " ~ ' ~ " ~  ~"~, ' '~c2 a~lU ~laVC tnc same leaomg exponents at mose points of intersection. (it is 
not meaningful to compare the leading coefficients of the respective series, since the flows are different.) 

(f) Lower balances 

For each commuting flow and for every integer m in the range from 2n - 1 to n, there exist balances 
which depend on just m parameters (excluding the origin of time to). 

*Technically, this only shows that M~ n C 2" is birational to an Abelian variety. However, this is sufficient to conclude that Mr, can 
be embedded in some projective space which is the usual definition. For a discussion of this see [18]. 
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(g) Lowest balances 
The free parameters for a lowest balance are just h t , . . . ,  h,. There are three types of lowest balance: 

(i) Places where the phase trajectory meets the closure of a principal balance submanifold with maximal 
order of contact. At such points, all of the variables (q, p )  blow up. There are 2 ( d -  4) (resp. d -  3) 
such lowest balances for the ~-odes (counted with multiplicity) when d is even (resp. odd). (Adler and 
van Moerbeke also derive such a count in their examples when n - 2, see [7]). 

(ii) Places where the Abel map cannot be inverted (i.e. critical values of the Abel map), and the q 
variables are finite while the fl variables blow up. 

(iii) Critical values of the Abel map where all variables blow up. These will be places where M, is smooth 
but A(n)(MA[~.=) is singular. 

Proof. (a) From the discussion in section 3.2 we have the following diagram of coordinate transf~:mations 

{ ( h ;  n , ) ) }  

(q, p ) ~ C 2" ) {(h; t (mod A'))} ~ M 

where A' = ~r(A). (The map • is only defined for {~ • co}.) It follows from Liouville's theorem [11] that 
the map L is locally one to one. Thus condition (a) of definition (3.1) is satisfied. Since the flows evolve 
linearly in the t~ they exist for all time and stratify M into disjoint orbits. Hence, conditions (c) and (d) in 
3.1 are satisfied. A('): b l  - ,  M is a holomorphic map which is locally one to one away from points where 
{~-  ~j, v/if - ~ j  for some i ¢ j .  Since the level sets Ml,-c, Mlkfc are compact, it follows that A(,) is 
generically finite to one. M - C 2" = A(')(Ml~,=oo); hence, it = co defines an analytic hypersurface in .~r. 
Since A(') is a finite map it follows that M -  C 2" is an analytic hypersurface. We will see in part (b) of 
this theorem that M -  C a" consists of either one or two irreducible components so that condition (b) of 
definition 2.1 is satisfied. Finally, since M - C  2n only contains points which lie on trajectories that 
originate in C 2", it contains no subsets invariant under the flow. Hence, M is minimal. 

When n = g, theorem 2 states that A(.) is generically one-to-one and so ll4 is itself an augmentation. 
(b) From definition lb,  c we have that the separating variables satisfy 

E = 
k (~J- 

~f--Jl 

where j, runs over the index set, J, of the free parameter while J - =  the complement of J in { 1, . . . ,  d }. 
Inverting this linear system presents the h, as symmetric rational functions of the {(~i, T/,)}. 

Recall the diagram used in the proof of (a). By definition 3.1d(i) we know that 

• : - ,  

:.~ a fiPAte, ,,nrarnified covering for some codimension two subset Z. Since Z is finite and unramified, its 
domain M ' - O - l ( , y ) ,  can be partitioned into a disjoint union of mutually homeomorphic subdomains, 
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each of which map 1 : 1 onto C 2 " -  ,y. Let fl denote one of these subdomains, also called a fundamental 
domain of this cover. Then • maps fl 1 : 1 onto C ~" -  ,Y. Since • is an analytic mapping and the h i are 
meromorphic functions on M,h~l~ i =  l , . . . , n  define, by the 1" 1 correspondence, n meromorphic 
functions on C ~" - ,~. We claim that if fl' is a different fundamental domain, then h~l~ - hiln,. To see this 
note that the pullback O*(h~l~)O[, ~)=,t/h~la(O(~, ~)) equals h~ on fl and has the property 

O*(h,l~) I~ - O*(hil~) I~, 

for any fundamental domain. However, by the uniqueness of analytic continuation O*(hiln) = h~. 
It follows that the functions h~(~, ~) project to well defined functions o~(q, p )  on C a ' -  ,~. Moreover, 

since the h~ are meromorphJc on bf and • is locally analytic, ~ ( q ,  p)  is meromorphic on C ~ " -  ,~. Since 
,Y has codimension 2 in C a", the o~, are actually metamorphic on all of C a" by the Levi Extension 

Theorem [19, p. 369]. 
On the other hand, 

a~  ah~ a~ ah~ a~ 

and 

a ~  ah~ a~ ah~ a~ 
% - -  = + 

Since q = q(~) is polynomial it follows that ali/ap = 0 and a~/aq is an algebraic function. 

a__~ a aS a ( aS  aq)  a ( aq)  aq 

which is also algebraic. Finally ah~/a$, and a h f a ~  are algebraic since hi(~, ~) is rational, aM~faq, a,,,~'fap 
are thus both meromorphic and have algebraic growth at infinity. Hence, a.g'jaq and ay('~/ap are rational 
functions and so is M~. 

In fact the ~ are polynomials. By definition 3.1d(i), O - t ( C  2~-  Z) is contained in the subset of 
where the ~j and ~j coordinates are all finite. By the definition of ~, the h~ must also be finite on this set. 
Thus o~(q, p)  is in fact analytic off of Z. By Hartogs' theorem, [19, p. 7] M~, extends to be analytic on all 
of C 2". But an analytic rational function on C 2" is a polynomial. 

(c) We adopt the notation used in the preof of (b). It follows from definition 3.1d(iii) that ( a~ /ah i )d~ ,  
i = 1 . . . .  , n, is a frame of n holomorphic differentials which are everywhere independent along the level set 
h = c in A ~ - O - I ( Z ) .  (Note that {I)-l(.~) in /~ may have codimension one even though ,Y has 
codimension two in M.) it follows from definition 3.id(i) that a'2 n { h = ¢ } in A~" is mapped by At, o 1" 1 
or, to (M - Z) n { ~ = ¢ } where jfe = (M'l, . . . .  o~,) is the vector of polynomial integrals described in (b). 
Thus we can regard the differentials (dS /dh i )d~lu  as a frame of n independent holomorphic differentials 
on { .,~" = ¢} n ( M -  Z). By Hartogs' theorem, since Z has eodimension 2, (aS/ahi)dl~l~ extends to be a 
holomorphic differential on , ,~ '=¢ in M. Moreover, (aS/ahi)d~lu,  i= 1, . . . .  n are independent on 
{ . ,~'= c} n ( M - Z ) .  Hence, d e t ( ~ a S / a h t , . . . ,  ~TaS/ah,,) is non-vanishing in a deleted neighborhood of 
Z o = ,Y N (JP' = c). By Hartogs' theorem the inverse of ttfis determinant extends to be holomorphic along 
Z o, so that (aS/ah~)d~l ~ extend to an everywhere independent holomorphie frame along M c. These 
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differentials are dual to n independent commuting holomorphic vector fields. Therefore M, is a complex 
n-toms C 2 " / ^ '  where ^ '  is a rank 2n sublattice of the periods A of A(g~ (3.8). Since M, ~ C 2~ is defined 
by the polynomials o~a~, M, is an Abelian variety. 

A consequence ¢f this result is that the period lattice, ^ ,  splits 

A =  A ' O  A "  

where ^"  has rank 2 ( g -  n) and ^"  c kernel I'I* A(,). 
(d) When d is oad, oo is a branch point of ~ and so M, It,-® =~I"-", the ( n -  1) fold symmetric 

product of ~ with itself; when d is even there are two points over ~t = oo, { ~o, ~ ÷ }, { oo, ~1- }, and 

= # , , I  = u # = - o o  ~1=~ i .  k l  ~1-~ I _ 

= ~ ( n -  1' U ~ h ( n - l ) "  

The images A(.)( .bl ,  i(=.,~. ~) and A ( . ) ( ~ , I . . . ,  2)  differ, in M, = c"/a', by the translate ]~=..~y,)(a~/ah )d~ 
which is nonzero for general h. Hence A(.)(MI¢~=®) consists of one component when d is odd and two 

when d is even. 
(e) The equations for the ~ flow are given (see (3.11)) by 

8~j = ( 8 ~ l ) ) - ~  
at, u ' j = l , . . . , n .  

More generally, the Hami:tonian G = a r ,~  s + " -  + a,oV', has vector field O/Ot = a s O/Oq + . . .  + a.it/Ot, 
and the corresponding odes are 

O~j L (8~1( , - t  ~t"'t" = % ~ - ~ , ~ ) i  , j =  1 , . . . , n .  (3.15) 
i = l  ' ' P  

(The fight-hand side of (3.15) is a function of { 4, h }.) We will consider the case of odd d, and n = g (see 
(3.12)), the argument for even d or n < g being similar. Near M - C  2" we use the variables ~ = 
h-2;  ~2,~.., ~J, arbitrary. Fo: 4t>_ 2 4= oo or any other branch point, eqs. (3.15) take the form (variables with 

a caret are omitted) 

~ll + O ( h )  
O___~Ot = 1 /2p , (42 , . .  ., ~.,.) i l j=2( 1 .  _ 4jk2),  

a t  - -  • - 2  [1 _ ~: ) L 2 l q )  t ~ : . - -  ~: ] ' 

(3.16) 

where p,, is a polynomial of degree ( d -  3)/2 whose coefficients depend on a = (a l . . . . .  a,,). If 41 = oo or a 
branch point, (3.16) gets modified by changing to a local parameter. The key point is that (O~/Oh)(4) is 
always finite in a local parameter and therefore any zeroes of ~/(41) are balanced by zeros of a41/Ot when 

we change coordinates. 
For generic initial values of ~Jt (I >_ 2), the solutions of (3.16) will exhibit the same leading behaviour in 

t. This is the principal balance submanifold ~G- Geometrically it is characterized as the submanifold ot 
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points M - C  ~ at which the flow is transverse. In ~¢,  ~ ~¢~, (3.16), for both G~ and G 2, has the same 
form near )~ = 0. Hence the leading exponents are the same. 

(f) A new balance is introduced whenever the flow becomes tangent to . ~ -  C2". This just means that 

l a ,/at [ = 
a-XT /at 

= 

where /5a(~2,..., ~81,..., ~,) ffi lim~-.0P,,( ~'-2," "', ~1,..., ~,)/;~-2. The degree of tangency of the flow to 
~ - C  ~" equals the order of zero in the denominator of (3.17) which in turn determines the leading 
exponents for (p ,q) .  The higher the degree of tangency, the larger these exponents are and the smaller the 
dimension of the corresponding balance. In particular, if we set ~ ffi ~ and ~a ffi . . .  = ~ we get a 
balance of dimension 2n - s + 1. As s ranges from 3 to n, this produces balances of dimension 2n - 2 

down to n + 1. 
(g) To get the lowest balances, of dimension n, we require, further, that 

p . (  . . . .  , . . . .  

have a zero in the ~j. If we write po as a polynomial in ~: 

Pa(~2' ' '"  ~n) =_ p(O) 4. p(al)~l + . . .  +p(d-3) /2~d-3) /2 ,  

where p~J)=ptaJ)(~2,.. . ,  ~1 . . . . .  ~n) is a polynomial, then ~, = p(,, '- 3)/2. Thus  the lowest balances corre- 

spond to points for which 

~ l =  oo, ~2=~3 = . . . .  ~, ,=~, and 

Pad-5)/2~td-5),"Z + . . .  + 
_p( ~ ) = ~(d-3)/2 + P(a a-3)/2 

p,.o) = o .  ( 3 a s )  
p~d- 3)/2 

_P(~) has ( d - 3 ) / 2  roots counted with multiplicity. To determine the total number of lowest balances 
corresponding to all these roots it only remains to find out what Ti-values are allowed for these roots. The 
use of the ~-odes in (3.17) to study balance structure is valid as long as we can invert (3.10). This breaks 
down, however, whenever we have ~, = ~j, ~b = - ~ j  for some i e j .  Therefore for the balances in part g(i) 
of this theorem we must have ~12 . . . . .  ~1,, = +-~1.  Hence, we have ( d - 3 )  such lowest balances 
determined by (3.18). These balances are indeed lowest, since the remaining constants, h L . . . . .  h,,, fix a 
level set on which the flows are, generally, ergodic. 

It is possible that other balances could arise corresponding to points where ~, = ~j and ~i = - ~ j  for 
some i ~ j .  Even though the set of such bad points has codimension 1 in AI, under A(,,) it contracts to 
something of codimension 2 in M. Hence these points cannot produce a new principal balance submani- 
fold. They can, however, correspond to lower balances. There are two cases. If the ~i are all finite, it is easy 
to see from the variable change, (q(~), p(~, 11)), thatq will stay finite while p blows up. On the otl',er hand 
if ~ = oo while ~, = ~j, ~, = - ~ j  for distinct i, j >__ 2 then bothq and p blow up. This can occur for n >_ 3. 
It is a consequence of the Riemann Singularity Theorem [17, p. 56] that the Abel map sends such a point 
to a singularity of O = A(,,)(At, I¢,=~). An orbit crossing O at such a singularity will generally have a 
different pole structure than an orbit crossing O at a smooth point. F~g. 4 depicts this for n = 3. 
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~ 
n) 

r lowest 
\ J  /bolonce 

principal 
/balance 

Fig. 4. The origin of lowest balance in theorem 3.3g(iii) for n = 3. The map d(,,) blows down the fiber 42 = 4 3 , 1 1 2  --" --1/3 tO a singular 
point  on the hypersurface at infinity, O. 

3.5. Examples continued 

To illustrate theorem 3, we extract the various balances for the two examples in section 3.2 for n = 2 by 
using the differential equations on .~tj in (3.12) and (3.13). 

1. Gelfand-Dikii, a~'~ 
There is a single principal balance in which the leading behavior of 4~ is given by 

d41/dtl = 2~13/2 

or ~ = t -2. The exponents f~ for qi are therefore both 2, while the p, diverge with exponents g, = (5,3), 
(cf. (A.3)). Once the t2.equations are solved, the momenta p, can always be found from 

At the lowest balance, 4 , - a i  t -2 ,  i = 1,2, and there are two distinct solutions for a, that may be 
characterized by a l / a  2 = e  +2"i /3 .  The sign ambiguity in ~(4) never manifests itself. This count is in 
accord with part g(i) of theorem 3. However, since the q: are symmetric in the 4: a single balance is 
obtained when we pass to (q, p) variables, viz., 

ql ~ 3t-2, q 2 " "  9t-4. 

The corresponding exponents for Pi are g ,=  (5,3) 

2. Geifand-Dikii, M' 2 
The principal balance is now 41 " 4o 2t- 2, 42 "" 40 4- (~(t). Note that the exponents are unchanged from 

,,'f'~ but the coefficients differ, (see part e of theorem 3). 
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The lowest balance with qi diverging follows from the solutions, 

~ 2 -  +2  h~tt. 

There are two balances in (q, p) since the sign ambiguity in ~2 persists but the exponents are identical and 
equal to f+ ffi (4, 3) and g~ ffi (10, 6). 

The other lowest balance is obtained only where the Abel map is noninvertible, i.e., (~,71~)ffi 
(0, h~"22),(~2, +12) ffi (0, - h~'2"2). (When +It ffi ~12 the ~-equations continue to have a solution around 0 but the 
p~ are analytic.) One then finds 

= ± t + 

and therefore 

qt,2 ~d~(t2),  P t~d~( t ) ,  P2~ - t - t .  

There are again two solutions to the ~-equations implicit in the square root and two balances in (q, p )  
variables with the only divergence being in P2. 

If we study the flow ao~' t + o~f' 2, then, as a varies, the degenerate balance just mentioned runs over the 
entire fiber on which the Abel map is non-invertible, i.e., ~ -  a, ~1+---(7(a), -~l(a)) .  The ~-equations yield 
I~t=h~lt -~-, ~2 = a :t: V~'2-2 t and f~ = (4,4), gi = (10,6). 

3. H#non-Heiles, ,,V' l 
In the notation of this section, o'~'t 

There are two principal balances, 
is twice the Hamiltonian in (2.23) while M' 2 is one-half of (2.30). 

~t = :t= i2- t /2t- t, 

which are reflected in the (q, p) variables since qt = i~ t~2 .  

At the lowest balance, we have ~t,2 ~ aLd-~ for each of the four possible sign choices for +It,2. In each 
case there are two further solutions that are fixed by specifying 2 2 ± 2,,i/3 a t / a  2 = e . Since the degree of v12(~) 
is 8, these 8 solutions verify the count in part g(i) of theorem 3. They give rise to only two distinct solutions 
in (q, p) variables (see (2.25)) 

. - .  9 

q, ~ :1:: ~ i t  - 2 ,  q2 ~ t - ' .  

4. H~non-Hei&s, ~2 
The principal balance yields 

~ l~  + i2- t /2~o2t - l ,  t J 2 - ~ o + l g ( t ) ,  

and the same leading exponents for (q, p) as for J~'~, but with different coefficients. 
The first lowest balance is 

~l ~ -!-3it-3/(4v/2h2), 42 = +2 h~--2-2 t, 

where the ( + ) are independent. The exponents for qi are (2, 6) and for p,, (5, 9). 
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The other lower balance has ~,2 = aL2t and ~1~ = -+/2 = + h ~ .  There are two solutions for each value 
of ~ .  For (q, p)  one obtains 

4i 2h~ 2 
q~ - 4- -~h2 t2, q,+- T t  , 

p , -  :gix, t - '  + O( t ) ,  p2~  ~ t - '  + O( t ) .  

The number of lowest balances in the ~-equations, appears to fall short of what is expected from 
theorem 3. This is because the point ~2 = 0 must be counted with multiplicity two. This becomes obvious 
when we consider the flow generated by oV't + a.,~2. The exponents for the lower balance in which it 
diverges actually change to 

~,-- :kit-2/(2Cr2"(:tz~/a)(:lz~12(~2- ~/'a))), ~ 2 -  ±~/a-+27/2(t2=Ca-)t  

and there are now 8 independent choices of sign. The point ~2 = 0 has split into 42 = + v/ft. The signs on ¢r~ 
and ~2 are all manifest in the expressions for qi- The additional sign freedom on i which comes from r h 
appears in p+. 

3.6. Bounds for the degrees of integrals in an h.s. system 

Definition 3. If h i = a  j, in the separating polynomial (see definition 3.1) 

72 = ~d + Otl~d- t + . . .  + aa 

then we assign the formal degrees, j,, to the integral ~ ( p , q ) .  

In this section we will bound the degree of ~ in terms of this formal degree: 

deg t ,~ / (P ,q )  < (Yi + 2)(degt~j), 

where p, q and ~---~x are weighted according to the leading exponents in the Laurent series at a principal 
balance. (Recall from theorem 3e that deg+/~ at the principal balance is the same for all flows so we do 
not need to associate a particular flow with t.) 

Recall from the proof of theorem 3b that we derive an expression for h ,=  h+(~, +1) by inverting the 
system 

7 1 i - ~ i - -  1., ak~f - = 
• • k ~ J -  I 

k ~ J -  

J.d-- i .  ~-a-i_ l F ~_ l +'. + I"' I" 
(3.19) 

From this, we see that when we take ~j-, oo with ~Ji " ~ and +12 --~jd for all i, (which is the correct 
asymptotic behaviour for hj to be constant on the level set of an h.s. system) then we have that 

j '  , 
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i.e. h, grows as a power-'- formal degree. (Note that we regard ~, ~1 as independent variables on M even 

though we relate their growths.) 
To bound the polynomial degree of . ~ ( p , q )  it will suffice to bound the growth of the monomials in 

as a function of ~ near the principal balance submanifold. From (3.19) one sees that each h~ has the form 

h,(~.~l) = y" % ( ~ ) ~  +/~(~).  (3.20) 
j - I  

where aj(li), fl(l[) are rational functions of ~[. Changing variables from (~, 4[) to (p,q) we have 

aS ~ aS Oq,= ~ p , ~  
I - I  I~L 

(3.21) 

Inserting (3.21) into (3.20) yields 

Oq! ~qk ) 

Ik j 
(3.22) 

The coefficients, which are symmetric functions of ~,, must in fact be polynomial functions of q: 

~ ( p , q ) -  EA,k(q)p,pt, + fl(q). 
I.k 

(3.23) 

The A t~ (q) and fl(q) are polynomial by theorem 3b. 
We first observe that along the diagonal, ~j = ~ for all j, every monomial in . ~ ( p , q ) ,  when viewed as a 

function of ~, goes like __. ~J, as ~ ~ ~ .  Observe further that in this case, by definition 3.1ci(ii), all 
monomials in (3.21) have a common degree bound, l~ d/2, independent of j. Still working along the 
asymptotic diagonal, ~.i = ~ ~ ~ ,  every monomial in (3.23) has a common degree bound of ~J, which it 
inherits from (3.22) since (3.21) preserves degrees. 

If we now desire to weight p, q according to a principal balance, we take ~ ~ oo while ~2, . . . .  ~,, are 
finite. The monomials in ~ in (3.21) continue to have a common degree bound of ~d/2. For ~j~ 2 we are 
differentiating with respect to a ~j which is finite, not diverging, hence the common degree bound is one 
factor of ~ larger than before, or ~d/2÷ 1. When we return to the monomials involving p,p~ in (3.23) we 
must allow for two more factors of ~ due to the less stringent bound on the monomials in ~/i >-2- The 
behavior of A a, is no worse than before and does not upset these estimates, since it is polynomial in q and 
restricting ~j ~ : to be finite can only lessen its degree of divergence not augment it. Therefore we have for 
the degree of each monomial in (3.23) at a principal balance a bound, degt ~{' ÷ 2. Therefore 

deg, ~ ,  < (j, + 2)(deg, ~1). (3.24) 

Remark. When we weight (p, q) according to lowest balance of .~, the bound in (3.24) becomes 

deg, .~, _< deg, ~i. 

and { Z }~/=1 are just the lowest balance resonance degrees of .)e~'l. 
Recall from theorem 3 and the ~-odes that all ~, ~ oo with the same degree at the lowest balance for .~t. 

Hence in contrast to (3.24) all ~, have the same degree and we obtain j, rather than j, + 2 in our bound. 
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By expanding ~(/j~) for large/2i it is clear that for the lowest balance of the Jg'rflow the free constants in 
the ~-odes are just the h i and that they enter with the appropriate degree. 

4. Solving h.s. systems 

We now exploit the structure of (h.s.) systems detailed in section 3 to design an algorithm that will lead 
to bounds on the degrees of the integrals in a finite number of operations. (Recall from theorem 3.3 that 
the integrals must be polynomial.) Along the way we will note how the pole series also reduce the 
calculation of the transformation q -~ q ( [ )  to a finite search, and then show by means of an example how 
additional information can be gleaned from the Hamilton-Jacobi expansion. Our algorithm can, of course, 
be regarded as a test for h.s., that is, if it fails, the system in question is not h.s. We will utilize the 
following theorem that follows readily from the results of section 3. 

T h e o r e m  1. 

a. When d, the degree of ~2, is even, then Jl = deg M' l = (d + 4) /2  and deg t ~1 = 1 whereas if d is odd, 
~f'l = (d + 3) /2  and deg t ~l = 2. Here deg is the formal degree of h i in ~2 defined in section 3.6 and 

degt is the exponent with which the indicated variable blows up at a principal balance. 

b. 

deg,r¢~ deg, ~ = 1 + deg, ( S )  

= 1 + sup (deg, Pi + deg, q~). 

c. deg,,~j deg,~ = Pj(,'~'l) where pj are the resonance degrees (Pi < Pj if i < j )  for the lowest balance of the 

~'~ flow. 

P r o o f .  The Abel map can be inverted perturbatively near the principal balance ( ~  ~ ~ ,  ~, ~ 2 finite), for 
the .~1 flow. The dominant term is found from 

, , _  f ,  + fimte 1/ 

~ / 2  j, +1 
%1 

(4.1) 

o r  

~t " t~ 1 /¢ j~-d /2-  l), 

( J l -  d / 2 -  1 > 0 by definition 3.1c). Since we require the series (1.2) to be Laurent and the q~ are 

symmetric functions of the ~j it follows that 

q = q (  . . . ~Jl - d / 2 - 1 .  . . ) ,  d e v e n ,  

q = q ( . . .  ~2 j , - a -2 . . . ) ,  d odd. 

(The second line follows because for d odd the exponent of ~ in (4.1) is half integer yet we know q is a 

polynomial.) 
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However, in either case the map O: A~ ~ C 2" (see the proof of theorem 3.3a) given by (k;(~, ~1))~ 
(q(~),P(~[,~l)) ramifies to order j l - d / 2 - 2  (resp. 2 j l - d - 3 )  along the locus ~Jl =0.  However, by 
definition 3.1d(i), • cannot ramify in codimension 1. Hence j l - d / 2 - 1  = 1, (resp. 2 j ~ - d - 2 - 1 )  
which together with (4.1) establishes (a). 

Part (b) follows from the expression for S in definition 3.1 which near a principal balance reads, 
S ~ ~l a/2+ i. Eliminating d with (4.1) gives part (b), the second line of which follows from the nondegener- 
acy assumption definition 3.1d(ii). 

Finally part (c) just restates the last remark in section 3.6. 

Remark. The nonramification condition, definition 3.1d(i), was an essential ingredient in our proof, but 
may be stronger than what we actually need. Assume that a--jm - d / 2 -  1 in (4.1) is greater than 1, but 
that q is a function of ~[' or ~ "  as is necessary to eliminate fractional powers of t. If the substitution 
~ t -~" ,  left the form of (3.5b) invariant i.e., t,~ F,j~,l~",/hd~t where h 2 is polynomial in ~ and n~¢ Z, 
then it would mean that the ~, were inappropriate variables and the /~ should be used instead. If 
conversely, there were fractional powers of ~ in h 2 then as the iterative inversion in (4.1) is continued 
beyond the leading term fractional powers of t will enter. Unless there are "accidental" cancellations, 
fractional powers will enter q(t) even though the leading term is Laurent, which is a contradiction. Clearly 
the last step is not rigorous but is indicative of what we believe the essential mechanism to be. 

Theorem 1 maps out the steps to follow in deciding if some ~(f is h.s. Whether d is odd or even can be 
ascertained from whether there are one or two principal balances differing by +,  (cf. remark 4 to definition 
3.1). Therefore one knows whether ~j- t - l  or t-2 since all fows have the same principal balances. The 
degrees of the polynomials in the separating transformation q---, q(~) are then known and something of 
their form can be guessed from where the first free constants fall in the q pole series. The degree d of ~12 is 
also known by computing the dominant term in S(q). Clearly with a finite amount of calculation q(~) can 
be found. 

The second alternative is to use part (b) and determine the degree of J~'~. Since it too must be 
polynomial, a finite calculation will yield an explicit answer. Its lowest balance series then generate the 
remaining degrees. 

One can clearly imagine cases in which the "finite" enumerations mentioned above can be quite tedious. 
Clearly more information about q(~j) and ~12(~j) is contained in S(q) which can be computed systemati- 
cally around a principal balance by expanding the Hamilton-Jacobi equation. We have not been abe to 
organize this information cleanly and state a theorem so we conclude with an example which illustrates 
some of the subtleties involved. 

Near a principal balance the action for any h.s. system becomes, (neglecting numerical constants), 

S = ~j[,/2+, + ... hll~a/2-j,+1+ ... + Z fL~. (4.2) 
j~., 

The first "free" function enters the expansion at order t o (cf. (2.7)) followed by h I at order t I and h, at 
order ~{,-z. After changing back to the q-variables in which the expansion (of (2.6)) is done, clearly the 
diverging terms reflect only the fixed terms in ~12 plus the transformation q(~). Terms that vanish with t 
can come from any of the ~j,. 

It is informative, now, to look back at an earlier example in section 2.3.4, the M'~ flow for 
H6non-Heiles, to see how it corresponds to (2.2). In particular the free function lies in the kernel of (2.5) 
linearized about the diverging terms. It is a function of q~/(- q2) ~/2 which is precisely 42 when t = 0. The 
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free constant ht enters the expansion since it appears explicitly as the energy parameter in the 
Hamilton-Jacobi  equation. The next integral h2 enters to higher order through derivatives of f. 

From these remarks, it is not at all obvious how h~ enters the Hamilton-Jacobi expansion for ~2  since 
it is h 2 that occurs explicitly and h i only enters through f~'~l. We therefore consider as an example the ~'2 
flow for Gelfand-Dikii  when n -  2, (3.2b). 

The ~-ode, (3.11), expanded around a principal balance, shows that ( 4 0 -  4 °, ~1o- ~/o) 

~ l -  (~ot)-2( 1 - 2(~o/4o)t + " "  ), 

42=4o(1 + 2(~o/~o)t+"" ), 
(4.3) 

and therefore the Laurent series for (3.2b) begin as 

qt - t -  2(402 + 2403V/ot + " '"  ), 

q 2 -  t -2 (40  l + O(t2)  + . . . ) ,  

= t- S( o 5 _ 5 o%ot +... ), 

P2 --" t -  3( -- 40 3 -l- 34o4~o t + --- ). 

(4.4) 

As described in the appendix, the leading terms in the Hamilton-Jacobi expansion of S in (2.6) can be 
determined by solving (4.4) for t, 4o in terms of qi and then finding p as a function of q, viz., 

40 - q2ql l, t ~ q~/2q21 

and 

OS OS 
Pt = ~ ~ q~/2, P2 = -~q2 q~/2. 

Hence, 

,-,..,,~ = 2 , , 7 / 2  _ __3q2qi/2 + . .  7~/1 (4.5) 

Therefore degt S = 7, degt 4 = 2 from (4.3) and deg M'~ = 4 from (3.1a), which taken together verify parts 
a, b of theorem 1. The lowest balance resonances for M'~ are 8 and 10 which'agree with the degrees of 
M'l, 2 in (3.2a, b) if the (q, p) are weighted according to (4.4). 

If t ie  iteration of S is continued from (4.5) to order t t one obtains, setting x = q{ l /2  y = q2/ql, 

S =  ~x -7 - yx  -5 + ~ y 2 x - 3 -  ~y3x-1 + f ( Y )  + y4 + Y 

The free function f is the kernel of the linearized Hamilton-Jacobi equation and as expected from (4.2) 
y = 4 o + O ( t ) .  On general grounds, we expect S to be finite when y ~ 0  and therefore the 0 ( t )  term 

implies, 

= + h , y  + (4.7) 
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At this stage, of course, we can only say that (4.6) allows us to introduce a new constant h~ but does not 
require it. If the principal balance pole series are substituted into p~ = OS/~q~, one would find indeed that 
h l ~ 0 .  

Several other remarks about (4.6) are in order. Since we know that (3.2b) is the second Hamiltonian in 
KdV, h a cannot appear in (4.6) till 0(t3); so, it was necessary that the explicit h a that appeared in the 
Hamilton-Jacobi equation and which entered (4.6) at ¢~(t), caned. We do not expect higher order terms in 
(4.6) to completely fix f ,  however it does appear that the Hamilton-Jaeobi equation for ~f'2 carries more 
information about f than the analogous equation for ~'t .  There is certain symmetry here, siaee, if one had 
a~' t one could proceed directly to part e of theorem 1. 

5. Conclusion 

In the three previous sections we hr,,/e shown how to use the flows plus the Hamiltonian structure to 
complete the phase space, examined the consequences of hyperdliptic separability, and by matching series 
and Hamilton-Jacobi information to this case, derived bounds on the polynomial Hamiltonians in 
involution. Conspicuously lacking has been a general statement about the relation of the Painlev~ property 
to integrability. Since we have nothing more than a general idea as to a mechanism by which integrability 
arises, we have reserved these remarks for the conclusion. 

Recall the one-variable Riccati example of section 1.2. The augmented manifold was just the Riemann 
sphere, and therefore compact. General arguments using compactness and the analytieity of x t on M then 
suffice to establish the functional form of x t ( x o )  i.e., that it be fractional linear. Similar conclusions may 
be drawn if one replaces compactness of M by a polynomial growth condition on x r 

This can be applied to the 1-parameter family of solutions (2.2) to conclude that x(t,  Xo) is a rational 
function of x o, with coefficients depending on t, if x is polynomially bounded for large x o. This is 
analogous to the addition theorems for abelian functions [19]. 

Thus either M can be compactified as just outlined, or x(t, Xo) is a transcendental function of x o. In the 
latter case we would like to claim that there is an entire function f ( t ,  x t ) = f ( O ,  Xo). An example will 
illustrate how this condition can come about. Consider 

Then 

Pt = POe -P°q°t, 

q, "" qo e Poqot (5.1) 

and Ptqt = Poqo. c~k~.,..,~ ,h.~, .a,h . . . .  i. ,h~. ,~ :... wire oruer 2 " ' -  the maximum . . . . . . . . . .  ~,, ,,-,,.,,,,ra, ,,,~ ,n,,~ time map is entire --"'!- - -J- -  tl.e., 
modulus grows as exp(cst r 2) for Iq012 + IP012 < r 2) this order does not grow with t. It is no accident that 
Pt, qt are transcendental in a quantity which is constant in time and hence compositions in time preserve 
finite order growth in the phase variables [21]. Integrals are forced to exist, we believe, for any one 
parameter group of entire non-zero order maps. 

These notions generalize to maps meromorphic in time as is appropriate to the Painlev~ context since 
arguments about growth can be rephrased in terms of distributions of zeros. Hence the elliptic functions 
and other algebraically separable systems also illustrate our point. They define time maps which are 
rational only on an energy surface but essential as functions of energy. 
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A close examination of continuous time maps from C N to C N seems a logical first step in establishing 
whether the mechanism we have outlined forces integrals to exist. Entire maps are also tangentially related 
to the following refinement of the Painlev6 test: 

Conjecture. If a polynomial system of n differential equations has the Painlev~ property and has only 
principal balances then it is ode integrable, i.e. x, lies on the intersection ~f n - 1 level surfaces defined by 
entire functions. The converse is clearly trivial since any solution carries with it the maximal number of 
free constants. 

If one grants that the Painlev6 test does work, one would next inquire as to how the actual integration 
could be facilitated by the Painlev~ analysis. The explicit construction of the augmented manifold only 
solves the initial value problem, in an abstract sense, if the manifold is compact. Otherwise, it relates the 
solutions of pairs of polynomial Painlev~ Hamiltonians via the transformation to variables in the principal 
patch(es) at infinity. Our transition fur, ctions resemble B~icldund transformations which are rational 
functions relating pairs of solutions to the same integrable system [9]. 

Knowledge of the augmented manifold can greatly facilitate numerical integration of the system in a 
natural way. Clearly, in any numerical scheme when the dependent variables get large, one wants a 1:1 
transformation to new coordinates which are small. Systematizing the requirements for the various variable 
changes leads one to define essentially M as we did in (2.1). 

One natural extension of our results would be to consider the more general notion of algebraic 
separability in which the restriction of hyperellipticity is dropped and ~ in definition l b is taken to be any 

of the k branches of 

, k  + + . . .  0 ,  

where the a,(~) are polynomials in ~ and the other conditions in definition 1 are appropriately modified. 
With the proper formulation most of our results will extend to algebraically separable systems. 

In another direction, one could consider Hamiltonian systems on more general symplectic, or even 
Poisson, manifolds, such as the Neumann system or the Toda lattice. Much significant work on this has 
already been carried forth by Adler, Haine and van Moerbeke [6, 7, 10]. For two degree of freedom 
systems they use Laurent time series together with both polynomial integrals to embed a level set into a 
large ambient space where, by methods of algebraic geometry, they show it completes naturally to an 
abelian surface. In this setting the Hamilton-Jacobi equation (on a manifold) should still provide an 
augmentation of the symplectic leaves. The structure of balances for these more general systems should 
provide information helpful in determining the existence of integrals. 

it is well known that the Painiev6 property is not necessary for integrability since any one degree of 
freedom Hamiltonian system with jg ,=p2+ q,,, m > 4, blows up with rational exponents. This was 
thought to be a particularity of one dimension where any canonic~! Hamiitonian system can be reduced to 
quadratures. However several n = 2 examples have been found with two polynomial Hamiltonians in 
involution and fractional exponents [5]. We now explain the pathology in the higher dimensional examples 
and, in fact, show that one of them is just a degeneration of systems belonging to the Hrnon-Heiles 

hierarchy introduced in eq. (3.3a, b). 
In section 2.3.4(d) we remarked for n = 2 H~non-Heiles that there were formal balances for the ~f'2 

flow with q i -  t2 2/3, P i -  i2 ~ but with no solution for the coefficients. These fractional exponents become 
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real balances if we examine the n ffi I system in (~, ~1) variables 

3p, 2 = v/2 + ½~s _ ht ~ 2, (5.2) 

where h t is just a parameter. It is trivial to see that ~ diverges as ~ t2 t/3 which is consistent with the 
formal balance, q~- t~ 2/3 by (3.3b). The flow generated by (5.2) as an n = 1 system is identical to the 
projection of the full system onto ~t - infinity. This may be seen by taking the appropriate limit in (3.13a) 
but is obvious geometrically since M in theorew 3.3 is the direct product of 2 copies of the separating 
curve, Whenever the genus exceeds n, one should expect to see fractional exponents unless there is a 
special symmetry, (c.f. theorem 3.2). 

The example in [5] of interest is 

'~2 - ~( P2t + P]) + q~ + q]q? + ~q2q~. (5.3) 

It separates under 

qt-i~,li2, q2- -½(I~ + I~) 

into two copies of 

½1,/2 _ _ ~ 1 2  + h2~2 + h3 ' (5.4) 

where h 2 is the value of ,'~'2 and h 3 represents the other integral in involution. Eq. (5.4) after trivial 
rescalings is identical to n = 3 Hdnon-Heiles with h 1 = 0, (3.3a). Since the ,"¢~'1 flow is omitted, expansion 
of (3,5a) shows 

~j ~ t~ t/a, 

which correlates with the exponents q i -  t,f 2/3 found in [5]. 
Our geometric interpretation of this example follows what was said above, namely that it is the 

projection of the n = 3 Hdnon-Heiles flow onto the hypersurface ~3 = infinity with the parameter h I = 0. 
(In fact (5.3) should be part of a one parameter family of Hamiltonians.) To be more explicit, write (5.4) 
for ~jt, ~J2, solve for ~2,  J~"3 and write the t 2, t 3 flow equations for ~J!, ~J2- These are identical to the 
~J3 = infinity limit of (3.13) for n = 3. 
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Appendix 

Formal variables change to the principal balance constants 

In this appendix we demonstrate how to partition the pole constants at a principal balance into 
conjugate pairs involving a "phase like" and "action like" constant. The sum of the corresponding 
resonance exponents then assumes a simple form. strictly speaking for what follows we will need an 
invertibility assumption namely, that the Jacobian from { q, p } to the pole constants to, q , . . . ,  %,_ ~ is 
non zero around c~ = 0. We will show immediately in lemma A.1 that this Jacobian may be computed 
exactly once the series are known to an order which includes all the constants. Since we believe that the 
finite time map is well defined through infinity and in its neighborhood, our assumption is completely 
reasonable. To establish this however, requires showing the pole series converge; which in turn requires the 
Hamilton-.Iacobi expansion and transition function to iniquity; whose existence follows from the pairing 
we establish here. Hence to avoid circularity either the invertibility assumption is needed, or a simple 
check has to be made for each example. We know of no examples in which the Jacobian is not a numerical 
constant for all { c }. 

Lemma A.1. If the pole series are used to define a formal variable change from { q, p } to t 0, { c } then the 
2-form 

n 2n-1 

t~(2)- E dp, Adqi=dtoAdE({c})+ E ro({c})dc, Adcj, (A.la) 
i=1 i . j= l  

where both E and F are polynomial in c~ and are computable from a finite number of terms in the series. 
(We use E to denote the value of the Hamiltonian .,~'(p, q).) 

Proof. Eq. (A.1) is independent of time since 60 (2) is left invariant by Hamiltonian flows. Since there is a 
largest negative exponent R in the Laurent series, we need only go up to ~(t - to) R+~ to be sure of getting 
all time independent terms in o~ t2). Since each Taylor coefficient in p, q is polynomial in { c }, F must be 
also. Because ~ is autonomous, t o occurs only in the combination (t - to) and therefore does not enter F. 
Clearly E is a polynomial in q and we may compute using Hamilton's equations 

2n-  1 ( dp~ 0qi 

E E t dt ac i j = l  i=1 

0qi 8Pi ) 
at acj ( - ) dt° A dcj = 

2~, t 0E 
j=l ~ dr° A dcj, 

which yields the first term on the right of (A.la). 
T,~ ,-h~r~rt,~riT,~ th~ pnlo r~n~tam~ rnnra nreei.~elv we will show that it is vossible to break them into a 

"phase like" group, (to, bl,...,bn_l) and an "action like" group (E,a~ .... ,a,,_l). Observe that one 
constant in each pair on the fight-hand side of (A.la) must come from q and the other from p. If the 
q-constant comes with a nonpositive power of (! - to) then the p-constant enters (A.la) with a nonnegative 
power of ( t -  to) since the product is indep ' of time. To be more precise rewrite 

n 

0(2)= E dPi< ^dq~> +dpi> Adqi < +dp~. A dq~ o, 
1 

where the symbols < ,  > ,  0 stand respectively for negative, positive and 0 powers of t. Expand the 



344 N. Ercolani and E.D. $iggia / Painlevd property and geometry 

Jacobian determinant from { q, p } to the constants in terms of all pairs of n x n minors. A given q~ or p~ 
can occur with one and only one of the subsymbols > ,  < ,  0 in a given product of minors. For each i if 
we permit ourselves to interchange what we mean by p~ and q, then there will be at least one nonzero term 
of the form 

P = det  det i)(E,'aj) 
(b}-O c.{a}-0 

Any nonvanishing P serves to distinguish the phase-like from the action like constants so the 
partitioning may not be unique at this stage though it is in all (h.s.) systems and all other examples we are 
aware of. We expect that after certain relabelings it is possible to rewrite the second summation in (A.la) 
a s  

2 n - 1 n -  1 n -  1 

Z F~j({c})dc, Adcjffi E db, A d a , +  E ~ j { ( c ) } d b , ^ d a j .  (A.Ib) 
I I 1 

where ~ ( 0 ) - - 0 .  (In all examples we are aware of ~ j -  0.) Recall that to (2) is nondegenerate and the 
variable change from {q, p} to the constants is irwertible around {c}--0.  Eq. (A.lb) then defines the 
pairing between { a }, { b }. 

We now have sufficient informalion to show that at a principal balance it is possible to expand the 
Hamilton-Jacobi equation as asserted in (2.B). For p, q e C 2" there is a single valued function of { q, p } 
or t o, { a }, E, { b } such that, 

n n -  1 

d S -  E p ,  d q , - E d t o -  ~., ajdbj. 
1 1 

We seek instead S(q, a, E). By what has been said we can formally invert the { q } series to yield 
t - t o. { b } as functions of { q } and then substitute into Pi(t - t o, E, { a }, { b }) = OS(q, E, { a })/aq~, and 
integrate to find S. 

Of course it is generally impossible to truncate the pole series consistently so that the variable change is 
precisely symplectic and one therefore has to work through the Hamilton-Jacobi equation to achieve a 
consistent truncation. We can expect, however, that the requisite number of free parameters will enter and 
that when S is truncated, these parameters as functions of q, p will approximate E, { a }. 

The pairing between constants in (A.lb) also gives rise to an inequality on the sum of the resonance 
degrees of a conjugate (a, b) pair since the free constants must enter the series at or before the place in 
which they contribute to the variable change in (A.la, b). Partial eigenvectors associated with resonances 
are defined as (replacing t -  t o -~ t) 

OP I -t+p?-o = = t pj, 
aj ~ {..h~=o 

where we have defined the resonance pb, (resp. p"), to be the first place in which the respective constant 
enters the q, (resp. o), series. 



N. Ercolani and E.D. Siggia / Painlevd property and geomet~. 345 

Since the canonical 2-form is diagonal in { q, p } in order for a given conjugate pair a, b, to contribute to 
(A.lb)  there must be a qk, Pk such that 

-/,- s, + p; + p~ <_ o. (A.2) 

An equality is obtained in (A.2) whenever ~(2) evaluated on the pair of vectors %, flj is nonzero with the q, 
(resp. p) ,  component of aj, (resp. p, [3j) zero. However we emphasize that the free constants can enter the 
series before they are "needed" to satisfy (A.lb). Since we are defining the resonances as the first place a 
constant enters the appropriate series, the inequality remains a real possibility in (A.2). 

The 3f' l flow for n -  2 KdV is an informative illustration of why some care is required in defining the 
resonance degrees from the series. It also illustrates certain subtleties in the formal iteration procedure that 
yields the pole series at a principal balance. The series for oW l in (3.4a) read [22] 

ql ~- t-2 + ½0t -- ~40t2t 2 + ½fit 3 -- ~Ot3t 4 + ~Ot)Ot 5 + ½Yt 6, 

q2 = ½Oil -2- ½0t 2 "I" ]flt-- ~a3l 2- (~V + ~ot4) t4, 

t,,  - - t  -~ + ~t -~ - ~ # -  ½~t  + ~ , , # t  ~ + ( ~  + ~ ' ) t  ~, 

t , ~ -  t -~ + , ~ , d t -  ,~#t ~ + ~ ' t  ~ - ~ # t ' -  -~t ~. 

(A.3) 

We therefore find, 

¢o (2) = dt o A d E -  27 da A d/3 ]Z 

e -  -(,%+ ~ ' ) .  

By our definition, a is a "phase like constant" and y and /3 are action like. Therefore we have 
po = 0, pp= 5, 0~ = 8, and 

o. + 0#=/2 + g2, 

O,o+ O,=A + g~. 

If one defines O as the degree of the first correction term which enters any series as is sometimes done in 
the literature, then the q~ series sets the degrees of all the constants i.e., 0# = 3, #v = 6 and (A.2) becomes 
an inequality [22]. 

Actually this subtlety is associated with a difficulty in naively generating the pole series from the 
differential equations. If Hamilton's equation are written out for M' 1 and linearized about the leading 
terms, one finds that the Kowalevska determinant for # is only 3 x 3. This is because the q2 equation reads 
q2 = -2q~P2-  2p~ and the derivative term is lower order than the remaining two (/-3 VS. l -5) ,  which 
balance. If one just blindly proceeds using the linearized righthand side of q2 as a constraint on the 
eigenvector, then one has four equations in three unknowns (8q2 never appears in the other equations) and 
no solutions. 

Clearly a good series does exist and by examining (A.3) one can see where the prescription of retaining 
only the dominant monomials and lineafizing goes wrong. Alternatively one could assign a fictitious 
leading term of 0t -4 to q2. Then the Kowalevska matrix is 4 × 4, all monornials in Hamilton's equations 
are the same order and the eigenvectors are obtained by differentiating (A.3) with respect to a,/3, and ~, at 
a = fl = y  = 0. The roots are # = 2, 5, 8 and satisfy (A.2). 
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The Jr'2 flow for KdV illustrates why an inequality must be allowed in (A.2), The series are given in 
section 4.1. The phase-like constant of course occurs in the leading coefficients of q with 0 = 0 since the 
system is separable, but an action like constant enters the p-series with a negative power of t. Therefore 

- g k  + 0~ < 0, and p~ = 0. 
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