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For an n degree of freedom hyperelliptic separable hamiltonian, the pole series with n+1 free constants, through the Hamil-
ton-Jacobi equation, bounds the degrees of the n-polynomials in involution. When all the pole series have no fewer than 2n
constants, the phase space is conjectured to be just the direct product of 2n complex lines cut out by (2n— 1) integrals.

Exactly solvable or integrable nonlinear systems are
exeptional; yet their study has revealed unexpected
connections between geometry, analysis, and statis-
tical mechanics [1]. Integrable systems were typi-
cally discovered by chance or through techniques
specially tailored to the particular problem. There is
currently no way of determining whether the most
comprehensive approach to nonlinear integrable
equations, inverse scattering, will apply short of
actually implementing it. Thus a simple objective
analytic test is needed for integrability.

Such a procedure was first used, without rigorous
justification by Kowalevska [2] who observed that
all the known integrable systems, when continued to
complex times, were analytic except for isolated poles.
Painlevé enumerated all the differential equations of
second order whose moveable singularities (i.e.,
whose location depends on initial data) were only
poles [3]. More recently, it was observed that sys-
tems solvable by inverse scattering possessed Pain-
levé’s property [4]. Yet, in spite of the many other
integrable systems that were shown to be Painlevé
[5,6], there is no firm argument as to why the test
works or an indication of how to exploit the singular-
ity analysis to yield the integrals. Stated differently,
why does the absence of essential singularities and
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branch points in complex time guarantee that the
local patches of level set, which exist for any system
of differential equations, combine to become glob-
ally defined integrals? .

In this article we state a theorem which demon-
strates that the singularity analysis provides bounds
on the degrees of polynomial integrals for a large class
of separable systems. We recast the local singularity
data in global geometric terms which provides an
intuitive reason for why integrability follows from
Painlevé. We formulate a conjecture which permits
Liouville integrability [7] to be distinguished from
a stronger form (m — 1 integrals for m equations), by
using only local information.

We restrict attention to discrete, autonomous,
hamiltonian systems with the hamiltonian H poly-
nomial in the 2n conjugate variables {g;, p;}. Vir-
tually all the known examples assume this form once
it is realized that any polynomial dependence on time
may be incorporated by adding a new degree of free-
dom. The differential equations define {q,, p;} for
complex times. To implement the Painlevé test, one
constructs a formal Laurent series solution

gG~t=[1+..0(ct")],
pi~t¥[1+...0(ct?)] . 1)
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The {f, g} are the leading exponents, and O(ct”)
represents up to (2n— 1) free constants that enter the
series at generally distinct resonance orders p=> 0. We
define a principal balance to be a series (1) with the
maximum number, 2n— 1, of free constants (we sup-
press an additional constant f,, the origin of time).
The lower balances are those with fewer constants
which we order by the number present. For a Pain-
levé system, f;, g, and p; are all integers and there must
be at least one principal balance.

Rewrite the canonical two-form w?=Ydp, A dg, in
terms of the constants at a principal balance by sub-
stituting (1). Only a finite number of terms in the
series are involved since w? is time independent. The
constants may be redefined and partitioned into two
groups {t, ¢;}, {h, &}, where j=1,2,.., n—1 and h is
the energy, such that the former (resp. latter) first
enters the g (resp. p) series with a non-positive (resp.
non-negative) power of ¢ and in addition,

n—1
w?=dto Adh+ Y dc;Adi;
1

2n—2

+ ¥ Tu(e)de adey, (2)
1

where I';(0) =0 and ¢={c, ¢}. Note that this estab-
lishes a conjugate pairing among the constants. (One
may also need to interchange g, and p;.) Define a cor-
responding value of p; (resp. ;) by the first correc-
tion term in the g ( resp. p) series where the associ-
ated constant appears. Then

pitphi=fitg (3)

for each i and some /(i) *'. In what follows we need
the technical assumption I" ;=0 which is true in all
examples we are aware of.

We first state (and prove elsewhere) our theorem
on separable systems and then turn to a more general
construction which leads to a conjecture as to the
mechanism by which the Painlevé property forces
integrability, suitably defined.

Definition. For an n degree of freedom hyperellip-
tic separable h.s. system, the Hamilton-Jacobi equa-

' The “proof™ of Lochak is incorrect since it allows no /-depen-
dence in (3) and fails to precisely define p and p (otherwise
(6) for n=2 is a counter example. )
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tion separates in new canonical variables (&, ;) with
the properties:
(a) {g;} is a symmetric polynomial function of {&;},
(b) #? is a polynomial in &, of degree L>2n+1,
(c) the values 4; of the n polynomial integrals H,(q,
p) occur as the coefficients of € in #? of degree <L/2,

Remark. Since the method of separation provides
n integrals in involution, a h.s. system may be shown
to satisfy the Arnold-Liouville theorem *2. The level
set in {g,, p;} defined by fixing {H,} is topologically a
complex n-torus and the flows are quasiperiodic on
it. The “angle” coordinates on the torus are defined
by the Abel map t¢,=3S5/dh; where the action
S=23;/ndé; [10]. On a level set of the polynomial
n*(&) defines a hyperelliptic curve y. The jacobian of
the Abel map is nonzero when (&, n;) # (£, n;) for
all i#j. Jacobi showed that the Abel mapis 1: 1 away
from this locus [11]. Thus the level set is biholo-
morphic to the nth symmetric product of y with itself,
y off of a locus of codimension two on the level
set.

Examples.
(a) For the integrable “Hénon-Heiles™ model [5]
H=}(pi+p3)+qiq. +243 (4)

separates with

q=i$\ &, ¢:=3(5+8),

ni=—4LF +2hét +g/2, (5)
where /s and g represent the values of the integrals H
and

G=4p,p,q, —4piq +4giq5+qi .

(b) For general n the higher stationary solutions
in the Korteweg—de Vries hierarchy are separated by
replacing {g;} by the elementary symmetric polyno-
mials in {£;} and taking [12]

=&ttt Y hEn. (6)
i

(For n=2, q=¢(+&;, @=¢6¢&, H=—q\p3

—2p.p1+3q291 —qt —q3, and H,=2p,p,q, +4ip3

+p? —-q,p3 + 4293 +243q,.) It will be observed that

2 A complementary class of integrable systems has been studied
geometrically in ref. [9].
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the integrals, or their combinations, in a h.s. system
can always be ordered by where they enter °. Thus
in Hénon-Heiles, H is the first integral and G the
second.

Theorem. For a h.s. system:

(a) The principal balance corresponds to &, —
infinity, &, , a free constant and all flows H; give rise
to the same leading exponents {f; g;}.

(b) All lower balances are present down to those
with n free constants (excluding ¢,) which are per-
force just functions of the A,

(¢) There are at least L —4 lower balances in which
all {g;, p;} diverge with the same {f;, g;}.

(d) If {q,, p;} are weighted with the exponents in
(c), then a perturbative expansion of the Hamil-
ton-Jacobi equation for any H;(g, p) will yield
bounds on the weighted degrees of all the {H}.

Remark 1. For the lowest hamiltonian only, the
weighted degrees of H; (with respect to the lowest
balance on H,) are bounded by just the Kowalevska
resonances at the lowest balance.

Remark 2. Property (a) can be used to determine
the degrees of ¢(£) and for modest » the precise sep-
arating variable change can usuaily be found by
inspection from the pole series.

Statements (a), (b) are proved by rewriting Ham-
ilton’s equations of motion for the & variables on the
level set defined by the integrals. Part (c) follows
from a topological argument based on Euler charac-
teristics and Jacobi’s theorem that the level set is
essentially biholomorphic to ‘). The action in (¢,
H) variables can be systematically expanded using
the weights implied by (c) and then reexpanded in
terms of {g;}. From its form we can show how to
organize the expansion of the Hamilton-Jacobi
equation in g directly so as to obtain the degrees of A;
in #? and from them bounds on the weighted degrees
of Hi(g, p) ™.

Example. For n=2 Korteweg—de Vries, the lowest
balance for H, is f;= (2, 4), g;= (5, 3) and the Kowa-
levska resonances are p= (8, 10). For H,, f;=(4, 3),
g:= (10, 6) and the bounds on the degrees of H, are
(16, 20).
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Knowing that a problem is integrable in a certain
way provides global information that permits fea-
tures of the integrals to be deduced from the local
information provided by the pole series and expan-
sions of the Hamilton-Jacobi equation. If, however,
only the Painlevé property is assumed, we are still
able to plausibly construct a manifold on which global
geometric methods may be applied; which to date
have resulted in the concluding conjecture.

The manifold M is 2n-complex-dimensional and
augments the original phase space (2n copies of the
complex plane C) with the properties: (a) the differ-
ential equations are defined everywhere on M by
polynomial hamiltonians, (b) w? is preserved and
extends to M, and (c) solutions exist for all times on
M. The usual existence and uniqueness theorems for
differential equations imply that distinct solutions
remain distinct and that the time flow generates an
analytic map of M | : | and onto itself. Apart from
its abstract mathematical utility, the augmented
manifold is precisely the construct one needs to
numerically integrate Hamilton’s equations of
motion through all the singularities.

For each balance (1), we add a piece of surface to

 In spite of terminological similarities, our results have little in
common with the work of Yoshida [13]. He shows that if a
homogeneous polynomial integral exists, then its weighted
degree occurs as a resonance in some balance. We claim that
for a h.s. system bounds on the weighted degrees of all integrals
can be found (cf. remark 1 to our theorem). The weights we
assign do not in general yield homogeneous polynomials. Early
in Yoshida’s arguments (ref. [ 13], 2.8) it is incorrectly assumed
that the scaling exponents which homogenize H; become the
{f, &} in (1). This is true for H, in a h.s. system but not for
H,. | where the desired exponents are fractional (e.g., for the
second integral G=H,(gq, p) in (5) the exponents f=
(—2/3,-2/3), g;=(—1,—1) appear to balance the t, equa-
tions and make H, homogeneous, but there is no solution for
the corresponding coefficients). This “phantom” solution may
be interpreted (cf. comments on ref. [14]) as the lowest H,
balance formally rewritten in ¢,. It properly exists among the
solutions to the Hamilton-Jacobi equation for H, and fur-
nishes the degrees of the other H,. The pairing established by
Yoshida (ref. [13], p. 376) obtains only for a resonance asso-
ciated with a homogeneous integral. It is only at the lowest bal-
ance that all resonances correspond to integrals, but their
conjugates then have p< — 1 and except for ¢, do not occur in
the series. Our egs. (2), (3) encompass all the resonances at a
principal balance and are the basis for the canonical variable
change to the principal patch in M.
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C?" whose dimension m is the number of free con-

stants excluding /,. An open 2n-dimensional coordi-
nate patch is introduced to cover the new surface
whose equation in local coordinates becomes just
O=u,=...=u>,_,,. Transition functions relate vari-
ables in the various coordinate patches when they
overlap. They are constructed from a systematic
expansion of the Hamilton-Jacobi equation which is
equivalent to truncating the Laurent series (1) so as
to include all the resonances. One then finds that the
evolution equations in a given patch may themselves
have poles which reproduce the next lower balances.

If one is able to build M, then one has proven that
all the formal series (1) converge and established the
distribution of poles in complex time. For these and
reasons mentioned below, we advocate our Hamil-
ton-Jacobi method that leads to M as the most
informative way to restate and exploit the local Pain-
levé analysis.

The simplest illustration of the insights to be gained
by constructing M is the Riccati equation [3] for w(¢)
which is not hamiltonian or autonomous; however
M may be constructed by inspection. Let

dw/dr= ZZ: a;(Hwi(t) . (7
i=0

Observe that (7) has a simple pole w~ (t—¢,) ', and
that under the variable change w=w~! (7) remains
polynomial. We add to all weC, the point at infinity
w=0 and use w=w ! to glue all complex w0 back
onto the original phase space. All properties of M are
satisfied. In this special case M is compact, so one
can prove that all dependence of w(t,) on w(t,) is
given by a fractional linear transformation [3].

This last remark is essentially nothing but a gen-
eralization of Liouville’s theorem (analytic func-
tions with algebraic growth at infinity are
polynomials) applied to M. Further extensions of this
reasoning in the concluding paragraphs below pro-
vide the fundamental connection between complex
time properties and integrability.

We next construct M for a simplified version of
the integrable Hénon-Heiles example (4). The prin-
cipal balance is f;= (1, 2), g,=(2, 3). In addition to
the energy # and 1, there are two free constants ¢, ,
defined by g,=c,t~'+7cit+cot?+... which are
conjugate in the sense of (2). The resonances are
£1=0, p,=3, and p,=6. The only other balances are
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the two lowest ones previously noted, both with
fi=(2,2) and p,=(6, 8).

For the principal balance we add coordinates v,
s, 13€C, and u, also complex, but confirmed to a tube
around =0 which represents infinity. The transi-
tion functions for ¢, p(u, v) are rational in u and
polynomial in ». They are compactly stated in terms
of a generating function A(q, v,, v;) (¢,=X, 2= —y),

A=§y5/2 +%x2y1/2_317x4y—3/2

—vxy~ P —py~ 12, (8)

where p,=08A4/6q;, u=8A4/8v; and v, =8A4/3v,. In the
neighborhood of u=0, ; tend to constants which
approximate ¢, ¢, and A, while du/di=1+0(u?).
The transition functions are invertible near ¥ =0 and
H(u, v) is polynomial and of course has the Painlevé
property. The lowest balance series in (g, p) also
appears as a pole in the principal patch according to
U~t vy~t~", v,~1t~% v3~1t~—° The transition func-
tions for the lower balance patches will be given
elsewhere.

On geometric grounds, G generates an analytic flow
on the augmented manifold we constructed for H,
which passes transversely through the hypersurface
at infinity at almost all points. Therefore the G flow
has the same principal balance exponents {f;, g;} as
H. There are two types of lowest balance. In the first
fi=(2, 6) and g;=(5, 9) while the bounds on the
degrees of H and G are (18, 24). At the other balance
fip=—2and g, ,=1 (i.e., the q tend to zero).

If we invoke the separability of (4), then the sur-
face at infinity we must add to M to complete the
flows on a level set is nothing but the separating curve
(5). The principal balance patch covers all of y except
for a few points which are captured by the lowest bal-
ances. One can also verify that if the pole series for
the principal balance of H were substituted into G,
one would obtain precisely (5) with (&, ) replaced
by (ﬁcl , c2/\/§ ). This provides us with another
rationale for the pairing between resonances, (3).

The projection of the G flow onto the curve at
infinity is just the evolution one finds by treating (5)
formally as a one degree of freedom hamiltonian.
Observe that under (5), (&, n) blow up as (s~ '3,
s~y (orvy~t=", v~t—* and t~5'"? as the lowest
balance is approached from the principal patch). The
fractional powers that arise from (5) also suggest an
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obvious way to explain the so-called weak Painlevé
property of ref. [ 14]. Namely take a Painlevé system
with one extra degree of freedom and express one of
its other integrals as a function of the pole constants.

So far, we have only shown how to test for alge-
braic separability by providing enough information
to calculate the integrals. This does not prove that
algebraic integrals exist for an arbitrary polynomial
Painlevé system. In fact they do not. The correct
statement we conjecture is that either there exist
functions that transform simply in time or the finite
time map g, on M is a fixed rational function. This
precludes any sort of chaos since the variable time
enters only the coefficients.

The Riccati equation exemplifies the second alter-
native. Similar conclusions follow whenever M can
be sliced up into compact invariant submanifolds.
The assumption of compactness can be relaxed to the
requirement that g, has a power law bound when its
arguments tend to the boundary of M. When g,
depends on its arguments in an essential way, i.e., not
polynomially and not simply in a combination which
transforms trivially in time, then we believe that
composition and the existence of g, for all time leads
10 a contradiction.

For a general n-variable Painlevé system, with no
lower balances, we can show that any two poles in
complex time define a map from the hypersurface
infinity to itself. This hypersurface is just C*~! and
all such maps commute. This family of maps, we
believe, is sufficiently like the g, one would obtain
from a system of differential equations that stay
entirely within C"~!, that a full set of n—1 integrals
should exist. The classical Painlevé transcendents
have no lower balances and are integrable in this
strong sense [1].
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