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An analysis is presented of the steady states of two-dimensional convection near 
threshold in a laterally finite container with aspect ratio 2L 9 1. It is shown that 
the allowed wavevectors which can occur in the bulk of the container are reduced 
from a band Jqj - [(R--Ro)/R,li in the laterally infinite system to a band 
1q1 - (R-R,)/R, in a system with sidewalls (R is the Rayleigh number and R, its 
critical value in the infinite system). The analysis involves an expansion of the 
hydrodynamic equations in the small parameter [(R - RO)/RO]i ,  and leads to amplitude 
equations with boundary conditions, which generalize to  higher order those previously 
obtained by Newel1 & Whitehead and Segel. The precise values of the allowed 
wavevectors depend on the Prandtl number of the fluid and the thermal properties 
of the sidewalls. For certain values of these parameters all the allowed wavevectors 
are less than the critical value q,. The applicability of the results to  convection in 
a rectangular container is briefly discussed. 

1. Introduction 
An interesting property of the steady states of convective flow in a laterally infinite 

Rayleigh-BBnard cell above threshold is the existence of a band of solutions with 
different lateral wavenumbers (Malkus & Veronis 1958; Schluter, Lortz & Busse 1965; 
Joseph 1976). The experimental situation is not entirely clear, but there is evidence 
for a narrower band than predicted by the laterally infinite analysis, with a trend 
towards longer wavelengths as the Rayleigh number increases (for a review see 
Koschmieder 1974). Since real convecting systems have finite extent, it  is important 
to understand the effect of lateral boundaries on the steady states of flow, and on the 
allowed wavenumbers in particular. (Of course, finite geometries will induce Fourier 
components of the flow a t  a wide range of wavenumbers. The question we are 
addressing is the wavenumber of the local periodicity (i.e. the inverse of the roll width) 
in regions of the cell, well away from the sidewalls, where a locally periodic roll 
structure is indeed evident.) 

A complete solution of the convection problem in finite cells, involving the full 
analysis of three-dimensional flows, is extremely difficult. As a first step, the present 
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paper considers the question of wavenumber selection for two-dimensional motion 
of rolls between two rigid sidewalls parallel to the rolls (with separation 2L >> I ) ,  for 
Rayleigh numbers R slightly above threshold ((R-R,)/R, < 1 ,  where R, is the 
critical Rayleigh .number of the infinite system). The central result obtained is that 
the presence of the sidewalls, no matter how distant, severely restricts the possible 
wavenumbers which can occur in the bulk of the system. Specifically, the band of 
available wavenumbers q about the critical wavenumber qo is reduced from a size 
Iq( - [(R-R,)/R,]i in the infinite system to the range IqI - (R-R,)/R, for a system 
with sidewalls. The impossibility of going from the finite system to the infinite one 
for L + 00 is a consequence of the non-local effect of the boundary conditions a t  the 
sidewalls. (The time necessary for the influence of distant sidewalls to be felt in the 
interior grows as L+m, thus restoring continuity to  the physical problem. The 
present work concerns itself only with static. solutions, however, in which case the 
non-uniformity of the limit L +00 is a real effect.) 

Our work provides the solution to the mathematical question of the allowed 
wavenumbers of stationary solutions near threshold for the two-dimensional problem 
posed. The most important limitation to the direct applicability of our  result to  
experimental situations is, of course, the neglect of the boundaries transverse to  the 
convective rolls. These boundaries must in fact be more closely spaced than the 
longitudinal (short) boundaries whose effect we consider (Davis 1967 ; Luijkx & 
Platten 1981 ; Dubois & Berg6 1978). We shall argue below, however, that our analysis 
is likely to apply to the finite cell, provided that the rolls are indeed parallel to the 
short sidewalls. Such patterns have been observed experimentally in rectangular 
containers (Dubois & Berg6 1978). 

An elegant reformulation of the results of Schluter et al. (1965) for the infinite case, 
valid in the vicinity of the threshold, was presented by Segel (1969) and Newel1 & 
Whitehead (1969). These authors separated the stream function ~ for the motion into 
a rapidly oscillating part eiqox, together with a slowly varying complex envelope 
function A , ( X )  : 

( 1 . 1 )  

The envelope function in their work varies on the slow scale 

x = X Q ,  (1.2) 

$ a iO[eiqOZA,(X) -e- i~oxA,*(X)]  sin TZ. 

where the small parameter e is here defined as 

E = (R-R0)/18n2. 

The nonlinear equation satisfied by A, is then 

A," + A,  - IA,12 A,  = 0, 

where the prime denotes d / d X .  The solution in which A ,  is a constant represents 
motion with the critical wavevector q,. 

The results of Schluter et al. for the infinite system are easily reproduced using these 
equations. I n  the infinite system there are a set of 'phase-winding' solutions 

A , ( X )  = (1  - Q2)i e i Q X ,  (1.5) 

providing - 1 G Q G l .  (1.6) 

(1 .7)  -0 G q G €4. 

In  view of (1.2) this represents a band of waivevectors in the physical variables, of 
size 
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The formalism in terms of an envelope function is particularly convenient for 
studying the influence of sidewalls on the phase-winding solutions. Since all fluid 
velocities are zero at rigid sidewalls the magnitude of the envelope function becomes 
small near the sidewalls, and then recovers away from the walls over the lengthscale 
X = O( 1). The boundary conditions appropriate to  (1.4) were obtained by Segel(l969) 
and somewhat more systematically by Daniels (1977). These are 

A, (X)  = 0 ( X  = &a), (1.8) 

wheret 6 = €4L (1.9) 

is the half-length of the box in the units appropriate to the X-variable. It may be 
readily shown that (1.4) and (1.8) do not allow any phase-winding solutions, which 
means that the boundary conditions have suppressed the whole band of wavevectors 
(1.7), to the order of the expansion (i.e. wavevectors q = O(d) ) .  

In  order to  determine the band (if any) of allowed wavevectors remaining in the 
presence of rigid sidewalls it is necessary to  include corrections to the boundary 
condition (1.8) at the next order in €4. It then turns out that  the amplitude equation 
(1.4) must also be expanded to  higher orders in 8. I n  fact, to calculate the 
phase-winding solutions different lengthscales are introduced in different regions of 
the system, and amplitude equations are derived for the variation on each lengthscale. 
This approach, which will be described in detail below, is the direct extension of the 
multiple-scale method of Newel1 & Whitehead (1969) and Segel (1969) to the higher 
order required here (see also Daniels 1978). It is interesting to note, however, that 
our results may all be obtained from a more general envelope function @ ( x )  defined 

$(x )  = i(4/7r) [egqox @(z) -c.c.] sin m+ higher harmonics. (1.10) by 

By expanding the hydrodynamic equations in the independent small parameters 101, 
E and dldx ,  we obtain the generalized amplitude equation 

where . . . represents higher-order terms which we will not need, and the k, are real 
numbers calculated in appendix A. The boundary conditions are then, to the required 
order, 

( x  = +L) .  
do d@* 

0 = @-a+ --p+ - 
- dx - dx 

(1.12) 

The @-term in (1.12) corresponds to (1.8), and the derivative terms represent the 
leading correction in 8. 

If we put @(x) = &4A,(X), x = Qx (1.13) 

and keep only the lowest-order term in (1.1 1) (i.e. of order d )  we regain the amplitude 
equation given before, (1.4). More generally we expand the function @ as 

(9 = €L4,(X)+€A,(x)+ ..., (1.14) 

and choose a suitable scaling for x accordihg to the region. Inserting (1.14) into (1.11) 

t The reader is warned that the parameter 6 used here and in Cross et al. (1980) differs from the 
one defined by Daniels (1977, 1978), where S = eL2. 
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and equating like orders in €4 then leads to precisely the same amplitude equations 
as we will derive directly from the hydrodynamic equations in '$4. 

Since the higher-order analysis is quite involved, we shall first discuss the simpler 
equation (1.4) with a number of phenomenological boundary conditions which 
illustrate the effect of sidewalls on the flow. It is also convenient to study first a 
semi-infinite system with one rigid sidewall (e.g. the region x 2 - L,  with sidewall a t  
x = - L).  The single wall is sufficient to restrict the band of allowed wavevectors, in 
a way which we calculate in detail below. The addition of the second wall at x = + L 
then has the effect of further restricting the wavevectors within this band to  a discrete 
set quantized roughly in units of nlL. 

The first phenomenological boundary effect we consider (model I) is (1.4) with the 

(1.15) 
boundary condition 

where A 4 1. This condition directly restrains the amplitude to a small, but non-zero, 
value a t  the boundary. It has been studied previously by Daniels (1977,1978), Brown 
& Stewartson (1978) and Hall & Walton (1977). For the semi-infinite system we find 
that the wavevectors q = $Q are restricted to the band 

-A€$ d q d A d .  (1.16) 

This is similar to the band (1.7) of the infinite system but narrower by the factor h -4 1. 
The addition of the second wall gives quantized wavevectors with a number 
N ,  - ALdln in the band (1.16). 

The second phenomenological model we study (model 11) is (1.4) with the boundary 

(1.17) 
condition 

where a+ and P+ are complex constants of order unity and A -4 1. Again this restricts 
the magnitude at the boundary, lAol - h 3 1, but is more closely related to the 
realistic boundary condition (1.12). The results for this case are similar to  those of 
model I, but with an asymmetric band of allowed wavevectors 
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A , ( S )  = 1 / 2  Aeieo (S = +6) ,  

&-ha+ - Ai-AP+ - A,*' = 0 (S = fa), 

with 

(1.18) 

(1.19) 

The constants of proportionality in (1.19) are of order unity and depend on a+ and 
/3+ (they can be either positive or negative). Again, for the finite system the number 
of solutions is of order N,,  - ALeBln, with quantized wavevectors in the same band. 

Finally we analyse the true hydrodynamic problem with realistic sidewall boundary 
conditions. The form of the solutions turns out to be analogous to that in model 11, 
with A = €4, but it is not identical, since the corrections to the amplitude equation 
of order el given by (1.1 1) modify the details of the behaviour. The essential result, 
which may be calculated for the semi-infinite system, is that  the band of wavevectors 
is restricted to a range given by (1.18), with 

q* - (-7+11e, (1 20) 

where 7 is O(1) and depends on the Prandtl number (T and the thermal properties 
of the sidewall. In  the finite system of length 2L there are a number N of order eLln 
allowed states in the band, with discrete wavevectors quantized in units of n/L .  In  
all cases the band of wavevectors is reduced by a factor of the order of the reduction 
in magnitude of the envelope function a t  the boundary, reflecting the reduced fluid 
velocities in this region. The propagation of the influence of the boundaries into the 
bulk of the fluid will be seen explicitly in the solutions. 
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As noted above, the applicability of the two-dimensional solutions to the realistic 
case with boundaries transverse to  the rolls, is not obvious a priori. The idea behind 
our suggestion that the short sidewalls are more important for determining the 
allowed wavenumbers in the bulk of the cell than the transverse sidewalls is the 
following: the analysis of the laterally infinite system imposes the constraint of a 
constant average roll spacing in the dynamics, and consequently leads to a wide band 
of allowed wavenumbers. The presence of the longitudinal (short) sidewall relaxes this 
constraint by allowing the creation or destruction of complete rolls close to the 
sidewall. On the other hand, the transverse sidewalls do not allow this process for 
the parallel roll pattern considered. Although the transverse sidewalls are important 
in locally suppressing the convective flows, and are also closer to the bulk of the cell, 
we argue that they are not in fact predominant in reducing the allowed band of 
wavenumbers in the bulk of the cell. It is conceivable, however, although we find no 
evidence for this, that  the transverse sidewalls may perturb the details of the allowed 
band. 

Our analysis will not apply to the more complicated convection patterns in which 
the rolls are not parallel to one pair of lateral sidewalls in a rectangular cell, but rather 
vary in direction throughout the cell. Such patterns are often observed in large- 
aspect-ratio Rayleigh-Bknard cells. Our method of analysis is in fact better suited 
to problems in which there is no rotational symmetry of the hydrodynamic equations 
in the absence of lateral boundaries, so that the flow is necessarily two-dimensional 
near threshold. The Taylor vortices in Couette flow provide an example of such a 
situation, although the end boundary effects in experimental systems are more 
difficult to treat analytically in this system. Rayleigh-BBnard convection in metals 
in the presence of a magnetic field parallel to the rolls provides another example where 
two-dimensional motion occurs, even if the transverse sidewalls are far apart (Fauve 
& Libchaber 1981 ; Busse & Clever 1982). We would expect our theory to  apply, a t  
least semiquantitatively, to  this situation. 

I n  $ 2  the basic equations are displayed. Section 3 describes the derivation of the 
lowest-order amplitude equation, and uses this to place general bounds on allowed 
wavevectors if the amplitude is reduced anywhere in the fluid. Explicit solutions are 
constructed for models I and I1 to  show the restricted band of wavevectors resulting 
from the phenomenological boundary conditions. The true hydrodynamic problem 
with realistic sidewall boundary conditions is treated in $4. Section 5 concludes with 
a discussion of further work to be done and a comparison with other authors. A 
number of detailed calculations are contained in the appendices. A summary of the 
present work was published earlier (Cross et al. 1980). 

2. Basic equations 
Throughout this paper we shall be concerned with steady solutions of the 

two-dimensional Oberbeck-Boussinesq equations which govern the motion under 
gravity of a fluid with density p ,  thermal diffusivity K ,  kinematic viscosity 1’ and 
coefficient of thermal expansion a. These OB equations are 

au au) 
ax az -+- = 0, (2.la) 

ap + UV2,U. 
au au 
ax az ax U--+Ul- = -- (2.1 b )  
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aul at4 a p  
ax az az 

ax aZ 

u-+w-= --+(Tv2u l+(TT, 

BT aT 
U-++l--Ru, = V2T, 

(2 . lc )  

(2 . ld)  

where V2 = a 2 / a x 2  + a2/az2 ,  with the lengthscales x, z measured in units of the vertical 
cell height d ,  and the horizontal and vertical velocity components u(x, z ) ,  w(x ,  z )  and 
reduced pressure p ( x ,  z )  rendered dimensionless with respect to  the quantities K/d,  
and pK2/d2.  Temperatures are scaled with ~ i ~ / a g d ~ ,  T being the perturbation from the 
basic conducting temperature profile - Rz. The parameters of the problem are then 
the Rayleigh number 

(2.2) 

the Prandtl number (T = V / K  (2.3) 

R = ~ L ( T ~ - T , ) ~ ~ ~ / v K ,  

and the length 2L of the (rectangular) container. The quantities T, and Tp are the 
constant temperatures maintained a t  the upper and lower boundaries a t  z = 0 and 
z = 1 ,  where for analytical convenience we assume free boundary conditions 

(2.4) 
au 
az T = - = w = O  ( ~ = 0 , 1 ) .  

At the sidewalls, on the other hand, i t  is essential for our treatment that  we use the 
realistic rigid boundary conditions on the velocities 

u = 18 = 0 (x = f L ) .  (2.5) 
A number of different assumptions will be made for the thermal properties. One case 
is that  of a sidewall with thickness t, and thermal conductivity Kw, which is 
thermally clamped to the upper and lower plates. As shown in appendix B this implies 
the boundary condition on the n = 1 Fourier component T(’) of T(z) 

where p = n2Kw t w / K ,  (2.7) 

and K is the thermal conductivity of the liquid. Under these circumstances there is 
no heat flow out of the sidewalls in the absence of convection, so that the transition 
near R = R, remains a ‘perfect bifurcation’. If, on the other hand, one assumes a 
finite heat flow out of the sidewalls whenever Tp + T,, then the boundary condition 
can be taken as (Daniels 1977) 

where g + ( z )  - are specified functions. 

3. Lowest-order amplitude equation and phenomenological models 
I n  this section we consider the lowest-order amplitude equation as derived by 

Newel1 & Whitehead (1969) and Segel (1969), with phenomenological boundary 
conditions defining models I and 11. 
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3.1. The amplitude equation and general bounds 

In  the infinite system ( L  = co), the convective threshold is at 

R, = yn4, (3.1) 

c = (R-&)/18n2 (3.2) 

x = XB. (3.3) 

and the OB equations (2.1) can be consistently expanded in the small parameter 

in terms of the slow scale (Segel 1969; Newell & Whitehead 1969) 

Let II.(x, z )  be the stream function, in terms of which the velocities are given by 

and let us expand @ in d: 
$b = €iII.o+€$b,+€qh2+.... 

(3.4a) 

(3.4b) 

(3.5) 
At lowest order, the function v+ho can be expressed as 

i4 
+o(x, z )  = - n [ A o ( X )  einzlt’2 - A * ( X )  0 e-irrxlt’2] sin nz. (3.6) 

In  appendix A i t  is shown that the slowly varying envelope function Ao(Y) satisfies 
the amplitude equation (Segel 1969 ; Newell & Whitehead 1969) 

(3.7) A; + A,  - IA,12 A ,  = 0, 

where the prime denotes differentiation with respect to X. 
In discussing the effects of boundaries on this equation i t  will be convenient to 

employ the representation of A ,  in terms of amplitude and phase (Newell & 
Whitehead 1969) 

for which (3.7) reads r ” - r e f 2 + r - r 3  = 0, 

d 
- (r2t9’) = 0. 
d X  

(3.10) 

These equations may be integrated : 

ir’2 + &z+ tr2 - t r 4  = E, (3.11) 

r20’ = Q ,  (3.12) 

where Q and E are constants of integration. The analogy between these equations 
and those of a classical particle in a centrosymmetric potential U(r )  = ar2-ar4 has 
been pointed out by Newell & Whitehead (1969). 

I n  terms of the above representation, the influence of the boundaries on the form 
of the solutions deep in the interior may be understood quite simply: the boundary 
conditions restrict the values of Q and E,  which are ‘constants of the motion’ for 
(3.9) and (3.10). I n  fact, general bounds may be derived on the phase winding in the 
bulk if the magnitude of the envelope function A, (X)  reaches a minimum rm 

2r2 
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somewhere in the cell (usually near the boundaries). Equation (3.11) implies 
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2 m.  (3.13) 

Now let r M  be the maximum value reached by r ,  in a region where r’ = 0 (the core). 

2rM - 1 (3.14) 
Then 

,+r&-L4 - 2 E  
TM 

2E 2 - + ~ & - + 4  Q2 

rk 

Q 2  

or, using (3.13), 

Maximizing the right-hand side with respect to  ?“M. we find 

Q 2  < r&r&[l-$(r&+r&)]. (3.15) 

Q < v‘$ r,(l --irk). (3.16) 

I n  the core, where r = TM, (3.12) may be integrated to  give 

B ( X )  = Ox+?, (3.17) 

where 0 = &I.&, (3.18) 

with (3.19) 

Equations (3.16)-(3.19) show that the amount of phase winding in the core region 
(where rM FZ 1) far from any boundary, is limited by the minimum value taken on 
by the magnitude r anywhere i n  the cell .  This effect, which persists in the other models 
considered in this paper, is the source of the restriction imposed by a boundary on 
available wavenumbers in the core. To show the effect explicitly we now calculate 
the phase winding solutions of the phenomenological models I and 11. 

3.2. Model I 
We use the boundary conditions 

A,  = 1/2  ( X  = fa), (3.20) 

with A satisfying h 6 1.  (3.21) 

With this boundary condition the amplitude r is explicitly made small a t  the 
boundaries. The boundary condition is related to the ‘ finite-heat-current ’ boundary 
condition (2.8) considered by Daniels (1977). For that case, and assuming a constant 
heat current, we would have to take 

h = g1 ~ -? /182 /2  n3, (3.22) 

where g1 is the n = 1 Fourier component of the functionsg+(z) = - g - ( z )  in (2.8), which 
are assumed independent of 6 .  Thus h a E - 4  and the assumption (3.21) would only 
be satisfied for E not too small. We prefer here to use the conditions (3.20) and (3.21) 
as a convenient phenomenology. 

For use in later sections we define the envelope function A , ( X )  on the boundaries 
to be 

A, = r k  ei** (Y = +8) .  (3.23) 

The model studied here has r+ = r- = d2 A,  (3.24) 

o+ = -8- = 8,. (3.25) 

It is simpler to consider first a semi-infinite region, which we take to be the region 
-8 < S ,< 00 with the appropriate boundary condition from (3.20) a t  X = -8. The 
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argument given earlier shows that the wavevector in the bulk is limited by 
IQI 5 h 6 1, and the solution for the magnitude r may be explicitly calculated using 
Q - h as a small parameter. The phase variation is then given in terms of Q ,  the 
wavevector in the core, by (3.12). The solutions in a large but finite box S % 1 may 
be constructed by matching the appropriate parts of the solutions in two semi-infinite 
regions - S < 9 < co and - co < X < S at S = 0. The spread of allowed wavevectors 
Q will be seen to be the same as in the semi-infinite case, but the wavevectors Q are 
now restricted by a condition on the phase difference across the system: 

6 6 
~ S B ’ ( X )  = Q J d x r - 2 ( S )  = 0, -0- +2nn. (3.26) 

3.2.1. Phase winding in the semi-infinite region. The semi-infinite region is taken as 

J-6 -8 

x 2 - L.  It is convenient to use a coordinate defined as 

s = ( r + L ) d  = S + S ,  (3.27) 

where for the finite box 0 d s < 2LO. (3.28) 

The semi-infinite system is then given by the limit L +OO in (3.28). We divide the 
system into a boundary region = O ( h )  and a core region s = O(1)  or larger. For 
small h the equation for the magnitude r may be solved explicitly in these two regions, 
and the constants of integration determined by the boundary conditions and by 
matching between the two regions. (Because the method of solution here is different 
from that in $4, the division into ‘core’ and ‘boundary’ regions is also different in 
the two cases.) 

( a )  Solution i n  the core. Here the term Q2/2r2  in (3.11) may be neglected and then 
an evaluation of this equation well away from the boundary gives 

E=’ 4 ’  (3.29) 

Equation (3.11) then becomes rf2 = 1 2( 1 - r2)’, (3.30) 

with the solution r = tanh [(s+LTo)/\/ 21, (3.31) 

where 5, is a constant of integration to be determined by matching to the boundary. 
Equations (3.8), (3.12) and (3.31) imply that far from the boundary (s % 1) the core 
solution is 

~~ 

A 0 ( X )  = exp [ i (QS+C) ] ,  (3.32) 
with c! a constant. 

and the magnitude satisfies 
( b )  Solution i n  the boundary region. Here the r2 and r4 terms in (3.11) are negligible, 

(3.33) 

Since the quantity inside the parentheses in (3.33) must be positive for r = r- ,  we 
may define a parameter y -  by 

Q = .\/$ r- sin y-  = h sin y-  (3.34) 

(cf. (3.24)) and integrate (3.33) to find 

r2 = 2 ~ 2  + 2 h X  cos y-  +@z,  (3.35) 

where the f sign is absorbed into cosy-, with 1y-l < n such that -in < y d in 
corresponds to the magnitude r increasi,ng initially as fi increases ( i s .  moving away 
from the boundary). 
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( c )  Matching between core and boundary layer. The two solutions (3.31) and (3.35) 

13, = 2A cosy-. (3.36) 

Equations (3.24) and (3.34) give the range of allowed wavevectors in the core of the 
semi-infinite region, namely 

may be matched at = bA, where b 1, to find 

(3.37) -A , (Q,<h,  

since any value of y-  in (3.34) gives a solution, defined by (3.31), (3.35) and (3.12) 
for the phase. 

3.2.2. Phase winding in theJinite system. To consider the finite system -8  < 9 < S 
(or 0 d 2 3  < 2s) we must evaluate the phase-winding integral (3.26) over the whole 
cell. For the half-cell X < 0, the magnitude r(x) remains as given by (3.31) and (3.35), 
since the corrections due to  the boundary at X = +6 are negligible here. We then 
find contributions to the phase winding over the half-cell, given by the integral over 
the boundary region 

= y-  -2b-1 sin y-  + O(b-2) ,  (3.38) 

and the integral over the core 

= ASsin y_+2b-'sin ~ - + 0 ( b - ~ ) .  (3.39) 

with additional corrections of relative order A. Thus, letting b -, CQ, the total phase 
winding over the half-cell is 

(3.40) 

The same procedure may now be repeated for X > 0, and the resulting equations 
combined to yield 

8+-8-+2nn = (y++y-)+2SQ,  (3.41) 

where y+ is the parameter analogous to y-  but defined for X > 0, with Iy+l ,< in 
once again corresponding to  the amplitude increasing away from the boundary. The 

(3.42) 
relations 

Q = A sin y+ = A sin y- 

then lead to two classes of solutions. 
(i) y+ = y-  = y ,  so that (3.41) gives an implicit equation for Q :  

Q = _+A sin ( Q S - O , ) ,  (3.43) 

where + or - corresponds to n in (3.41) odd or even respectively. 
(ii) y +  + y -  = &7r, so that (3.42) becomes 

ZSQ, = 2O,+ (2n+ 1) 7r, 

with the range of Q limited by (3.42) to 

(3.44) 

IQ,I < A. (3.45) 

The evolution of the solutions QS of (3.43)-(3.45) may be calculated as a function of 
AS. For AS small there are only two allowed wavevectors. As AS increases, more 
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solutions appear. In  fact there exists a band of solutions with 

- A  < Q dh, (3.46) 

as in the semi-infinite case, but with Q quantized to give roughly 6h6/n values in the 
band. The precise numeration of the solutions for each wavevector is rather involved, 
and we will not discuss i t  for model I. 

We should make some remarks on the accuracy of the solutions obtained. The 
phase-winding integral (3.41) defining the allowed values of Q has contributions O(1) 
and O(6Q). We calculate r ( X )  to an accuracy sufficient to give these terms correctly 
to relative order A ,  so that the values Q = Q ,  are themselves given to  this relative 
accuracy (i.e. Q = Q,( l+O(h)) ) .  It should be noted that for very large 6, e.g. 
6 = O(h-2) ,  or for the semi-infinite system, the actual solution for the phase O ( X )  will 
be in error by O(1) far from the boundaries. If the detailed behaviour of O(X)  is 
required in this situation, a higher-order expansion must be performed. Also, in our 
solution we assumed that the magnitude saturates in the core, which requires 6 % 1. 
When 6 decreases, e.g. 6 < O(h- l ) ,  only two of the phase-winding solutions 
(3.43)-(3.45) survive, and these presumably join up with the solutions studied by 
Daniels (1977, 1978) for 6 = O(1). 

3.3. Model 17 

We also wish to  study the effect of the boundary condition 

A,-ha, - AA-hP+ - A,*’ = 0 (S = &6) ,  (3.47) 

where a, =-a?- = a, pi = -p* = p (3.48) 

are specified complex numbers of order unity and h is a small real parameter. The 
motivation behind this boundary condition is twofold. Firstly, from a phenomeno- 
logical point of view, (3.47) is the most general linear homogeneous boundary 
condition for an equation such as the amplitude equation. (The requirement of 
linearity is a consequence of the small velocities near a rigid boundary. The 
homogeneity maintains a perfect bifurcation at e = 0.) Secondly, as discussed earlier, 
the boundary conditions in the realistic case formally correspond to taking h = €4 in 
(3.47). The simpler calculation performed here illustrates the main effects found 
in $4. 

The method of solution is similar to that used for model I except that  now the 
boundary values of r are not given explicitly, but are functions of A, a, p which must 
be determined. Again we introduce parameters y+ - defined by 

(3.49) Q = .\/+ r+ sin yi = d+ r- sin y - ,  

with -n < y+ < n chosen so that if r increases moving away from the boundary, 
then Iy+I <in. 

If we-first consider the semi-infinite case -6  < X < co with the X = -6 condition 
of (3.47), we have only one condition 

p- + 4; a* exp ( i y - )  + 44 p* exp [ - i ( y -  +ZO_)] = 0, (3.50) 

where we write r* = hP+, (3.51) 

with p, real, and, since A; is typically O ( l ) ,  we expect p+ to be O(1). Equations 
(3.49)-(3.51) are simply solved by taking real and imaginary parts of (3.50) multiplied 
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2Q = -Aai+AIPI sin (28-  +y-  + $ p ) ,  (3 .52)  

which, since 8- is arbitrary, allows a continuum of wavevectors in the band 
Q- < Q < Q+ with (3.53) 

where ai = Im a and we have written /3 = 1/31 exp ( i$p).  (It may be readily checked 
that the real part is also satisfied for any such Q . )  

To consider the finite system -6 6 X < 6 we must add the boundary condition 

(3 .54)  
a t X = f 6  

together with the phase-winding integral as in (3 .41)  

p + + d \ / g a e x p  (-iy+)+dS/3eXpli(y+-28+)1 = O ,  

(8, - 8 - ) + 2 n n  = ( y+  + y - ) + 2 6 Q .  (3.55)  

The variables y+ ,  p+ and 8+ may be eliminated from the seven real equations given 
by (3.45)-(3.55), to give values for Q. The algebra is displayed in appendix C, where 
solutions are found with either: 

(i) 2Q = A[-aikI/31 sin (2Q~Y-q5~)] ;  (3 .56)  

or (ii) 2Q,S = q5p+(n+$)m,  (3 .57a)  

with l2Qn +hail < A 1/31. (3.57 b )  

Again the wavevectors lie in the same band as in the semi-infinite case (3 .53) ,  but 
are further restricted to values quantized in units roughly of n/6. The explicit values 
of Q resulting from (3.56) for given 6 are easily found by writing 

(3.58) 

The allowed band of wavevectors depends crucially on the parameter 

v 3 ai/lPI. (3 .59)  

For 7 < - 1 ,  (3 .58)  implies that  Q > 0, whereas, for 7 > 1 ,  Q < 0, and, when 
- 1 < rj < 1 ,  Q can take on both positive and negative values. We defer discussion 
of the numerical evaluation of (3 .58)  to $ 4 2 . 2 .  

4. Realistic boundary conditions at the sidewalls 
Let us now consider the full hydrodynamic problem (2 .1)  with the physical 

boundary conditions (2 .4)-(2.6) .  Again i t  is easiest to solve first the semi-infinite 
problem x 2 - L. 

4.1 .  Regions cxnd amplitude equations 

We define three different regions, in which solutions may be explicitly calculated. (As 
noted earlier, these regions are chosen in a different manner than for the models.) 

( i )  Sidewall region: 

2 = L+r = O ( 1 ) .  

In  this region the amplitude is small and the hydrodynamic equations may be 
linearized. 
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(ii) Boundary layer: x = ( L + X ) d  = O(1) .  (4.2) 

Here amplitude equations for an envelope function with a spatially varying magnitude 
may be obtained and solved. The matching between regions (i) and (ii) gives boundary 
conditions on the envelope function. 

(iii) Core region: 
x= (L+%)E = x€+ = O(1) .  (4.3) 

In  the region x $ 1 ,  = O( 1) ,  the magnitude of the envelope function has saturated, 
but the phase variation is significant. As explained below, the scaling of li’ given in 
(4.3) follows from the matching of the solution in region (iii) to  that  in region (ii). 

For the realistic system it is not possible to define constants of the motion that 
relate the solutions in the core directly to those near the boundary where the velocities 
are reduced. Instead, the propagation of the influence of the boundaries on the 
wavevectors in the core is given by successive matchings between regions. This 
difference in approaches accounts for the different definitions of the regions here and 
in $3. I n  the sidewall region (i) the stream function 1c. is small and the hydrodynamic 
equations (2.1) may be linearized. The solutions including the physical boundary 
conditions are shown in (B 9)-(B 1 1 )  (appendix B). I n  the boundary layer (region (ii)) 
the starting equations (2.1) may be expanded in d, treating d / d g  as O(1).  This 
procedure is carried out explicitly to O(e2) in appendix A, and one obtains the 
amplitude equations (Daniels 1978) 

A; + A,  - A,  IA,12 = 0, (4.4) 

A ~ + A , - 2 A , ( A , ( 2 - A ~ A : + ~ [ A o ]  = 0, (4.5) 

(4.6) where 

and the numbers ki are defined in (A 21). The function A ,  is defined analogously to  
A,, but from the function 

Boundary conditions on the amplitude equations (4.4)-(4.6) for 2 4 0  are ob- 
tained by matching to the asymptotic solution in the sidewall region as Z +CO (see 
appendix B). The result obtained there reads (Daniels 1978) 

F ~ [ A , I  = - i{k1 Ah + Ic2 A’S- (k3 + k4) (A,I2Ak- (k3 + k5) A: A:’}, 

of (3.5) (see (A 12)). 

(4.7a) 
(4.7 b )  

where a- and /3- are O(1) complex numbers whose values are listed in (B 15) and 
(B 11) .  The behaviour in the core is found by expanding the starting equations in 
€4, treating d / d X  as O(1) .  This is done in appendix E. 

4.2. Phase-winding solutions 

4.2.1. Semi-infinite system. The behaviour in the boundary region (ii) is given by 
(4.4)-(4.6) with the boundary conditions (4.7a, b )  a t  2 = 0. The solution of (4.4) is 

A ,  = e$$- tanh ( 8 / . \ / 2 ) ,  (4.8) 

where 4- is an arbitrary real constant. When this expression for A ,  is inserted into 
(4.5) a second-order, linear inhomogeneous equation is obtained for A,.  The solution 
is found in appendix D, and reads 

A,  = ei$-[a- sech2 ( 2 / . \ / 2 ) + i { c -  tanh (g/2/2)  

+d-[z/$- x tanh (8/2/2)- I ] +  u‘$- B(g))], (4.9) 
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where a_,  c- and d- are real 0(1) constants to be determined, and the particular 
integral B ( 2 )  is written down explicitly in (D 12). For the present calculation we need 
only know that 

B(0) = b, (4.10a) 
where b is given in (D 13), and that 

B ( X )  <co for 2403, (4.10b) 

so that A ,  is dominated by the third term on the right-hand side of (4.9) in this limit. 
The boundary condition (4.7 b )  a t  

(a- - id- + i b / 1 / 2  + u*/1/2) e"- + ( /3* /1 /2)  e+@- = 0. (4.11) 

+ 03, where (4.8) and (4.9) 

yield A,+&A, -- ei@-[l +i(d-/.\/2)dx]. (4.12) 

Equation (4.12) implies that  for g >> s-4 the first-order 'correction' dominates the 
zeroth-order term and the boundary-layer expansion breaks down. This suggests the 
existence of a new regime (the core) where variations on the scale = €42 are of order 
unity (cf. (4.3)). I n  appendix E it is shown that with this scaling the envelope function 

A,(X) = exp i[QX+C], (4.13) has the simple form 

i.e. it  has a constant amplitude and a phase which is linear in x. 
In  order to find the allowed values of the wavevector Q we shall match the core 

solution (4.13) for 0 to the asymptotic form of the boundary-layer solution (4.8), 
(4.9) as x'+ co. Expanding (4.13) for small x gives 

A,,(X) N eiF[I + iQX] = eic[i + iQdX1, (4.14) 

where we have used (4.3). I n  the limit r? +03 the first term matches to A,, (4.8), to  

give 9- = c, (4.15) 

and the second term, which is of relative order €4, matches to A,,  (4.91, to  give 

= 0 implies 

Let us now consider the envelope function in the limit 

X +  00 

Q =  4; d-. (4.16) 

Defining the wavevector Q in the core by 
-7 1 QLT = Qx = QXez, (4.17) 

we obtain Q = dd-/1/2. (4.18) 

The fact that  we have been able to match the boundary-layer variation (4.8), (4.9) 
with the core behaviour (4.13) confirms the dorrectness of our choice for the core 
scaling (4.3). 

The imaginary part of (4.11) gives 

2Q = 8[ -ai + b- IPI sin (2c+ 9p)], (4.19) 

and, since CT is arbitrary, we obtain a continuum of solutions bounded by limiting 
curves Q + ( e ) .  The solution is thus quite analogous to that of model I1 (3.52) except - 

o ~ ~ + & ~ i u . - b  for the replacements 
1 7  (4.20) 

h + €4. (4.31) 

I n  the original variable x the band of available wavevectors q is given by 

q* =-;IPl(7Tl)G (4.22) 
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with 7 = (ai-b)/tPI.  (4 .23)  

Inserting the values of a, P and b from (B 15) and (D 14) ,  we obtain (Cross et al. 1980) 

7 = (322/3)-1(5+21n-1+40n-2)(l+4~+6~2)-1. (4.24) 

It follows from (4 .22)  and (4 .23)  that q- c 0, but q+ can be positive or negative 
depending on the magnitude of n and p = ( 1  + 2 p / n ) - 1 .  

4.2.2.  Fin,ite system. For the cell of length L the solutions may be obtained by 
repeating the analysis of $4.2.1 starting from the boundary a t  J: = L (or X = 6). The 
equation corresponding to (4 .11 )  is found to be 

(a+ - id+ - i b / 2 / 2  + a/2/2)  ei#+ + ( P / 2 / 2 )  e-@+ = 0, (4 .25)  

and the core solution may still be taken in the form ( 4 . 1 3 ) ,  with 

$+ -2Q6 = 6, 

Q = - $ d + / 2 / 2 .  

(4 .26)  

(4 .27)  

Equations (4 .11 ) ,  (4 .15 ) ,  (4 .18 ) ,  (4 .25)-(4.27)  consist of 8 equations for the 8 real 
constants a , ,  d ,  , $+ , Cand Q ,  with b, a, /3, 6 and E known parameters. By a calcula- 
tion similarto that in appendix C the above system may be reduced to 

IPI sin (4- + # +  ) cos (2Q6-4,)  = 0, (4 .28a)  

2Q = d[-ai+b+I/31 cos ($-+$+)sin ( 2 & ~ ? - $ ~ ) ] .  (4.28 b)  

The solutions are as in (3 .56 )  and ( 3 . 5 7 ) :  

(i) 2Q = d[ -a i+b+IPI  sin (2Q6-$p) ] ,  (4 .29 )  

with 

(4 .30a)  

(4 .30b)  

Equations (4 .29)  and (4 .30 )  may be rewritten in terms of the physical variables as 

(i) (4 .31)  

(ii) 2q,L = $,+(n+&)n, ( 4 . 3 2 ~ )  

(4.32b)  

2qL = EL IPI [ - 7 -t sin (2qL - $,41, 

12qL + IPI EL71 < IPI EL3 

with 7 the parameter defined in (4 .23 ) .  The solutions of (4 .31 )  and (4 .32) ,  shown in 
figure 1 ,  are most simply obtained by plotting EL as a function of q L  for given values 
of 7 andp. For small EL there are only two values of qL,  corresponding to the solutions 
that evolve from the linear onset a t  E = ~ T ~ L - ~ ,  as studied by Drazin (1975) and 
Daniels (1977) .  (For each value of q there are two solutions related by @ + -@.) As 
EL increases more wavevectors successively appear. Note that the amplitude of each 
solution is finite a t  the bifurcation : in fact i t  has an envelope function with magnitude 
close to saturation in the core. The evolution of a particular solution as E increases 
or decreases is quite different depending on whether 7 (4 .23)  is greater or less than 
unity. For 7 < 1 (case (a)  of figure l ) ,  the stationary solution to the hydrodynamic 
equations may evolve continuously as E is increased. In  contrast, for 7 > 1 (case ( b )  
of figure 1 )  there are necessarily discontinuities in this evolution as E increases 
(decreases), corresponding physically to the sudden disappearance (appearance) of 
rolls. Of course to determine the actual evolution of the convection pattern in a 
physical experiment when the parameters pass outside the stationary band requires 
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FIGURE 1. Allowed wavevectors for steady two-dimensional motion in a rectangular container with 
aspect ratio 2L 9 1 ,  near threshold. The reduced Rayleigh number is plotted us. the deviation of 
the wavevector from its critical value Po, as given by (4.31) and (4.32). The solid lines correspond 
to  (4.31), and the dotted lines to (4.32). All solutions are confined t o  the interval q- < q < q+,  with 
q+ giyen by the dashed lines. In case ( a )  (q+ > 0) ,  the parameter 7 defined in (4.23) satisfies q < - 1, 
and the wavevector can vary continuously with increasing c. In  case ( 6 )  (q+ < 0). we have 
- 1 < < 1, and q necessarily changes discontinuously as E is increased or decreased. The 
parameters T and p in (4.3t) and (4.32) for these plots correspond to (T = 078, and to  perfectly 
insulating sidewalls (y = 0) for case (a ) ,  and perfectly conducting sidewalls ( p  = 00) for case (b) .  
The present figure also yields solutions for model I1 given in (3.56)-(3.59) for the same values of 
q and /I, provided tha t  the abscissa and ordinate are changed t,o Q S / n  and AS respectively. 

an analysis of the full time-dependent, equations. which goes beyond the scope of this 
work. 

5. Discussion and conclusion 
We have shown that the presence of rigid sidewalls severely restricts the band of 

allowed wavevect,ors q- < p 6 q+ for two-dimensional flow near onset from that 
suggested by the analysis in an infinite system, I n  fact the band is reduced from a 
width of order [(RIR,) - 114 to one of order (RIR,,) - 1 .  Furthermore, for the system 
we consider, we find p- < 0 always, but p+ may be either greater or less than zero, 
depending on the physical parameters. In  the former case a particular solution may 
evolve continuously as the Rayleigh number is increased. In  the latter case the 
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wavevector in the core must decrease as t'he Rayleigh number increases, and this 
occurs by discontinuous jumps corresponding to  t,he loss of a roll at the sidewalls. 

The reduction in the band of allowed wavevectors arises from considering the 
possible stationary solutions: we do not), in this paper, study the more difficult 
question of stability of these solutions. One of us (Daniels 1981) has analysed the 
stability of the solutions to two-dimensional disturbances (no variation transverse 
to the rolls). The result' may be easily summarized: out of the stationary solutions 
defined by (4.29) and (4.30) those solutions out of class (i) with negative derivative 
with respect to Q of the right-hand side of (4.29) (i.e. d ( Q / d ) / d Q  < 0) are stable. All 
other solutions are unstable. The possibility of instabilities associated with transverse 
disturbances (three-dimensional motion) is an interesting quest'ion. This has been 
discussed in the infinite system, where tjhe most important effect near threshold is 
the zigzag instability which for free-free horizontal boundary conditions eliminates 
all states with q < -coe2,  c, = 0(1) (Busse 1978; Joseph 1976). It is thus interesting 
that for small CT we find q+/e  < 0, i.e. all the states of steady two-dimensional flow 
of the finite system are in the band of unstable wavevectors in the infinite case. 
Furthermore, the band of wavevect'ors found is independent of the size of the syst,em. 
It seems reasonable to expect that, in a large-enough system, the zigzag instability 
is not much suppressed, so that all two-dimensional states are then eliminated when 
q+ < 0. 

All our calculations have been for the physically unrealistic free-frec horizontal 
boundary conditions. The rigid case is analytically much more difficult, though the 
lowest-order amplitude equation has been derived in that case too (Cross 1980). and 
presumably this can be continued to higher order, so that we expect similar effect's 
to occur there. The values of q+  as a function of r~ and ,u are, of course, expected to 
be different. The experimentany observed increase in wavelength with increasing 
Rayleigh number (Koschmieder 1974) would be accounted for by a q+ less than zero 
for most values of CT. For the rigid-rigid case the threshold of the zigzag instability 
in the infinite system is q < -CE with c positive and O(1) (Busse 19781, so that in t,his 
case some of the stationary states we have calculated could be stable to fluctuations 
in the transverse direction. 

As noted in 5 1 ,  the most important limitation to the applicability of our work is 
our neglect of the boundaries transverse to the rolls. These boundaries must in fact 
be more closely spaced than the longitudinal (short) boundaries whose effect we 
consider (Davis 1967; Luijkx & Platten 1981 ; Dubois & Berg6 1978). Since a solution 
of the full three-dimensional problem in a finite cell is not available a t  present, we 
must use heuristic arguments to assess the effect of the transverse walls on our 
two-dimensional solutions. 

Let us consider a rectangular container of width 2M in the y-direction, and 
introduce the coordinate 

Y = (2qo)4 yd. (5. 

Then the lowest-order amplitude equation is (Newel1 & Whitehead 1969) 

(a, - ia;-)z A, + A,  - IA,12 A, = 0, (5.2) 

dF A, = A, = o for I' = f (2q,): Me$. (5.3) 

with boundary conditions (4 .7a)  at x = k I;, and (Brown & Stewartson 1977) 

These equations incorporate the full three-dimensionality of the flow a t  this order 
in e. Appealing to the experimental fact (Dubois & Berg6 1978) that  flows with 
straight rolls in the y-direction occur when M < L,  we shall look for solutions of ( 5 . 2 )  
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and (5.3) whose phase is independent of 27. I n  the core region (4.3) the magnitude 
IA,I is independent of X, and its phase is linear in S (see (4.13)), so (5.2) leads to a 
phase independent of I-’ and an equation for the magnitude 

- (a‘$ - Q ) z  IAOI + JA,} - lA,13 = 0, (5.41 

with the boundary conditions (5.3). This equation is a generalization to finite Q of 
equation (6.53) of Brown & Stewartson (1977). It is clear that a solution exists with 
JA,I x 1 in the bulk of the cell, which falls off to zero in a length &I-’ = 0(1) 
(Sy = O(s- ) ) )  near the boundaries a t  y = & M .  Thus the phase-winding solutions 
found in 84 appear to be compatible with the transverse boundary conditions over 
the whole core region, a t  least in lowest order. A more difficult problem arises in the 
boundary layer (4.2) where lAol depends on X, and (5.4) must be modified even in 
lowest order. Our conjecture is that  there still exists a region far from the boundaries 
a t  y = f M ,  where the Z’dependence of A ,  can be neglected, and where the matching 
carried out in $4 remains valid. Though we have no concrete argument to justify this 
conjecture, we see no particular reason why the transverse boundary conditions 
should affect A,  arbitrarily far from y = f M .  The boundary conditions a t  x = f L,  
on the other hand, act on the phase of A,, and their influence extends throughout 
the cell. Clearly, the above arguments and conjectures must be considered tentative, 
until a more systematic analysis of the three-dimensional problem is achieved. 

Experiments are often performed in cylindrical containers (Koschmieder 1974 ; 
Ahlers & Behringer 1978). If cylindrically symmetric patterns occur (as is sometimes 
observed), then there are bending effects which were not considered here, which 
appear to restrict the wavenumber more drastically than for straight rolls (Pomeau 
& Manneville 1981). 

The influence of sidewalls on convective states near threshold has been previously 
studied. Our work has sought phase-winding solutions, which we find in the range 
s = O ( L - l ) .  Indeed, the analysis fails when s=O(L+)  since the width of the 
boundary-layer region a t  the walls, O(e-i), is then comparable to the width of the 
container, Solutions in the range e = O(L-2) ,  which relate the initial development of 
the motion at the critical Rayleigh number to the solutions described in the present 
work, have been studied by Daniels (1978), who finds four solutions with thresholds 
a t e  = &rzL-2 + O(L-3) .  The solutions in the range e = O(L-2) may again be represented 
by envelope functions A ,  and A, ,  with A,  written in terms of Jacobian elliptic 
functions. The magnitude of A, varies with 5, but its phase remains constant. For 
comparison with Daniels (1977, 1978) i t  should be noted that the enveiope-function 
expansion is done there using L-’ as the expansion parameter, rather than €4 as used 
in the present work. Moreover, as noted earlier, Daniels defines a quantity S = eL2, 
whereas the present paper has S = dL.  For the case E = O(L-2)  considered there, the 
expansions are directly comparable with our work, the differences occurring only in 
normalization factors, which are O(1).  The form of A ,  is not needed in that work, 
but we can see from (4.8) and (4.9) that, as Lr +a, A ,  becomes linear in with 0(1) 
coefficient, while A,  approaches a constant 0(1) value. The solution fails when the 
‘correction ’ d A ,  becomes comparable to A,, which occurs for a - $L. Since Daniels’ 
treatment was for e = 0 ( L p 2 )  this regime was never attained and A ,  remained small 
compared with A ,  away from the boundary. For the present case, however, i t  is 
precisely in the region 2 eiL that  we enter a new regime, the core region, with a 
variable-phase solution for A,. It may be readily verified that a8 e L  4 0 the solutions 
we have obtained correctly tend to  the four linear onset solutions discussed by 
Daniels. Finally, we note that the phase-winding solutions we find for model I in the 
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range E = O(L-2), where the simple amplitude equation is adequate, exist only for 
h = O( l ) ,  a range of parameters not considered in the earlier investigation of Daniels 
(1977). 

Daniels (1977) also considers solutions in which the amplitude goes to zero 
somewhere in the interior, but the phase is constant. These are the solutions that 
bifurcate linearly from the conducting solution for &L2 = &2.rr2, m > 1 .  Similar 
solutions in the infinite system, which are in addition to  the phase-winding solutions 
discussed here, were considered by Segel (1969) and Newel1 & Whitehead (1969). In  
both cases these solutions were found to be unstable with respect to the phase. A more 
general set of solutions may be imagined in which fictitious walls are introduced in 
the interior, where the amplitude A,  does not vanish, but merely drops to  a small 
value. There is, however, no evidence that these solutions are of physical interest, 
in contrast with the phase-winding solutions, since the former seem likely to be 
unstable. The present work has therefore focused on the effect of sidewalls on 
solutions that have the simple phase-winding form in the core. 

Pomeau & Manneville (1980) have studied the question of wavenumber selection 
in finite layers on the basis of two simplified models, involving fourth-order 
equations : 

model ( a ) :  8,u = [ ~ - ( ( d : + q i ) ~ ] u - u ~ ,  (5.5a) 

model ( b ) :  8,u = [ ~ - ( 8 ~ + q ~ ) ~ ] ~ - u U ~ u ,  (5.5b) 

where u(x ,  t )  is a real function satisfying the boundary conditions 

u(x,  t )  = 8, u ( x ,  t )  = 0 (x = * L). (5 .6)  

Pomeau & Manneville studied these models by numerical integration and found the 
following results: for both models ( a )  and ( b )  they claimed that a single wavenumber 
was always attained for given E. For the case of model (a)  the selected wavenumber 
followed from a variational principle, but no such principle exists for model ( b ) .  I n  
a later publication Pomeau & Zaleski (1980) have attempted to determine the 
stationary solutions of (5.5) analytically by relating them to solutions of the linear 
eigenvalue equation 

(5.7) 

a t  E = 0. These authors also concluded that for each E there exists a unique solution 
(apart from symmetries with respect to x = 0) without nodes in the envelope in the 
interior of the container. 

It turns out that  the models of Pomeau & Manneville can be treated with the 
methods of the present paper by considering them to be simplified versions of the 
‘microscopic ’ Boussinesq equations (2.1) with boundary conditions. Indeed, as 
mentioned in our earlier note (Cross et al. 1980), the calculations of appendices A and 
B may be repeated for (5.1) and amplitude equations of the form (4.4)-(4.6) derived. 
The calculation is performed in appendix F, where i t  is shewn that phase-winding 
solutions exist for both of the models considered, with limiting wavevectors equal 
to 

(8; + q i ) 2  %(A) + M A )  = 0 

model ( a ) :  q+ = fe/l6q,3, (5 .8)  

model ( b )  : q+ = - e47/48q& (5.9) 

q- = --53/48qi. (5.10) 

I n  a cell of length 2L the number of solutions is of order 

N 1: EL. 
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just as for the more-realistic Boussinesq case. Model (a)  corresponds to the case q+ > 0 
in figure 1 ,  whereas model ( b )  has q+ < 0. Thus the numerical results of Pomeau & 
Manneville (1980) are seen to  be misleading, since more than one stationary solution 
of the equation exists for a given e,  in both models (a)  and ( b ) .  The arguments of Pomeau 
& Zaleski (1980) are not sufficiently general to have found these other solutions. 
(Note added in proof: in a later publication Pomeau & Zaleski (1981 ) have reconsidered 
this problem and now agree with the result stated in Cross et al. (1980) and in 
(5.8)-( 5.10). ) 

This work was initiated while the authors were at the Aspen Center for Physics. 
One of us (P. G. D.) also thanks Bell Laboratories for hospitality. The work of E. D. S. 
was supported in part under Grants DMR-77-18329 and ATM 8005796, and by the 
A. P. Sloan Foundation. 

Appendix A. Derivation of the amplitude equation 
In this appendix we sketch the full derivation of the amplitude equations needed 

in our work. We use the methods of Newell & Whitehead (1969) and Daniels (1977, 
1978). The principles of the derivation are well illustrated in the simpler examples 
treated in appendix F .  From the equations of motion (2.1) and the definition (3.4) 
we obtain the basic equation for the stream function $: 

a2$ V 6 $ - R - =  u-‘V2 (A 1)  
ax 

Let us introduce the expansions 

$ = e4$0+e$rl+ef$2+.. . ,  (A 2) 

u =  Ouo+eU1+efu2+ ..., (A 3) 

w = e:wo -4- ew1+ B W ,  + . . .( (A 4) 

T = E ~ T , + E ~ + E Q +  ..., (A 5) 

as well as the expression for R in (3.1) and (3.2), and solve (A 1)  by successive 
approximations for $. Then (3.4) determines u and 20, and ( 2 . l d )  determines T. At 
order €4 the solution is given by 

4i 
$o = - [Ao(X) eigo”-A,*(X) e-i*oz] sin nz, 

7r 

uo = 4i[A0(X) eigo2-A,*(X) e-igoz] cos nz, (A 7) 
wo = 2 d 2  [ A o ( X )  eiqoz + A,*(X) e-iqo”] sin m, (A 8) 

T, = 9 d 2  n2[Ao(X)  ei*oz+A,*(X)e-i40Z] sin m, (A 9) 

where qo = n/d% (A 10) 

and X = XE: as in (3.3). The function Ao(X) is arbitrary for the moment. 
In expanding both sides of (A 1 )  it  is necessary to consider the derivative a/ax acting 

a a , a  
ax ax ax 

on x, u, w or T to be 
- -+ --+EZ--, 

where the a/ax term acts on exp (+iqo x), and a /aX acting on functions of X is 
considered to be of order unity in the expansion. At order E ,  (A 1 )  is solved by 
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4i 
@, = ---[A,(X)egqoz-c.c.] sin nz, (A 12) 

(A 13) 

(A 14) 

u1 = 4i[A,(X) etqos-c.c.] cos nz, 

% = 9 4 2  n2 [(A,-,A;) 4 2  i e'qox+c.c.] sin ~ z - l 8 n J A , 1 ~  sin 2nz, (A 15) 

where C.C. denotes the complex conjugate, the prime denotes a/i?X, and the function 
Al(X) is also arbitrary. At order €8 the solution is 

4i 1 
n3 

$, = ;[A,(X)eigox-c.c.] sin nz - - ( f i+c l )  [AhA,*+c.c.] sin 2nz 

1% 
427n3 

+ - [ A ,  IA,12eZQos-c.c.] sin 3n2, (A 16) 

2 
u, = 4i[A,e%"-c.c.]  cos .nz-T(B+a-l)[A;A,*+c.c.] cos 27rz 

+-[A,~A,~2e~~oz-c.c.] 54i cos 3nz, (A 17) 
427n2 

+- 9 d 2  [Ao eiqos+ c.c.] sin 3nz, (A 18) 427n2 
T, = [(92/2 n2A2-6inA;+241/2 A,+lO2/2 A:-2442 A , ~ A , ~ 2 ) e d ~ ~ 2 + ~ . ~ . ] s i n n z  

+[(12 1/2 iA,*A;-lSnA,A~)+c.c.] sin 2nz 

[A,  IA,I2 eipo3: + c.c.] sin 3nz. 
3249 +- 

42742 (A 19) 

In  addition, the solubility condition (Newel1 & Whitehead 1969) requires the function 
A,  of (A 6-A 9) to satisfy the relation 

A:+A,-A,IA,12 = 0. (A 20) 
At order c2 the terms proportional to exp (iq, x) sin nz lead via the solubility condition 
to (4.5) and (4.6), with 

(A 21 a) 

(A 21 b) 

(A 21 c) 

(A 21d) 

and to expressions for $3, u3, w3 and q. In  order to determine the phase of the core 
solution at order c we shall require the equation satisfied by A,, neglecting the 
derivative terms. To derive that equation we need the terms proportional to 1 and 
to exp (2iq,x) in $3, u3, w, and q which do not involve derivatives. These are 

k, = 22/2/n, 

k, = 22/9 4 2  n, 

k3 = (b+ c-*) ( 1 5 e  - 9)/36 2/2 T ,  

k, = 5k, = 25/3 4 2  n, 

e3 = ie2'qorAi JA,12 f3(z) + C.C. + . . ., (A 22) 

where f3 is real and ... denotes terms involving derivatives with respect to  X, as 
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(A 23) 

(A 24) 

(A 25) 

u, = i e 2 i q  0 x A: IAo12fi(z) + C.C. + . . ., 
w, = 4 2  n e2i‘JoxAt IAo12f3(z) + C.C.  + . . ., 

+ [A: &Iz eZiq@”f5(z) + c .c . ]  + IAol2f6 (z) + . . . , 
= -18n(lA,l2+A,*A2+A0A,*) sin 2n::+IA40)4f4(z) 

wheref, and f5 are real. The equation for A,  may now be found from the terms in 
(A 1 )  at order E!, which are proportional to exp ( ipox)  sin m. One finds in the usual 
way 

A~+A,-2AoIA,12-A,*A~-2A,IA~12-A~A,*+k6(Ao)4Ao+k7 IAOl2Ao+ ... = 0, 

(A 26) 
where . . . denotes terms containing d / d X ,  and k, and k, are real constants. 

It is instructive to recast the expansions (4.4)-(4.6) and (A 26) into a more general 
framework, starting from (A 1 )  and expanding in terms of the independent small 
parameters l$l, €4, and d/dx.  As mentioned in 0 1 ,  the foregoing derivation can be 
repeated, and the result may be expressed in terms of the function 

as 
@ ( x )  = € L 4 0 ( S ) + E A 1 ( X ) + € k 4 2 ( X ) + . . .  

d2@ d@ d3@ d@ 
dx dx dx dx 

0 = y+ E@ - ( @ I 2  @ - ik, E - -  ik, a+ i ( k ,  + k,) 

dtD* 
dx3 

+ i ( k 3 + k 5 ) @ 2 - + k 6 @ ~ @ ~ 4 + k 7 ~ @ ~ @ ~ 2 + .  . ., (A 28) 

where . . .  represents higher-order terms which we shall not need. The boundary 
condition is 

(A 29) 
d@ d@* 

- dx dx 
0 = @-a+ --& -+. . . ( x  = fL). 

In the boundary layer we have ( @ I 2  = O ( E ) ,  dldx = O ( d ) ,  and (A 28) and (A 29) agrees 
with (4.4)-(4.7). In the core region, we have dldx  = O ( E ) ,  and )@I2  = O ( E ) ,  from which 
the expansion of appendix E follows. 

The present work is consistent with the analysis of Daniels (1978), where the formal 
expansion parameter was L-l. In $3 (iii) of that paper, expansions were made in L-’ 
with eL2 = 0(1), i.e. L-’ = O(e4). Apart from normalization, (4.4)-(4.7) above are 
equivalent to equations (3.40)-(3.44) of Daniels (1978), except that the value of ai 
used in equation (3.44) of that paper is stated incorrectly. (The parameter ai plays 
no significant role when 6 = O(1) and is not used in the subsequent analysis in that 
paper. 1 

Appendix 3. Sidewall boundary conditions 
In this appendix we investigate the boundary condition on the envelope functions 

A o ( X )  and A , ( X )  at a sidewall, with dimensionless thickness t, and thermal 
conductivity K,, which is thermally clamped to the upper and lower plates a t  z = 1,0,  
but, with no heat loss to the outside. If we define a transverse coordinate - t, < x, < 0 
in the wall, the temperature perturbation T, from the basic conducting profile - R:: 
satisfies 

V2T, = 0. (B 1 )  
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The boundary conditions are 
T, = 0 ( z  = 0, I ) ,  

c% = 0 ( x ,  = - t w ) ,  
d X W  

together with equations relating T, to the liquid temperature T a t  the point x, = 0, 
x = - L ,  

T, = T ,  (B 3a) 

Writing T,(x, x) = Z T c ) ( x )  sin (nnx) (B 4) 

T$)(x)  cc cosh [nm(x, + t , ) ] .  

n 

(and a similar expression in thk liquid), the solutions to (B 1 )  and (B 2)  are 

(B 5) 

Substituting into (B 3) leads to a boundary condition for each Fourier component 
of the liquid temperature : 

coth (nnt,) K dTcn) 
( x  = - L ) .  T(n) = ____ 

nn K, d x  

We shall only be interested in the boundary condition on the n = 1 component, which 
matches onto the amplitude functions A,  and A,, 

where 
K W  ,u = -n tanh (nt,). 
K 

In  the limit of a thin wall t ,  4 d ,  ,u = n2Kw t,/K. For a thick wall the effective t, 
in this expression becomes n-l. 

To derive boundary conditions on the amplitudes A ,  and A ,  we solve for the 
hydrodynamic variables near the sidewall (explicitly near x = -L)  onto which these 
functions are to be matched. We follow the procedure of Daniels (1978). but include 
the effects of a finite wall conductivity via (B 7) .  Near the sidewall the velocities u 
and u) are small, so that the hydrodynamic equations may be linearized. The solutions 
are 4 

$(x) = - ie((B + 2°C) eiQo .z - C.C. + iDe-2"z} sin nz + . . . , 
T(x)  = 3 2 / 2 n ~ { [ 3 n ~ - 2 / 2 i C + 3 n C ~ ] e i * ~ X + c . c . + 3 2 / 2 n D e ~ 2 ~ ~ } s i n n z +  . . . ,  

where 2 = x +  L,  and there are other terms of higher order in d or involving higher 
Fourier components that  are not needed. The normalization in (B 9) is chosen for 
convenience in matching to the amplitude expansion. The complex constants B and 
C may now be related using the boundary conditions on the hydrodynamic variables: 
u = u~ = 0 and (B 7) for T. These are three linear equations in the four unknowns 
(B,  B*, C, C*) from which an explicit relationship for B(C, C*,,u) may be calculated. 

(B 9a)  

(B 9b) 

n 

1 
18n 

+- [ + (2 + 14p) + i 4 2  (5 + Sp)] ei"2"LC*, 

B = ~ [-(Z-l8ji)-5i2/2]C 

(B 10) 
1 

1877 
where p = (1  +2,u/n)-1. (B 11) 
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Note that ,ii = 1 corresponds to perfectly insulating and p = 0 to perfectly conducting 
boundaries. 

The boundary conditions for A,, and A, are given by matching the expressions 
(A 6)-(A 9) and (A 12)-(A 15) for X + 6 onto (B 9) for 2 9 1 ,  where the exponentially 
decaying term is negligible. This leads to the correspondences 

A,( -6) = 0, A,( -6) E B, A;( -6) E C .  (B 12) 

A similar procedure may be repeated a t  x = IJ (X = 6). This gives the boundary 

(B 13a) conditions A,  = 0, 

with 

(B 15a,) 

(B 15b) 

The relationships (B 14) may be understood by noting that the hydrodynamic 
equations and boundary conditions are symmetric under the transformations x + - x ,  
u -+ -u, U J  + U J ,  T -+ T.  

Appendix C. Calculation of wavevectors in model I1 
The set of equations to be solved are 

p +~/Sae-iY++d~peicY+-28+)=0, + 
P - + ~ ~ a * e i r - + ~ / 1 P " e - i ( r - + 2 8 - )  = 0 

2 

(8, -6-)+2nn = ( y+  +7-)+26&, (C 3) 

(C'4) 
with 

Q = q'#hp+ sin y +  = .\//SAP- sin y - .  

To solve, multiply (C 1 )  by eiy+ and (C 2) by e-(Y- and take sums and differences of 
real and imaginary parts, The imaginary parts lead to 

(C 5 )  

2Q+hai-hIPI cos [8+ - y +  + O - - y - ]  sin [ O ,  - y +  -8- - y -  -$/I = 0. (C' 6) 

sin [O+ - y+  +O- + y - ]  cos [6+ - y +  -8- -7- -#/I = 0, IPI =k 0, 

The first of these equations gives two classes of solutions. 

(i) 8, - y +  +8- + y -  = fin, (c! 7 )  

so that (C 3) and (C: 6)  lead to the equation for the wavevector Q :  

2Q + hai f h [PI sin [26Q - = 0, (Cl 8) 

where the minus sign refers to 'n even and the plus to n odd. The real parts of (C 1 )  
and (C 2) can be used to calculate p+ = p- and 0, = 8- .  

(ii) 8,-8--y,--y- = # p + ( n + i ) n ,  (c! 9) 
where IZ denotes any integer, not necessarily the same as in (C 3). Together with ((1 3) 
this immediately gives for the wavevector 

SSQ = $p+(.+/S)n. (C 10) 
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Then (C 6) becomes 

~ Q + A c ~ - A ~ ~ ~ ( - ~ ) ~ c o s  [ 8 + - ~ + + 8 - + ~ - ] = 0 ,  (C 11) 

so that the range of Q for these solutions is limited by 

12Q+Aail < AlPI. 
It is readily checked that the real parts corresponding to (C 5) and (C 6) have 
solutions, but these are not as simple as in case ( i ) ,  (C 8). 

Appendix D. Solution of A ,  equation in the boundary layer 
Let us insert (4.8) into (4.5) and (4.6), and define 

A, (x )  = ei@-[C(X) + i ~ ( X ) l ,  (D 1) 

with C and D real functions and LF = X + 6  as in (3.27). The function D satisfies the 
linear inhomogeneous equation 

D" + D[ 1 - tanh2 ( z /+  r?)] = K ,  sech, ( z / +  x) + K ,  sech4 (di x), (D 2) 

Kl = z/+ k 1 + d 2  k 2 - Z / #  (2k3+k4+k5) ,  

K2 = - 32/+ k ,  + z/$ (2k3  + k, + k5) .  

The complementary solutions of (D 2 )  are 

D, = tanh (d& x), 
D 2 =  d+r? tanh(z / ; r? ) - l .  

To find the particular solution we write 

D = E,(r?) Dl(r?) + E , ( X )  D,(X) ,  

and solve for El and E,. The result is 

El = K,{z/+ r? sech2 (44 2) + tanh ( z / +  r?)} + K,{&z/+ r? sech4 ( z / +  r?) 
+ sech2 ( z /+  r?) tanh ( z /+  r?) + tanh ( z /+  x)} + c-, (D 8) 

E, = -Kl sech, ( z / +  X ) - + K 2  sech4 (48 r?)+d-, (D 9) 

(D 10) 

(D 11) 

with the constants c- and d- arbitrary. The function C(r?) in (D 1)  satisfies the 
equation 

C"+C[l-3 tanh2 (z/+8)] = 0, 

with one solution equal to 

and the other exponentially large as x + co. Thus only C,(g) is retained. The full 
solution of (4.5) and (4.6) is therefore (4.9) with 

Cl(r?) = sech2 (44 x), 

z / S  B(-Q = &($) [El (2) -c-] + D, (x) [& ($1 -&-I. (D 12) 

From (D 5), (D 6), (D 8) and (D 9) we find that B(x) < co as r? +co, as in (4.10b), 
and 

B(X = 0) b = z / 2  (Kl+&K,) ,  (D 13) 

(D 14) -- - z / 2  (145-63a-1-120~-2). 
576n 



180 M .  C. Cross, P.  G.  Daniels, P .  C .  Hohenberg and E .  D .  Siggia 

Appendix E. Core expansion 
The core expansion may be generated from the hydrodynamic equations by 

repeating the analysis of appendix A with the scaling appropriate to the variable 
x = E X ,  i.e. replacing (A 11)  by the ansatz a/ax a/&+ E i?/aF, with a/ax = O(1). 
Alternatively, the core expansion may be generated from (A 28) by assuming a/& 
to be of order E .  In  lowest order ( O ( E ~ ) )  (A 28) yields 

- 

A,  = IA,12&, (E 1)  

2 (E 2) 

x1 = 2x1 lA0l2 + x; x:. (E 3) 

x, = r,(X, eiS(x), (E 4) 

r1 = ir,, T, real. (E 5 )  

- whence A - ei8(F) 
0 -  

with e real. At O(e2)  we find 

Setting 

with rl not assumed to  be real, we find rl+f; = 0, so 

At O ( E ~ ) ,  (A 28) yields 

0 = x2 + z-2xo Ix112-x$ x;-2x2 l&12-xi A,* + k6 I&,14 + k7 Ixo12 

- i {k ,xh - (k3 -k k4 ) 1x0 I2 2; - (k, + k5 ) 2; x$’). (E 6) 

(E 7)  

(E 8) 

8’’ = 0, (E 9) 

e = QX+C (E 10) 

Now let - r iS(X), 
2 -  2 e  

with 6 given in (E 2). Then (E 6) implies 

r2 + ie” -8” = 2r2 + F: -?: + 2 3  + k6 + k7 - (k, - k4 + k g )  e‘, 
from which i t  follows that ie” is real, i.e. 

Equations (E 2) and (E 10) then yield (4.13) 

Appendix F. The models of Pomeau & Manneville (1980) 
F. 1 .  Derivation of the amplitude equations 

We may illustrate the general method for deriving amplitude equations from a 
microscopic model by considering ( 5 . 5 ~ )  or (5 .5b)  as the starting system. Let us set 

u = E~uo+Eu1+E~u2+. . ., 

x = Qx. 

We wish to separate the functions u i ( x )  into a rapidly varying part with variation 
exp (inq,x) and a slowly varying part depending on the variable X. We therefore 
divide the gradient a, into two parts 

a, -+ a,+Eia,, (F 3) 

where the first term on the right-hand side of (F 3) acts only on the rapidly varying 
functions exp (inpox). The differential operator in (5 .5)  then takes the form 

a: + q; + + z ~ a ,  a, +€a%, (F 4) 
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= a:+q: (F 5) with 

acting only on the rapidly varying functions. Inserting (F 3) and (F 4) into (5.5a) 
and expanding systematically in d, we find 

O ( Q ) :  n2uo = 0, (F 6) 

O(E): n2U,+4axda, nu0 = 0, (F 7)  

o(&: n 2 ~ , + 4 a z a x  ~ u , + ( 6 8 ~ a ~ + 2 ~ ~ a ~ + + ~ - 1 ) u O  = 0, (F 8) 
O(s2): O2~3+4axa,  nu,+(6a:a~+2q;a~+u;- l )u l  

+ (48, a5 + 2u, ul) uo = 0. (F 9) 

(F 10) 

Equation (F 6) is solved by taking 

u, = 3f[A,(X) eiqox+c.c.], 

where A , ( X )  is an arbitrary complex function and the factor 3-4 has been chosen for 
later convenience. Inserting (F 10) into (F 7)  we see that (F 7 )  is solved by setting 

u1 = 3f[A1(X) eiqo~+c.c.]. 

u2 = S-i[A,(X) eiqox+c.c.]+3-t[B2(X) e3640~+c.c.], 

(F 11)  

(F 12) 

In  order to solve (F 8) we write 

and insert (F 10)-(F 12) into (F 8). Equating the terms proportional to exp (3iq,x) 
to zero, we find 

The term proportional to exp (iq, x) has no contribution from the first two terms of 
(F 8), since 

ne%X = 0. 14) 

The third term in (F 8) yields the amplitude equation 

4q; A; + A, - IA,12 A,  = 0. 

This is a condition on A, for the existence of a solution u2 to (F 8), and is often called 
the ‘solubility condition’ (Newel1 & Whitehead 1969). Similarly, (F 9) is solved by 
setting 

The term proportional to exp (iq, x) in (F 9) now has contributions from the last two 
terms, which lead to the second amplitude equation 

u, = 3 4 [ A , ( X )  eiqox+c.c.]+3-t[B3(X) ~ ~ ~ * o s + c . c . ] .  (F 16) 

4q:Ar+A,-21A,12A1-A:A:-44ip,A’s = 0. (F 17) 

Introducing the coordinate x = (2qo)-1X, (F 18) 

these equations become A; + A, - IA,12 A ,  = 0, (F 19) 

A; + A ,  - 2 IA,I2 A ,  -A;  A: - (i/2q;) A’: = 0, (F 20) 

where the prime now denotes differentiation with respect to r. These equations have 
the form (4.4)-(4.6) with 

(I? 21 a) k, = k, = k, = k, = 0, k, = (2q;)-’, 

corresponding to the parameter b of (D 13) equal to 

b = (4q;)-’. (F 21 b )  



These functions, considered as functions of x, (F IS), satisfy the amplitude equations 

A;+A,-IAo12Ao = 0,  (F 29) 

These are in the form (4.4)-(4.6) with 

10 k, = 0, k, = (2qt)-l ,  k3+k  - -, 
- 3q; 

corresponding to the parameter b in (D 13) equal to 

6 = -47/12q;. ( F  32) 

F.2. Derivation of boundary conditions 
Near the boundary the equations can be linearized and the solution written in the 
form u = a, c [ (B  + IC)  eiq0 ” + c.c.], 

d = z+L. where 

This solution, valid for I = O(1), can be matched to the solution (F 1 )  which has the 
form 

(F 33) 

u = a, &A,(X) + QA,(x’ )~  eiqa” + C.C. + . . . , (F 34) 

Be-iqoL+B*eiPoL = 0, (F 35) 

(F 36) 

where a, = 3-4 for model ( a )  and a,, = 3q, for model (6). The boundary conditions (5.6) 
a t  I = 0 imply 

2iq, B&%L+ Ce-iqoL+C*&oL = 0, 
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whence, by comparing (F 33) and (F 34), we find 

with 
A,-a+ - Ah-P, - A,*' = 0 ,  X = &8 = f L d ,  (F  37) 

(F 38) 

(F 39) 

a = i/4q;, (F 40) 

(F 41) 

a, = -a' = a = i/2q0, 

/3 + = -p? = p = (i/2q0) e2iqnL. 

In  terms of the variable x ((F 18)) we have 

j? = (i/4q;) e2iqoL. 

F. 3. Phase-winding solutions 
The limiting wavenumbers (4.22) for phase-winding solutions coming from 
(F 19)-(F 21) and (F 29)-(F 32) are (dividing by 29, to return to the unbarred units) 

AHLERS, G. 

model ( a ) :  

model ( b ) :  q+ = -47~/48qi, 

q+ - = +~[-a~+bf lP l ]  = fe/16qi, 

q- = - 53~/48q;. 
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