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It is shown that Glauber’s kinetic Ising model is equivalent to an Ising model with multispin in-
teractions in a transverse field. In one dimension, certain of Glauber’s results are recovered by

. . .1
using the well-known fermion representation for spin-7.

Among the simplest models that exhibit nontrivial
critical dynamics, is the kinetic Ising model proposed
by Glauber and solved by him in one dimension on a
lattice.! In this model, the probability distribution for
N Ising spins relaxes by means of spontaneous spin
flips whose probability depends on the configuration of
neighboring spins. It is easy to show, and implicit in
the work of Kadanoff and Swift, that in any dimension
Glauber’s model is equivalent to an Ising model with
competing interactions in a transverse field.2 The prob-
ability distribution for Glauber’s variables is related
to a quantum many-body wave function and the
corresponding energy eigenvalues become the relaxa-
tion rates. The long-time behavior of correlation
functions is governed by the low-lying excited states
of the corresponding quantum problem whose ground
state is the equilibrium distribution. This restatement
of the critical-dynamics problem retains the simplicity
of a two-state variable but has only proven useful
computationally in one dimension where a transforma-
tion to fermions permits one to recover some of
Glauber’s results.’ A second model that conserves
energy in the relaxation process is also discussed.

The probability that a system of N spins, o;, is in
one of its 2" possible configurations at time ¢ is denot-
ed by P(oy, ..., an;t). The probability per unit time
that o; will flip is denoted by w;(oy, .. ., onx). When
the equilibrium probability distribution is described by
a nearest-neighbor Hamiltonian, it suffices to let w;
depend also only on the nearest neighbors of ;. The
probability of any configuration decreases because of
the probability one of its spins may flip, but it grows
because other configurations may decay to it. The
transition rates into and out of a configuration are
constrained by detailed balance. In one dimension,
the equilibrium distribution is e, with
H=-J 3, 00,4 (kgT has been adsorbed into the
definition of J), and one has

—aa—i:(al, R, JY )
=— ZWI(U,_I, o,a)P(ay, ..., 0Nt
+ 2 W,(O’,—l. -0, U:+I)
XP(ay, ...,—0, ...,0¢Nt) (1a)
and
wl(o'i—-l: g, O'H—l)
=expl-2Jo(o;o1+0,4)] .
W,-(O’i—l,"o'i. cn+1)
(1b)
Now define
U(oy, . ..,ont)=e"?P(ay, ..., oNn0) .
Then ¢ satisfies
—aa—‘tg((rl, e ,O‘N;l)
=— Ewl(al—l’ o, U:+|)¢‘(0'1' R G'Nit)

+ 2 wi(o,_1, =0, o:41) expl —Joloi+a,)]

xg(oy, ...,—0, ..., cNt) . Q)
If ¢ is thought of as a 2" component vector, the ma-
trix which describes its time development in (2) is
Hermitian.

To make the analogy to quantum formalism, let

o) =vlof, ....o:) 3, lop) -+ |ok)

I-"'
oi=x1

A state with o/ flipped is described by o acting on
|¢). If we take Glauber’s form
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expl—Joi o+ o)l
coshJ (o7, + o)

’

then
ﬁ%di =—Hol¥) .
t
3)
Ho=3: expl-JoiH o, +ai )] —af

COShJ(U‘,‘l..l + 0’,'2+1)

is equivalent to (2). The eigenvalues of Hy are all
real and non-negative by stability. The ground state
with energy zero is just

lWo) =e™2 3, |af) - - - |ok)

a/z-tl

Curiously enough, (Wo|yo) is the partition function.
An ostensibly simpler form of w;, also consistent with
(1b), is

w,=expl-Joi (o, +ai)] ,
with

HQ= zexp[ "‘JO',’Z((T,'Z_[ +0',z+|)] _O',x . (4)

Equations (3) and (4) are readily generalized to higher
dimensions by replacing o’ + o, by a sum over the
nearest neighbors of o?. Provided one rescales (4) by
cosh(2J) in one dimension to make the overall fre-
quency scales coincide with (3), one expects (3) and
(4) to show the same critical behavior (/ — o in one
dimension).

In order to diagonalize (3) exactly, introduce bond
variables /= o/o?,. The action of o on a state la-
beled by the 7* variables is to flip both 72, and 77
hence o =7 7" To complete the spin algebra,
define 7} =—ir’r*. The 7 variables on different sites
commute and those on the same site obey the usual
Pauli matrix relations. Equation (3) becomes, with
these substitutions,

Ho=3 (1~ tanh(@))7;

1
- T(TIXTIX«H + 7))

+‘2—c;s%(—27)—(77"7f+1 k0 ] B )]

The well-known transcription of a one-dimensional
spin problem into a fermion problem can now be ap-
plied to (5) and the fermion Hamiltonian diagonal-

ized.> Each eigenvalue of (5) can be associated with a
j particle state (j =0,1, ..., N) of the fermion prob-
lem with an energy given by the sum of j one-particle
energies €,, with distinct values of k, where

€, =2[1—tanh(2J) cos(k,)] . 6)

The wave vector k, takes on N uniformly distributed
values in the range —m <k, < w. Equation (6) to-
gether with the wave functions of the one-particle
states were given by Glauber.! To compute response
functions, one imagines that an_ensemble with a slow-

ly varying magnetic field, he'k""R" at R,, has been esta-
blished at t =0. The field is turned off, and the sys-
tem decays back to equilibrium. To first order in the
magnetic field, the initial state is just propertional to

[0)i0= 3" " ailwo)

which is precisely the one particle eigenfunction found
by Glauber. Its relaxation frequency is then given by
(6) with n =m. For the uniform mode, the relaxation
for J — oo goes as ~[1 —tanh(2J)] ~ £72, where ¢ is
the correlation length.

The second form of Glauber’s model (4) can also
be simplified with the aid of bond variables. It be-
comes

Ho =3, [cosh?J + 7777, sinh?J
—17sinh(2J) —777%,) . @)}

Unfortunately (7) is not trivially solvable in the fer-
mion representation. A number of other relaxation
models can be reexpressed as quantum-mechanical
systems. Kawasaki’s model is rather complicated since
the order parameter relaxes by spin exchange.
Another model is one in which individual spin flips
are permitted subject to the constraint of energy con-
servation.’ For a nearest-neighbor Hamiltonian in one
dimension, the energy is the number of domain walls.
Expressed in bond variables, the corresponding Ham-
iltonian is simply a spin-% nearest-neighbor Heisen-
berg model with an additive constant that makes the
ground state energy zero. The absence of a gap in the
excitation spectrum is a consequence of the conserva-
tion law. To compute the long-time behavior of the
site spin correlation functions seems rather awkward.
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