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The conduction-band and valence-band edges in InSb-As, In-GaAs, and In-GaSb with spin-orbit
splitting removed are calculated as a function of concentration. A two-band Kane model modified by a
diagonal self-energy describing the intraband alloy scattering is used. Random strains decrease the band
gap and increase the Kane formula mass. Experimental agreement is good. The spin-orbit splitting at T’
predicted for InSb-As disagrees with experiment. A proper treatment of alloy scattering does not
appreciably alter the determination of the effective mass from transport measurements.

INTRODUCTION

There has been considerable theoretical interest
in recent years in the electronic properties of
binary alloys in which neither the concentration
x, nor some measure of the random potential 6,
are valid expansion parameters.'™ The problems
of random systems, of which substitutional alloys
represent the simplest example, have proved for-
midable enough that most papers deal with model
Hamiltonians. The model calculations permit a
test of competing approximations of which the so-
called coherent-potential approximation (CPA) and
generalizations to it have proved superior.'*? This
paper applies a soluble model to a class of alloys
which have been studied in detail experimentally.

The direct-gap III-V semiconductors GaAs, InAs,
GaSb, and InSb with either a common cation or
anion may be alloyed in arbitrary concentrations
and show continuously variable properties inter-
mediate between their parent components.” The
alloys are substitutional and preserve the zinc-
blende structure. Though size effects produce
strains, there is no topological disorder.® Optical
experiments show considerable structure, but
most measurements have been of the direct gap,
the spin-orbit splitting at I, and the conduction-
band mass. Section I contains a brief discussion
and references to these experiments along with
some structural data. The effective mass, spin-
orbit splitting, and band gaps are graphed to facil-
itate comparison with theory in Figs. 1-3.

The bulk of the experimental data could be ex-
plained by a theoretical treatment of the zone cen-
ter. Kane has shown that k- perturbation theory
is the most economical way to describe a limited
region of the Brillouin zone.® A modification of
this theory with a cell-localized random potential
is applied to semiconductor alloys. We feel it is
probably the simplest possible theory within which
to consider most of the effects of disorder in semi-
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conductors. A coherent-potential calculation then
gives a self-energy whose real part shifts the band
edges and whose imaginary part represents the
damping. Our model applies directly to the con-
duction band, but a complete description of the
valence bands would involve the mixing of the three
hole bands by the random potential. The simplicity
of the CPA is lost once the self-energy is off-
diagonal and momentum dependent. We argue that
the displacement of the center of energy of the
valence band is calculable within a one-band model
and that the spin-orbit splitting may be computed
separately as in pseudopotential band calculations.®
The justification for such a theory, the evaluation
of the parameters entering it, and its predictions
for the effective mass, band gap, and spin-orbit
splitting, are the subject of Sec. II and the prin-
cipal result of this paper.

The optical properties of semiconductor alloys
tend to be nearly as sharp as for crystals where
it is a consequence of periodicity. Phillips argues
that this qualitative feature of the data results
from complicated coherent rearrangements of
atomic positions that restore sharp band edges.''™**
Our model does not contain these features, but is
sufficiently simple that some approximate theories
may be applied to the blurring of critical features.
We discuss the necessity for self-consistent adjust-
ments of atomic positions and the effects of random
strains in thelight of our theoretical estimates in
Sec. II.

All experiments, to the best of the author’s
knowledge, have been done with the Fermi level in
the bottom of the conduction band where a one-band
model should adequately describe the alloy scat-
tering. For lack of suitable theory, experiments
have been analyzed as if the alloys were crystal-
line. If our theoretical description is to be con-
sistent, one must go back and examine how a prop-
er treatment of alloy scattering will affect the
interpretation of experimental data. We derive
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new transport expressions, where necessary, and
evaluate them numerically, with parameters ap-
propriate to the semiconductor alloys, in Sec. III.

In the conclusion we attempt to evaluate the
errors inherent in our model and the discrepancies
with experiment. We include also a brief discus-
sion of some other theoretical work on semicon-
ductor alloys.

1. EXPERIMENTAL BACKGROUND

The majority of the experiments on III-V alloys
are due to J. C. Woolley and collaborators. The
most extensive data exist for the alloy systems
In,_,Ga,Sb, In,_,Ga,As, and InSb,_,As,. The
latter shows the greatest deviations from virtual
crystal behavior and is consequently the most
interesting. We know of no work on the fourth
alloy of this series, GaSb,_,As,, or any reason
why it should be more difficult to prepare than
InSb,_,As,. Less extensive data exists on phos-
phorous containing alloys, certain aluminum com-
pounds, and Ge-Si.'

The structural properties and phase diagrams of
the three alloy systems we study were investigated
by Woolley.'s Anneal times on the order of a month
were required for the two resolvable diffraction
peaks in the quenched mixture to merge into one.'®
The most difficult alloy to prepare was
InSb,_, As,.'®" 7 Deviations from Vegard’s law of
about a percent were found and x-ray lines re-
mained broad after long anneals. It is not certain
that InSb and InAs are miscible in all proportions.
Transport measurements are made in most in-
stances on n-type samples prepared by the hori-
zontal Bridgeman method. Annealing times are
less, and there would seem to be more room for
error than in the above study. In a later study,
samples of InSb, _, As, in the range 0.30 < x <0.58
could not be prepared.'®

The direct gap E, is measured by optical absorp-
tion and electrofluorescence at room tempera-
ture.?® 2! In the one case in which the spectra
themselves are given for In,_,Ga,As, the adsorp-
tion « has an exponential tail which falls off as
exp(— E/0.03 eV).2! The Urbach tail in pure GaAs
is steeper than in the alloy and is attributed to
charged impurities.??

The uncertainty in E, is given by a vertical error
barin Figs. 1(a), 1(d), and 1(g), which plot the vari-
ation with concentration of the band gap with the
spin-orbit interaction removed E, + % A,. The un-
certainty is largest for In,Ga,_, As because we
have data from two groups which differ by 0.1 eV
for intermediate concentrations: roughly three
times the scatter about a smooth curve found by
either group for any of the three alloy systems.2°

Only Woolley’s data are plotted in Fig. 1(g). Val-
ues of A, have been determined by only one group
with an estimated error of 0.01 eV.? For

In, _, Ga, Sb the spin-orbit splitting was not re-
ported and we relied on an interpolation scheme to
prepare Fig. 1(g).?® The figure would be slightly
different if a linear interpolation between the crys-
talline spin-orbit parameters was made.

The spin-orbit splitting along A, A, and at T’
have been measured by electroreflectance on sev-
eral occasions.?**?® Specimens of InSb,_, As, for
0.35 < x <0.65 initially gave poor spectra and were
not used. There was some difficulty in connecting
the data for large and small x for some of the
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FIG. 1. (a), (d), and (g) represent measured band gaps
with spin-orbit splitting removed. (), (c), (), @, (),
and (i) represent theoretical predictions. The conduction
bandwidths are 2.5 eV and the valence band-widths 2 eV
except in (f), where it is 3 eV. Dashed line: the conduc-
tion and valence-band edges for the indicated impurity
scattering potentials; solid line: difference of valence
and conduction-band edges; dot-dash line: band gap
corrected for random strains.
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higher transitions and in interpreting the curvature
of the data with varying concentration.?® The low-
est transitions and in particular A, (Fig. 2) seem
to be free of these problems.

Transport measurements were made on n-type
samples to determine the effective mass and, in
some cases, A, and E,.'” '°*2673! The electron
concentration » is determined by the Hall effect.
Errors in n would affect the mobility or the effec-
tive mass as calculated from the plasma frequency
or the Faraday angle. The high-field-saturation
Hall coefficient and the plasma-edge reflectance
were used for one determination of the effective
mass.?® A lifetime 7 was extracted from the data
which was of order 1/w, for the highest magnetic
fields used (32 kG). If the Boltzmann equation
has any validity for alloys it is surprising that
the Hall coefficient would saturate. By semicon-
ductor standards, the transport measurements
were made at a rather high concentration of donor
(in some cases tellurium): up to 10'® cm™ for the
plasma reflectance. No impurity band was reported
and experiments are all assumed to measure the
conduction-band edge.** Extensive conductivity
measurements are reported only for InSb,_ As, .3

The uncertainties in the effective mass are best
judged by comparing the results for InSb,_, As,
by three different methods: plasma reflectance,
Faraday rotation, and magneto-thermoelectric
power [Fig. 3(a)].2® The sample problems referred
to above, the electronegativities of InSb and InAs,
and the different lattice constants suggest that
InSb, . As, should show the greatest deviations
from linearity and the strongest alloy scattering.
Most points fall within (10-15)% of the average
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FIG. 2., Spin-orbit splitting at T.
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curve, with the Faraday rotation showing the
greatest deviations.

The room-temperature conduction-band effective
masses and the Kane-formula prediction using the
measured E, and A, are plotted together in Figs.
3(a)-3(c).*®* The momentum matrix element ap-
pearing in the Kane formula is roughly constant
for the III-V components we study.?* The calcu-
lated mass lies several standard deviations below
the measured value. The difference appears uni-
versally and is a problem for any theory of III-V
alloys.

II. GENERALIZATION OF THE
KANE MODEL TO ALLOYS

In this section we generalize the Kane model to
alloys.® The theory provides a description of the
center of the Brillouin zone and incorporates a
qualitative treatment of the effects of random
strains in addition to a coherent potential descrip-
tion of the random potential. A single propagator
and self-energy characterize the states at the
bottom of the conduction band, which simplifies the
calculation of all the transport properties.

As the concentration tends to zero or one, the
three alloys become six isovalent impurity-host
systems, which serve as a guide in treating III-V

0030 T T T T
(a)
0.022— )
. /‘
0014}~ / J

megf/m (300°K)

0020

0.040

0.030

0.020|

0010

1
o8 1.0

04 06
CONCENTRATION

FIG. 3. Conduction-band effective masses. The solid
line is the best fit to the data points. The dashed line
is the calculated Kane formula mass found from the

measured band gap and spin-orbit splitting as calculated
in Ref. 41.
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alloys.?® Depending on the relative electronega-
tivities of the substituent and host the impurity
may trap either an electron or hole. The attrac-
tion is due to short-range forces since the im-
purities are uncharged, i.e., isovalent. Isovalent
traps are generally miscible only in small pro-
portions while GaAs:In, InAs:Sb, etc., do not bind
a carrier and may be alloyed in all concentrations.

Baldereschi and Hopfield attempted to calculate
which impurities would bind, and developed a de-
tailed model of the impurity potential which we will
carry over to the alloys.® They assumed a con-
stant, wave-number-independent potential and
used a Slater-Koster theory to compare it with
the heavy-hole bandwidth. An electropositive im-
purity would pull a state out of the top of the va-
lence band if the impurity potential were greater
than the width of the narrowest band. The im-
purity is cell localized and its matrix elements
between Bloch states are constants if one neglects
the overlap of Wannier functions on neighboring
sites—a reasonable first approximation. Bald-
ereschi and Hopfield concentrated on evaluating
the potential. Nearest-neighbor relaxation has
an important effect on the local potential. When
compared with experiment, Baldereschi and Hop-
field explain the occurrence of traps correctly
in seven out of eight cases. The agreement is not
a very sensitive test of their model since most
potentials are very small or quite large. If all
potentials were scaled down by 30-40%, the agree-
ment with experiment would be perfect.

Ionization energies are as much a surface as a
bulk property.’” The most optimistic assumption
would be that the dipole-layer effects cancel in
the difference and the uncertainty in the impurity
potential is just twice the error found by compar-
ing different measurements on clean surfaces,
+0.3 eV.*® The Baldereschi-Hopfield predictions
are no more accurate than this. In Au-Ag alloys
the relative work functions predict the direction
of charge transfer incorrectly.3®

For definiteness consider an alloy AB,_,B,. The
electrons feel a random array of potentials in a
zinc-blende configuration with lattice constant @
intermediate between a,5 and a 5. There will be
some long-range lattice deformation, depending
on the configuration of B and B’ atoms. The ith
atom is displaced by A(R;)-R;. We define a random
variable ¢; to be one if B occupies an anion site
R;, and zero otherwise. The average of ¢; is x.
We compare the alloy to a pure AB crystal on a
uniformly strained lattice of size @. The difference
between the two Hamiltonians, to lowest order, is
the sum of two terms: a random strain field in a
compositionally ordered material and a random
impurity potential on a perfect lattice;

HABB’([l+é(a]'F)—HAB(F) :HAB([l+é(F)]'F)
= Hap(F) +Happ(F) = Hyp(¥) -
(1)

In what follows we will make our decomposition
of the Hamiltonian more precise, calculate the
effects of strains in second-order perturbation
theory, and apply the CPA to a model of random
potentials on a perfect lattice. Our model is a
generalization of the treatment of Baldereschi
and Hopfield to arbitrary concentrations.

We define 7{ as the distance of the ath cation
from its nearest-neighbor anion at R; and 7 as
the analogous quantity for a uniformly strained
AB crystal. The second difference in Eq. (1),
neglecting the correlation of strains among sites,
is approximately

%Z (1= €){Va[r = R, = 7{(B)] = V4[r - R, - 7]}
i,a

+€{ Vpr(r = R;) + Vy[r - R; - 78(B")]
- VB(Y— R,) - VA('V— Ri — ?)} . (2)

We sum over all anion sites and over the four
nearest cation sites. The factor } prevents double
counting. The cations adjust their positions de-
pending on which anions are nearest neighbors.

In this manner the short-wavelength relaxation

is included in the impurity potential while the long-
wavelength components are contained in A(»). Such
a division is more easily made on a lattice with
several atoms per unit cell.

Although Eq. (2) contains a random variable and
is not translationally invariant, we may construct
a representation in terms of any complete set of
functions. To generalize k:{ perturbation theory
for the zone center it is most natural to use the
Kohn-Luttinger functions e‘k"x,,(r) for an AB crys-
tal with lattice constant @.*° The impurity poten-
tials are short ranged and nonoverlapping. The
wave-number dependence of a matrix element of
D5 € 0V(r - R;) factors as

€h-k'fx:' (PBV (7)Xn(7), €4 = Z ei(k_rl)'Ri € .
i

There is still T, symmetry about the origin and the
matrix element vanishes between bands of different
symmetry. With a Bloch function basis and % #0,
an analogous statement could be made only if one
neglected the overlap of Wannier functions on dif-
ferent sites. If all bands are retained the theory
is exact and the random potential could, in prin-
ciple, be treated as in the two-band model below.
Within the 8 X8 subspace spanned by the states at
the gap, the inverse propagator has the same sym-
metry as in a crystal but the energies at I" are
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shifted by some self-energy dependent on concen-
tration. A spin-orbitsplitting A, anda gap E, exist,
and a Kane formula for the effective mass for a
substitutional alloy follows just as for a crystal.®
We have neglected the random strain field. The
momentum matrix element is essentially the same
(to within 2%) for all pairs of compounds alloyed.3*
The Kane mass calculated from the measured spin-
orbit splitting and gap appears in Fig. 3.%

Several authors have noted the disagreement be-
tween the Kane-formula predictions and the effec-
tive mass.'®**! We account for it semiquantitatively
by calculating the effects of the strain term in Eq.
(1). Firstly, there is a renormalization of the
band gap parameters. Since we have used mea-
sured gaps, this effect is already included. The
deformation potential arising from the long-range
strain does not have T, symmetry about the origin
and thus couples ¢'*"*x, and e'*'Ty.. In second-
order perturbation theory the momentum matrix
element is reduced by a factor 1 - D*(AA)/EZ,
where

(AA) = f<A(k) A(- k) d3k

is the mean-square dilation coupling the valence
and conduction bands. Only k-dependent strain
fields break the tetrahedral symmetry. If we take
the cross deformation potential D as 3 eV /dilation,
the smaller of the absolute valence-band and con-
duction-band deformation potentials,* we estimate
the correction to p as

1-3%x(1-x)[3(a,-a,)/a]? .

The average gap is roughly 1 eV. Including piezo-
electric effects in addition to the deformation po-
tential does not appreciably modify this estimate.!*
The maximum correction to the Kane-formula
mass is a twenty percent increase at x=3. This
agrees within experimental error (Fig. 3), but

is nothing more than a crude estimate.

We argue, for our purposes, that the band gap
with spin-orbit splitting removed may be calcu-
lated within a two-band Kane model. For a single
impurity it was sufficient to include only the nar-
rowest valence band to determine whether a bound
state occurred. On the alloy we assume the va-
lence-band center of energy is due to the inter-
actions of the point I" with a band 2-3 eV wide:
the distance from the band edge to the dip in the
density of states at the lower edge of the heavy
hole band. A much more complicated three-band
model would be needed to calculate the separate
valence band masses and damping near I'. In what
follows, the effects of the random potential on
the band bap and transport will be calculated with
the Hamiltonian

k? -k
B
H= 5(k =k’
ikip -Z-kz— +E2
m

5, O
+ v €p—p’ (3)
0 6, ’

where ¢, is the Fourier transform of the random
variable ¢;, the §, . are the valence- and conduc-
tion-band potentials, and the EJ . are the valence-
and conduction-band energies at 2=0 of an AB
crystal.

The impurity potentials §, . are matrix elements
of Eq. (2) between Kohn-Luttinger states and may
be estimated by the methods proposed by Bald-
ereschi and Hopfield.*® The arithmetic is more
tedious since we imagine substituting with prob-
ability x and 1 - x, respectively, both AB and AB’
unit cells into a host which is a uniformly strained
AB crystal. Measured relative to the unstrained
AB crystal, the coefficient of the random variable
€; is roughly the difference in ionization potentials.
Efforts to refine this estimate are not worth while
since, as a measure of bulk properties, the ion-
ization potential is not accurate to more than
0.1-0.2 eV.3® The valence- and conduction-band
potentials are both uncertain by +0.3 eV, but their
difference must be the band gap which is known to
0.05 eV. Table I lists the ionization potential av-
eraged over the heavy-hole band and the band gap
with spin-orbit splitting removed.'®* The dif-
ferences are the valence- and conduction-band
impurity potentials.

In order to calculate a self-energy from the ran-
dom potential with the coherent-potential approxi-
mation, we need the free-particle density of states
p(E). Equation (3) is valid only for small wave
numbers, so we replace all momentum sums by
an integral over p(E). For numerical simplicity,
and since we are only interested in states near
the band edge, we use a semicircular density?
whose width corresponds to the cutoff, 2-3 eV
for the valence band and 2.5 eV for the conduction
band. The latter number is just the width of the
lowest conduction band.!® The result of all our
approximations is an effective Hamiltonian or

TABLE I. Averaged ionization potentials and band
gaps.

GaAs GaSb InAs InSb
I (V) 7.0 6.1 6.4 5.7
T—E, =424 (eV) 5.5 5.1 5.9 5.2
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inverse propagator:

- ikyp
BAZdB) g,
E-G™= .
ik;p k?
o E2+Z,(E) + Fp

4
The real parts of Z, . shift the band edge from
EJ . to E, . and the imaginary parts are only non-
zero below (above) E, .. In the low concentration
limit Z(E) = x6/[1 - 6G(E)], which has a pole where
the Slater-Koster theory predicts a bound state.
In this sense our approximations amount to a gen-
eralization of the Baldereschi-Hopfield Theory
to finite concentrations. Within a mean-field theory
the band edges still vary as VE. Near the conduc-
tion-band edge

K]
G:[E—EC—Z,_.(E)— S fj ,

1 1 2p2 ®)

+ .
Mg M mz(Ec - Ev)

If Fig. 1 we have plotted the valence and conduc-
tion band edges E, . due to the random potentials.
The curvature of E, . may be understood by ordi-
nary perturbation theory. The density of states
for a given band is limited to the union of the host
band with the host band shifted by 8. When a finite
concentration of positive impurity is added, the
top of the band moves upward more rapidly than
the bottom. When x=1, the entire band just trans-
lates by 8, but for intermediate x it is wider than
in the crystal. In an extreme case, when 0 is
much greater than the band width, an impurity
band splits off and the upper (lower) band edges
jump by 6 at x=0, (1). Narrower bands or larger
impurity potentials increase the nonlinearity.

There are two theoretical plots in Figs. 1(b)-1(i)
to show how variations in potentials or band widths
affect the band gap. The valence band widths are
all 2 eV, expect in Fig. 1(f), and all conduction
bands are 2.5 eV wide. Table II gives the fitted
potentials which agree to within a few tenths of a
volt to the differences of the absolute potentials
in Table I. We have fit our curves to the mea-
sured room-temperature gaps. At zero tempera-
ture Figs. 1(a), 1(d), and 1(g) would be 0.05-0.1
eV higher, and 6, would be shifted by.a correspond-
ing amount to give the correct gaps at x=0, 1.%
The predicted zero-temperature band gap could be
lowered by 0.05-0.1 eV for comparison with the
data at 300 °K. A fit of the potentials to the room
temperature gaps is in error by no more than the
difference in temperature shifts (<0.05 eV), and
the predicted room temperature gap is even less

in error. The temperature coefficient of 4, is an
order of magnitude less than the coefficient of E,.*°
The difference of E, and E, appears as a heavy line
in Fig. 1. It does not seem possible to measure
E.,, separately to 0.1 eV accuracy.

The random-strain field is a further correction
to the band gap calculated from the random po-
tentials. The off-diagonal corrections to G}, Eq.
(4), were estimated by second-order perturbation
theory. For the diagonal terms or the band gap,
the renormalization may be computed more ac-
curately by simply rescaling the pseudopotential
form factors by the Debye-Waller factor
exp(~-2 G¥u?).**®* The phonon frequency does not
enter the Debye-Waller factor; so the effects of
strains may be calculated using for («?) the mean-
square strain at a site. In simple pseudopotential
models the energy gap scales as the sum of V(220)
and V?(111).!'' For our purposes the Debye-Waller
factors are the same and we scale the theoretical
gaps by exp[- (27)*(w?)]. An upper estimate for
(4?) is given in terms of the mismatch of lattice
constants and the concentration, 3x (1- x)[(¢,~a,)/a].
The scale factors are exp[- 0.6 % (1-x)], exp[-0.5x
x(1-x)], and exp[- 0.4 *(1- x)] for InSb,_,As,,
In,_,Ga,As, and In,_,Ga,Sb, respectively. The
band gap with strain is shown by a dashed-dotted
line in Fig. 1. Our estimates are rather crude
and could be improved if the Debye-Waller factors
were known from x-ray measurements. The strain
corrections are fortunately small and the overall
agreement of the band gap with experiment is good.

The spin-orbit splitting comes primarily from
the core regions and cannot be calculated from
pseudopotentials. In first-order perturbation
theory

B0 = = Bi(l/4m?c?) (9, | (VV X, [9,) (6)

where V is the actual atomic-core potential and
the wave functions are either tight binding or a
pseudo wave function at I, weighting an atomic p
function.®*” The atomic functions in ¥ are cell
localized, so their relative phases, the same for
all p states, do not enter A,.

For an alloy, we argue that a configuration av-
erage of Eq. (6) may again be used where the wave
functions and core potentials are random. In a
given configuration, the wave function at I' of the
alloy AB, _, B, has an amplitude on the anion sites

TABLE II. Impurity potentials fitted to experiment.

InAs:Sb In:GaAs In:GaSb

Valence band 5, (eV) 0.5 0.6 0.4
Conduction band 6, (eV) 0.5 -0.4 -0.1
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depending on whether Bor B’ is present. The
phase is irrelevant for our purposes. The ampli-
tude on the cation sites, occupied by A, depends
in some complicated way on the occupancy of the
nearest-neighbor anion sites. This correlation
effect cannot be treated within mean-field theory
and, furthermore, is small. The cation amplitudes
fluctuate between their values in AB and AB’, which
are only a few percent different.*®

On the anion sites we construct a wave function
whose amplitude at R; is the one-band tight-bind-
ing wave function ¢; multiplied by the atomic p
function appropriate to the site: €;95/(» = R;) +
+(1 - €)dg(r — R;). For the core potential we use
an atomic potential B, B’, according to the oc-
cupancy of the anion sites. Averaging over con-
figurations and converting to second-quantitized
form, Eq. (6) becomes

AABB] i = AAB | (pAB' _ pAB)

, mleolo)B) [ ™
Im(p]p)(E) |- By

By assumption, the spin-orbit splitting at A may
be simply added on to the contribution from anion
sites to give the complete alloy or crystalline
splitting. The numerator expresses the correla-
tion between the occupancy of a site and the ampli-
tude of the wave function. The imaginary part
gives the spectral function. We have divided by
the density of states since we want the matrix ele-
ment of Eq. (6) for one state, not per unit of en-
ergy.

In the CPA,

(€,0] $.)(E) = G(E) =(E)/5 ,

which may be evaluated numerically near the band
edge. For our purposes, we keep just the two
lowest terms in Z in order to rewrite Eq. (7) as

A(x) = A% +(a%8" = A*B)[x +x(1 - x) 26 Re G(E,)] .

(8)

The quantity 0 is the potential of AB’ in an AB
host. From numerical calculations, ReG(E) varies
from 1.5 to 2 as x varies from 0 to 1, 6 from 0 to
3, and the energy from the band edge to — 0.20 eV.
The CPA is inexact near the band edge and we
estimate the corrections to the density of states
below. Virtually nothing is known quantitatively
about the wave functions near the band edge. The
CPA is valid 0.20 eV below E, and the rough con-
sistency of ReG(E) over this energy range makes
our approximation seem less dubious.

For all the alloys we consider, 6>0 when a%2’
- A*®>(0. Equation (7) or (8) implies that
A*B1-xBy is a convex function of x. The physical
reason for the sign of the curvature is similar
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to the explanation of the curvature of E, .(x) and
holds more generally than our numerical approxi-
mations. When a positively charged impurity is
added to a band the states at the bottom of the band
are concentrated on the host atoms, while by the
exclusion principle the wave functions at the top

of the band are more concentrated on impurity
atoms. In the extreme case of 6> 1 the top of the
valence band would be an impurity band formed

by AB’. In this case,

’ ’
A%B1-xBx= A2 for x>0 .

These trends are confirmed by model calculations
of the spectral functions.? In InSb,_,As,, the wave
functions at the top of the valence band spend more
time in InSb than in InAs, hence the negative curva-
ture.

We feel the positive curvatures shown in Fig. 2
contradict our theory only for InSb,_,As,. We have
neglected the effects of strains which explained
the disagreement between the effective mass and
the Kane prediction. The second-order perturba-
tion calculation we performed is equivalent to the
assumption that in the presence of strains the
valence and conduction bands contain states of s
and p symmetry,

Y=(1-a"/%, + as
and

be=(1- 89/ + /3 Y p .

The momentum matrix element is reduced by
(1- dz)x/z(l _ B2)1/2 +aB/\/’§<(1 - az)l/z(l— Bz)l/z

and the Kane mass increased by its reciprocal
squared. The spin-orbit splitting is reduced by
1- o®. This scale factor is applied to A(x) while
Eq. (7) corrects the virtual crystal theory by a
term of order A2’ - A*3, For In,_, Ga,As, a
small concentration-dependent admixture of s-
wave symmetry into ¢, would account for the ob-
served curvature in A and the correction to the
Kane-formula mass. To explain the InSb,_, As,
data, however, 1 - o ~3, which would mean at least
doubling the Kane predictions for the effective
mass which are then in disagreement with experi-
ment in Fig. 3. For ZnTe, ., Se, our theory works
relatively well, as we discuss in the conclusion.

At the band edge, the CPA predicts the experi-
mental behavior

p(E)~'E—Ev,c,1/2

which, however, is not rigorously correct for our
model Hamiltonian. Systematic calculations be-
come difficult beyond the CPA and we resort to
some less controlled approximations to estimate
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our error at the band edge. Halperin and Lax
developed a variational method for bounding the
band tail caused by screened Coulomb impurities
in semiconductors.*® Their Ansatz is only tractable
for a high density of weak scatters. An electron
on any given site must feel the potential of many
impurities. The tailing is measured relative to
the virtual crystal edge, E2—- x5 in our notation.

In particular, their theory is invalid when a split-
off impurity band exists and the density of states
is no longer just a broadened band edge. We adapt
their Ansatz to our tight-binding model in Appen-
dix A. The approximation is only useful for 6§<0.3,
e.g., for the conduction bands of In,_,Ga,As and
In,_,Ga,Sb. The crude variational bound in Ap-
pendix A becomes

p(E) ~exp - |E - x8/A|*/2 |
A =(xy6%)? (25m g /m)® 1075 eV .

For small 6 the tailing is completely negligible,
which is not surprising, since the band edge varies
according to the virtual-crystal theory.

Anderson has calculated the localization of a
charge by a random-cell potential.’® Anderson’s
model applies better to a III-V alloy than to amor-
phous germanium where it is often used.>* For
the model, there exist semiquantitative estimates
of the mobility edge—the energy at which states
become localized.5! Since the CPA conductivity is
nonzero whenever the density of states is finite,
the mobility edge should be at or near the band
edge. For a band of width 2 and edges at +1, the
mobility edge formed when a concentration x of
impurity potential 6 is added satisfies

-xIn|E-6|=(1-x)1In|E]| .

The equation is unchanged if the host and impurity
are reversed

x=-1-x, E~-E+60.

The approximations are similar to those in Ander-
son’s original paper.’® Figure 4 is a graph of the
mobility and band edges. The level of our quantita-
tive understanding of the Anderson model pre-
cludes attaching any significance to the mobility
gaps in Fig. 4 other than that they are small. We
do not find published explanations of the relatively
sharp optical edges in semiconductor alloys com-
pelling. ™13

III. TRANSPORT PROPERTIES

We have compared theory with experiments ana-
lyzed as if the materials were crystalline. All
experiments were run on n-type samples with E,
generally within a few tenths of a volt of the band

edge. The CPA and Eq. (5) (with the measured
effective mass) should be good approximations
except for the neglect of nonparabolic effects. Our
numerical results cannot be considered more than
semiquantitative. We reexarained only those ex-
periments in which alloy scattering is expected to
be important and the electron gas is degenerate.
The thermoelectric power at room temperature

is dominated by phonon scattering and was not
considered.?” The conductivity lifetime is also
dominated by phonons at room temperature but

we calculated it to compare with the measured
values and to illustrate what a low temperature
measurement on clean samples should give. For
the plasma edge reflectance and Faraday rotation,
we calculate small deviations from free-particle
behavior which are probably within experimental
uncertainty. Within the CPA, vertex corrections
to most transport coefficients vanish. Calculations
are simple and have been performed by a number
of authors.®* In a few cases it has been necessary
to derive new expressions, but the purpose of this
section is to give numerical results for the three
alloys we consider.

We define a and B to be the real and positive
imaginary parts of (E - E— Z_(E))'/2 and under-
stand that when the argument E is not written they
are evaluated at the Fermi surface. The zero-
magnetic-field conductivity defines a lifetime

o007 e ) gy

We list a few values in Table III. Our calculated
lifetime is somewhat shorter than that measured
in InSb,_, As, at room temperature where the mo-
bility is dominated by polar scattering, 3%32:52 The
CPA doesn’t apply to states in the band tail and in
these experiments E, <300 °K. There is some
discrepancy to a lifetime fit to reflectance data.?¢

].5 T T T T
4
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> ,
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x .21 / .
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///
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FIG. 4. CPA prediction for the band edge (solid line)
compared with the estimated mobility edge (dashed line)
for two values of the impurity potential. The bandwidth
is 2 eV.
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The Hall coefficient R is defined as limyg._.,0,,
Ho2,. Its deviation from the free electron value

is measured by
Ep
f a(E)dE) /oz(zy2 +8%) .

3

Yo =NecCR ) < )
The conductivities depend only on Fermi-surface
properties within the CPA, while the density re-
quires an integration over all occupied states. The
high-field Hall constant is difficult to calculate
because the free particle density of states can no
longer be assumed semicircular and is not ex-
pected to saturate at the fields used (see Sec. I).
There is some evidence that for small Ep, v, is
less than one in regions where y, is greater than
one.? Table IV lists some typical values. Except
for large 0 and x=0.9, y=1 to a few percent, which
is all the accuracy one can claim for the CPA.

The plasma frequency has been measured by
reflectance.?® In Appendix B we calculate €(w)
in the CPA. For the range of parameters used
in the experiments and neglecting dampening,
€(w) is approximately

4mne?
w?egmy[1- 83'(Ep)/9Ef|®

€ —

Table V lists some values of 1 -98X'/9E. It de-
pends only weakly on the energy. If the sample
data were analyzed as for crystalline materials,

M plasma =M eft (1 - 32’/3E)2/'y .

The corrections are a maximum of 15% on the Sb-
rich side of InSb, _,As, which is still within ex-
perimental error. The corrections depended
primarily on 0 scaled by the bandwidth, which in
Table V is two. The conduction band in InSb,_,As,
is normally 2.5 eV wide and 6 ~0.5 so a correction
factor between 6 =0.3 and 0.5 has been used. The
corrections are smaller for In,_,Ga,As and
In,_,Ga,Sb.

When Faraday rotation is calculated in the pres-

ence of alloy scattering, we find
1-083 ’/aE 1/2
m, araday =Mete ——;——

The correction factor is less than . /M. and
the experimental scatter is greater.

The most careful mass measurements reported
are cyclotron resonance experiments at 4 °K on

TABLE III. Correction to hall coefficient yy=necR.

Concentration 0.1 0.3 0.5 0.7 0.9

6=0.3 Er=0.1 1.00 1.00 1.00 1.00 1.06

6=0.5 Ep=0.1 1.00 1.00 1.00 1.01 1.10

lightly doped samples.'® In the quantum limit, the
CPA calculated with just two Landau levels would
determine the cyclotron frequency. (For the high-
field Hall measurements, ten to twenty Landau
levels are occupied.?®) Unfortunately the applica-
tion of the CPA so near the band edge is suspect.

CONCLUSION

We were motivated by the success of models of
isovalent impurities to modify k+{ perturbation
theory with a band-diagonal k-independent self-
energy. Near the band edge the self-energy should
only depend on the magnitude of a local random-
site potential scaled by the bandwidth. A tight-
binding model which contained these two param-
eters was used in the numerical calculations. The
self-energy shifts the band edge and predicts a
finite lifetime for carriers. We argued that the
effects of alloying on the valence-band center of
energy and the spin-orbit splitting are accounted
for by a one-band calculation. A two-band Kane
model has the fewest parameters either to be fit
to experiment or estimated from theory and has
proven to satisfactorily explain the variable band
gap.

At some points our derivation has been heuristic
and we can only roughly estimate the errors com-
mitted. We have treated the strain field as random,
independent of the alloy configuration, except for
the relaxation of the nearest neighbors around an
impurity. There, the displacement-induced po-
tential is incorporated into the impurity potential.
Correlations of displacements due to the proximity
of several impurities are ignored. Such effects
may have been observed in pair recombination
spectra.’® The long-range dilation has a negligible
effect on the binding energy of a trap.’* The mag-
nitude may be estimated variationally knowing
A(¥), which falls off as 1/7° and has zero angular
average in a cubic material.®®

Our theory applies only to direct gap materials
in which the energy extrema remain at the same
point in 2 space. We could not calculate the in-
direct gap as it moved along some symmetry di-
rection with alloying. In a Kohn-Luttinger basis,
bands of different symmetry do not couple through
the random potential. The intraband effects are
found more important than the interband couplings

TABLE IV. Conductivity lifetime 7 (eV) (71 1NER).

Concentration 0.1 0.3 0.5 0.7 0.9

6=0.3 Ep=0.1 140 50 28 22 28

6=0.5 Ep=0.1 80 25 14 9 7
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at I'. The former are treated by the CPA, the
latter in second-order perturbation theory or by
a Debye-Waller factor. At an arbitrary point in
the Brillouin zone this separation may not hold and
our analysis would be complicated by an off-diag-
onal k-dependent potential and self-energy. At T,
the most important interband mixing occurs
through the strain field between the valence and
conduction bands. Estimates of the corrections
to the effective mass and spin-orbit splitting are
easier to make than elsewhere in the zone. When
working about a different point in the Brillouin
zone, we would not expect the impurity potentials
to be exactly the same as at I'. Within the +0.2~
0.3 eV accuracy of the theoretical estimates the
potentials are fit to experiments at a given sym-
metry point.

The spin-orbit splitting at I" has been measured
as a function of concentration for six alloy sys-
tems.?® An impurity potential calculation corrects
the linear approximation by a convex function pro-
portional to | A} - A%2|. For all systems, except
InSb, ., As,, the estimated admixture of s-sym-
metry states into the valence band would restore
the observed curvature.?’ In InSb,_,As, the mag-
nitude of the disagreement of the Kane formula
with the measured effective masses is much too
small to account for observed curvature of A,.

If the wave function had greatly different ampli-
tudes on the anions in the parent compounds, pos-
itive curvature could result.®* A more important
effect we have neglected is the mixing of valence
states of different orbital symmetry into I" by the
random potential. Such effects would be contained
in a four-band Kane model and would lead to a
positive curvature. An experimental error seems
unlikely.

Within our theory, A, is not a “band gap” be-
tween I'; and I,. The valence band cutoff extends
beyond A, into the “split-off band” and it’s not
apparent whether I'; is at the top or in the middle
of a “band” when there is strong alloy scattering.
First-order perturbation theory seems unambig-
uous.

There have been several theoretical attempts
to deal with semiconductor alloys. The most com-
plete was a study of Ge-Si by Stroud and Ehren-
reich.® They exploited the constant difference of
the pseudopotential form factors, V(G), of Si and
Ge, to use a separable random potential. A
shifted and broadened band structure is computed
within the CPA. The calculated dampening at T,
was much too large, since this point differs in
energy by a few volts in Si and Ge. The impurity
potential in the III-V alloys is not separable. Nu-
merical {-matrix calculations have met with some
success in metallic alloys.® The full band struc-

ture with dampening was calculated, but the
charge-transfer effects were an important deter-
minant of the potential and best fit from experi-
ments. Charge transfer is not as important in
semiconductors, and is implicitly contained in
8, . when fit to experiment.

Richardson claims good agreement with experi-
ment using a virtual-crystal model in which

a
[xa, +(1-x)a,]?

a3

[xa, +(1 = x) a,]

V(G)=x V(G)

+(1—x) 3 Vz(G) ’

where a, , are the lattice constants and V, , the
pseudopotential form factors of the parent com-
ponents.’®'5” The crystalline form factors are
corrected for the change in lattice constant. Since
the momentum-dependent pseudopotential is av-
eraged, the band gap is not expected to vary lin-
early with concentration. Some additional curva-
ture is introduced in the averaging, (e.g., through
the average unit cell volume), whose importance
can be estimated from the derivatives dEl-ls_p /
dV(G).'® The quadratic term 6 x(1 - x)[(a, - az)z/
(a, +a,)](V, - V,) (G) or lattice corrections to the
form factors influence the direct gap by no more
than 0.05 eV. It is not clear how the spin-orbit
splitting is calculated. Richardson uses, for com-
parison, measurements of E, not E, + 3 A,.
Richardson and Hill have measured and calculated
the band gap of ZnTe, ., S, for all concentrations.5”
The agreement is good, but both theory and ex-
periment predict an isovalent trap in ZnS:Te which
cannot be found by a virtual-crystal model.?® It

is somewhat surprising that these materials may
be alloyed in all proportions.

Van Vechten ef al. have explained both the cor-
rections to the Kane-formula mass and the curva-
ture of the spin-orbit splitting as valence-con-
duction mixing.?®'*! We find their method for cal-
culating these corrections to be empirical.

Sen has recently applied the CPA to a two-band
tight-binding model.%® In his Hamiltonian the
hopping term is diagonal in the band indices while
the random term mixes the bands. His results
would be qualitatively unchanged if the random
term were diagonal and the overlap mixed the

TABLE V. Correction factors 1 -9Z/(Ez)/8E (Sec.
).

Concentration 0.1 0.3 0.5 0.7 0.9

6=0.3 Erp=0.1 0.998 0.99 0.98 0.95 0.94
6=0.5 Ep=0.1 0.9994 0.993 0.98 0.94 0.80
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bands as we have assumed for small £. It would
be interesting to see whether a complete solution
within the CPA of such a model would reproduce
our results for the effective mass and the band
gap.

After this paper was written, data appeared on
the spin-orbit splitting at T" in the ZnSe-Te sys-
tem.%® As a function of concentration, 4, is con-
vex and in approximate agreement with Eq. (7)
evaluated within the CPA. Interband effects are
smaller than in InSb-As because of the larger

band gap, and our approximations should be better.
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APPENDIX A: ADAPTATION OF THE HALPERIN-LAX
ANSATZ TO THE TIGHT-BINDING MODEL

Halperin and Lax construct a variational prin-
ciple for the density of states by assuming that
a state centered about R; has energy FE if the po-
tential has a relative minima at R;, and E=T
+y,06¢€;p;. The expectation value of the kinetic
energy is 7T and the square amplitude on a site
R; is p;. For a high density of weak scatters we
may express the constraints in terms of Lagrange
multipliers and approximate certain integrals by

Gaussians. The result for the density of states is:

p(E)mexp[—(E- T-x6%) p,>2/2x(1 SPLDY pf] )
i J

The expression in Sec. II follows by using as a
trial function p; < e™*%i and minimizing the expo-
nential with respect to a.

APPENDIX B: CALCULATION OF ¢(w) IN THE CPA

For states described by the propagator in Eq.
(5), the zero-wave-number dielectric constant
is given by

e(w)-1=47e? Zf ——f(x)ImG(x+ze)
x(;l;f[Gz(x+w+ie)+Gz(x—w—ie)]

2
+2"]f2

eff

[C¥Hx+w+i€) +G3(x— w—ie)]).

The sum over wave numbers may be done exactly.
We retain only the most important terms

4me

o) =1= 2= L @ [ 12

Megr

* 1/2 1
x[[x—z (] /<[w_2(x+w)+2*(x)]2

R ! )
[w=Z*x) +Z*(x - w)]?

1
w=2(x) +Z*(x - w)

X[x—Z)(x)]l/2<

1 >7
oz -z(x+w)]° I

In the experiments E; ~0.3 eV and w, ~0.1 eV the
real part of the self-energy is approximately a
linear function in this range

47me21j[ < az’) . ,,]-2
e(w) -1~ - Zl w 1_8EF -2i2

Lol- )T

The dampening near x=0.9 can be as large as w,,
making the reflectance peak somewhat difficult to
locate.
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