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A double decomposition of phase space into both wave-number bands and spacially localized wave packets
is used to derive model equations for an averaged time-dependent velocity or vorticity amplitude localized in
both real and Fourier space. Intermittency develops in time, and correlation functions scale as the wave
number to a universal power. Energy cascades to infinite wave number in a finite time in a series of self-
similar pulses that propagate down our hierarchy of equations. A number of subgrid paramétrizations are also

examined.

I. INTRODUCTION

Theé most common means of measuring inter-
mittency in high-Reynolds-number flows are ex-
periments employing a single hot-wire anemome-
ter in the atmosphere.! These measurements,
together with Taylor’s observation that for the
small scales convection frequencies exceed intrinsic
eddy turnover frequencies, imply the spacial spotti-
ness associated with intermittency. Itisour conten-
tion that intermittency can equivalently be viewed
as a temporal phenomena for appropriately chosén
variables.? It is not easy to give a precise mathe-
matical definition of these variables, and their
utility is dependent upon a number of commonly
accepted, but unproven, properties of fully devel-
oped homogeneous isotropic turbulence in three
dimensions.®

The theory developed here is dynamical in that
it utilizes ahierarchyof differential equations in
time to model the buildup of intermittency in the
inertial range. We believe that intermittency is
a consequence of inertial range dynamics* and for
this reason prefer Van Atta’s time-differencing
treatment of the atmospheric data because it di-
rectly produces the probability distribution of
velocity fluctuations for a given scale size.> The
more conventional data reduction, that displays
locally averaged dissipation spectra, contains the
same information but in a form less convenient for
comparison with an inertial range theory.

It will prove useful in what follows to imagine
Fourier space partitioned into bands or shells on
a logarithmic scale. The nth shell will consist of
all wave numbers % satisfying

b"<k< bm-l s

where b is a number of order 2, and units have
been chosen to make the largest eddies in the sys-
tem fall into the zeroth shell. It is generally be-
lieved that the energy cascade in three dimensions
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is local in wave number, with the intrinsic cou-
pling (i.e., with convection effects removed) be-
tween shells m and n decreasing exponentially
with |n —m|.® Estimates based on second-order
closures indicate that most of the energy transfer
into a shell comes from a range of about 10 in
wave number.® In the model of Ref. 2, only inter-
actions between neighboring bands were permitted
for numerical simplicity. Energy was still con-
served at every instant and we are inclined to be-
lieve such an approximation is qualitatively cor-:
rect. We continue to make this assumption in the
highly simplified model that is solved here.
Closure calculations for homogeneous isotropic
turbulence are commonly done in & space.
Fourier modes, however, are not well suited for
describing a process.which becomes spotty in real
space. A redl-space representation would be
closer to experiment, but apart from the impos-
sibility of doing a direct simulation of the small

‘scales at high Reynolds number, the pressure

term is spacially nonlocal and is much easier to
compute in Fourier space.

An obvious, though imprecise, way of reconcil-
ing these conflicting requirements on the basis
functions are the wave packets introduced in Ref.
2." Briefly, one imagines reexpressing the modes
in a given wave number band z in terms of func-
tions ¢, o(r —R, ,(t)) which are localized to a re-
gion of characteristic size 27 x 2™ (b=2) about R,,.
The region was taken to be a cube to facilitate nu-
merical calculations. For each »n, there are suf-
ficient R, , so that the corresponding cubes fill all
space. Within each cube and multiplying the “top-
hat” function, are Fourier modes, exp(iG-¥2"),
where G is a vector with components 0, +1 and
magnitide between 1 and V3.

If one expands the band velocity «,,

U, )= D AR, o —R, (1),

Gy
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and substitutes into the Navier-Stokes equations,
the crude estimates in Ref. 2 suggest that the in-
traband interactions of the A% are predominantly
with modes in the same box. The incompressibil-
ity constraint is satisfied separately within each
cube. Physically, this corresponds to the asser-
tion that spacially distinct eddies of the same
characteristic size do not interact. The center of
each cube is time dependent since we wish to fol-
low only the proper motions in a given shell and
therefore let R,(#) evolve with the local spacially
averaged velocity of the preceding shells, We are
thus working in local Lagrangian coordinates.

The transformation to coordinates that describe
the eddies of given characteristic size in a given
comoving region itself evolves in time. Except
for trivial convection effects, it should be faithful
for at least a local eddy turnover time which is all
that is really needed.

The modes A, , correspond to velocity differ-
ences over a region of size 2r x 27", filtered to
remove fluctuations on much smaller scales. In-
teractions between modes in different shells are
generated when the corresponding basis functions
overlap. We believe that for each a, each set of
Az, o, with n fixed, are statistically equivalent,
and that-a time average for a fixed @ or box
would be the same as a spacial average over all
the boxes in a given shell at a single time.?

Until now, our new basis might be considered
exact though useless, since it has the same number
of degrees of freedom as the nth shell. To make
progress, the number of modes used to represent
a given shell is reduced by retaining only one box
with its 26 Fourier modes G. We continue to as-
sume that statistical properties can be computed
as time averages. This approximation tends to in-
crease the intermittency since it omits the spacial
diffusion of energy within a band.* The intershell
coupling is calculated by nesting the boxes repre-
senting successive shells.

When the scheme we have outlined was imple-
mented in Ref, 2, intermittency appeared as bursts
of activity in time. The energy transfer was small
for comparatively long periods, but fluctuated well
above its mean for short periods so as to maintain
a statistically stationary distribution. A Kolmo-
gorov spectrum developed for the energy with the
suggestion of a small positive correction to 2.
The variance of the energy transfer rate, that we
assume to be analogous to the variance of the lo-
cally averaged dissipation spectrum or the struc-
ture function {[v(r) - v(0)]®)/72,® scaled with » and
give a value of u of order 0.8. We emphasize that
these calculations were designed only to check that
the generally accepted characteristics of high-
Reynolds-number flows lead to fluctuation effects

qualitatively like experiment.

A model with 26 Fourier modes per band still
requires a moderate amount of computer time to
solve. A much simpler model is studied here with
only one variable per band whose solution proves
to be very similar to that of the more complicated
model. It is rather like a model of a model since
the one variable corresponds to an average of
|A2 .| over G. The present model is complemen-
tary to the earlier one, since it contains a number
of arbitrary constants whose signs we are able to
infer from the more realistic model. It permits
us, however, to investigate a number of effects
that would have been too complicated to treat with
78 (=3 X 26) variables per band.

Section II contains a statement of our model and
its relation to the Navier-Stokes equations and the
model of Ref. 2. A stationary solution of the model
is found that can plausibly be identified with Kol-
mogorov’s 1941 theory.® The stability properties
of this solution are examined in Sec. III. Finally,
in the parameter regime in which K41 is unstable,
numerical solutions of the nonlinear equations are
given. From their form the exponents relating to
fluctuations in the energy transfer rate and cor-
rections to the “3” law can be found. In'the con-
clusion, we discuss a number of alternative the-
ories of intermittency; in particular, the preva-
lent viewpoint that intermittency is due to the con-
vection of comparatively stable large-scale con-
voluted structures.®?

II. DEFINITION OF MODEL .

For a cascade model involving only interactions
between nearest-neighbor bands and conserving
the modal energy E,=%27,|A%|2, at each instant,
one can write®

L]
%=€n —€pa1 - (2'1)

The index o has been omitted on A7 since we are
retaining only one box per shell. The energy en-
tering shell » from » -1 is denoted by ¢,; and for.
a statistically stationary and necessarily driven
system, the temporal average of ¢, is independent

- of n:

e={ey - (2.2)

In Ref. 2, ¢, was the sum of a term with factors
[w,%,.,1,] and one with factors [uu,.,u,.,]. The
brackets stand for a sum of amplitudes A7 from the
indicated bands together with a projection operator
for the pressure and a gradient. Both terms were
almost always positive as a function of time, cor-
responding to energy transfer to small scales. To
reduce the number of modes to one per shell, the
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obvious choice is to define E,=342 and set
€n=b"(Bxi‘1'xnl+ |xn_1|xf,). (2'3)

This approximation assumes that ¢, responds in-
stantly to any change in x,_;, or x,. The factor b"
is simply the magnitude of the average wave vec-
tor in the nth shell. In Ref. 2, ¢, was an analytic
function of the amplitudes A7 and was generally
positive because of vortex stretching effects. With
only one mode per level this physical mechanism
is lost and the absolute values are required in
(2.3) to enforce the positivity. An overall constant
in (2.3) has been absorbed into the time scale and
the one remaining parameter 8 must be taken as
positive. The second term in (2.3) models the
vortex stretching or the shearing of small scales
by larger ones.

The equations we actually integrated were
slightly more complicated than (2.3) would imply:

) 2
e _€ .2 Bryx2 X2, .
=—-b + -
% % <(x§+ ax (x2+ ax2)i7? )’ (2.4a)
A
x =b" BX ey % + X 51 %
" (ZraxZ W2 (xZ,+ax2)/?
_b"ﬂ(' anxﬁﬂ + xn xfl-l-l > (2 4b)
) (%2, +axZ )2 (wZ+axi, )72
for n=2,3,...,N and,
xN+1=xN/b1/3 ’ (2.4c)

Kyea =X/ D2 A (2.4d)
Equation (2.4b) implies

2 2 2 2
€ =Hn an—lxn + xn—l.xn'
n (x2+ax2 2" (x2. + ax2)72 )

n+l

(2.5)

The square-root factor has been introduced into
(2.4) to smooth out the absolute value and facilitate
the numerical integrations. The radicand was se-
lected to preserve the scaling properties of (2.4)
as well as the solution (3.1). The parameter o
was varied from 10™ to 102 without significantly -
affecting the results. The inclusion of an extra
parameter actually makes the universality pro-
perties of the model more interesting as we dis-
cuss in the conclusion.

The first term in the equation for x, is designed

to feed energy into the system at a constant rate €.

Equation (2.2) will hold if (2.4) proves to be sta-
tistically stationary. The time scale is set by ¢
and the length scale by b~ 2. Note that the mth
equation in (2.4b) is invariant to a change in sign
of x,. A variant of (2.4a) was sometimes used
which, except for a scale change, did not alter the
results for shells beyond the first few:
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. Brix Xy X
=p 071 071
%1 ((x1§+ ax§5172+(1+ a;”z)
2 Bx, x3 N % X3 6
b <(’x§+ ax2) 72 (k2 ax2)7Z) (2.6)

where x, is a constant of order [¢/(Bb?/3+b*/3) /3.
Physically, (2.6) models a constant shear.

We have terminated the system of equations
(2.4) with an eddy damping (2.4c), rather than a
true viscosity. This is because Desnyansky and
Novikov!® have shown for 8= a =0 that (2.4) with a
damping term, -bz"x,,/R, where R is the Reynolds
number, does not possess a stationary solution
with a Kolmogorov inertial range that is indepen-
dent of R as R—~%. We believe this to be an arti-
fact of a model as simple as ours. With an eddy
damping, we do obtain a stationary solution cor-
responding to a g--law inertial range though of
course no dissipation range.

Two more complicated “subgrid” truncations
were used in place of (2.4c),

x.N-bl: ("xN+1+xN/b1/3)/T ’ . (2.72.)

which for a statistically stationary system be-
comes

xNu(t) =p/3 f

-c0

t PN t’
(L), am

and .
x)vu(t) =xy(t = 7)/b/3, (2.8)

f f
Their properties are discussed in Secs. III and IV.
A continuum limit of (2.4) is described in the Ap-
pendix.

III. STABILITY ANALYSIS ,
Static solutions to (2.4) can be found by solving
€=€,.
The most interesting such solution is

x,=xch™/3, (3.1)

where c=[(1+ a/b%/3)/2¢ /(8?3 + b*/ %) /3. Equa-
tion (3.1) is equivalent to a 2-law inertial range.
Using (2.6) in place of (2.4a) changes only c in
(3.1).

The stability properties of (2.4) have been stud-
ied numerically as a function of b, «, B, N, and
the lag time 7 in (2.7) and (2.8). Time dependent
solutions of (2.4) are not physically precluded be-
cause éxf, represents the energy in a spacially
localized region. The equal time velocity corre-
lation function in 2 space’that occurs in a closure

~calculation, however, still represents a volume

average and cannot fluctuate in a statistically
stationary driven system.
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The case o =0 and b~ 2 has been examined in
most detail. With the substitution, x,= cb/3(1
+§&,), £, small, the eigenvalue problem corre-
sponding to (2.4) becomes after some rescaling
(3.2a)

g). = _b2/3[§1+ 28+ Bblls(z &+ 52)] ’
=073k By = 2+ OO
X(28,, = &= £n)], n=2,3,...,N
- (3.2)
Eml 5N (3.2¢)

For N> 4 and B sufficiently small, (3.2) has at
least one eigenvalue with a positive real part in-
dicating that (3.1) is unstable. For N=8, 20, and
40 and b=2, complete sets of eigenfunctions and
eigenvalues were generated numerically as a func-
tion of B. All eigenvalues were complex and oc-
curred in complex conjugate pairs. For any =0,
the first eigenvalue pair has a negative real part
for (3.2a) and a positive real part when (2.6) was
‘used for #,. The replacement of (2.4a) by (2.6)

. only affected the lowest few eigenvalues. As B ap-.
proached f*=0.150579 218 64 from below, the real
parts of the next two pairs of eigenvalues went

" from positive to negative. The real parts of the
remaining N - 6 eigenvalues all went to zero simul-
taneously at the value of B* just given. Further-
more, B* was independent of N to the accuracy
stated. We have no physical explanation for this
rather curious fact. When « is nonzero, how-
ever, the N - 6 eigenvalues with largest real parts
pass through zero successively but in a very nar-
row range of S.

Equation (3.2) is tridiagonal and its elements in-
crease as b?"/3 along the diagonal, so it is not sur-
prising that the nth eigenvalue is of order z,b%"/3,
where z, is a complex number of order 1. Its
eigenvector for g<< g* is localized in % space

2

EIGENFUNCTION
o
2}

o I‘O 20 3‘0 4’0
. n
FIG. 1. Eigenfunctions for (2.4) linearized about its
stationary solution, (3.1), for a=B=0, b=2, and. N=40.
The corresponding eigenvalues from left to right are in
order of magnitude, bz"/a, withn=1,13,25, and 37.

.

around the mode »n, Fig. 1. The tail that is appar-
ent on the third eigenfunction decreases with N for
a fixed eigenvalue. When g~ B*, these tails grow
until at Bg*, the mth eigenfunction is spread uni-
formly over all levels n=m. The degree of eigen-
vector localization is a measure of the correla-
tions among the various levels. The Kolmogorov
solution becomes stable when the levels are locked
together and the eigénfunction§ are delocalized.
For B<B*, we have shown that the shells with
largest » run away from (3.1) most rapidly. How-
ever, near B*, when all eigenvalues have small
real parts, their imaginary parts remain ~p2"/3
so the unstable modes execute a tight spiral
around the N-dimensional point £,=0 as they grow.
It is also possible to solve for the tempgral
evolution of the probability distribution in the va-
riables £, when a noise source ¢(t) satisfying

EBey=2r6(t-1')

is added to each equation in (3.2a) and (3.2b). The
time evolution matrix in the {g,,} phase space for a
system of equations

E=fiet+e

is just a path integral over £, from £,(0)= &Y to
£,(T)= £? of the expression'?

ﬂexp[-— T((& f)2+21"df )dt]

n=1
When f, is linear, the path integral can be evalu-
ated exactly by perturbing about the classical ex-
tremal path from £3’ to £2 and doing some linear
algebra.’® The results confirm the conclusions
stated above.

The stability problem for (3.2) has been exam-
ined in the remainder of the parameter space
though in'less detail than in the g-N plane. For «
=0.01 (and presumably for any small or zero a)
and for N=8 or 20 we found that g* decreased
from a value approximately 1 for b just above 1 to
zero at b~2.75. Equation (3.1) is a linearly stable
solution to (2.4) for 5>2.75.

For «=0.01 complete sets of eigenvalues were
again generated. They behaved similarly to those
for a=0; B*=0.14510 and 0.145 26 forN 8 and
20, respectwely

We have also checked the stability properties of
(3.2) as « increases. For $=0.05, Kolmogorov
became stable above a*=0.12286 and 0.124 08 for
N=8 and 20, respectively. With 3=0.0 and N=8,
a*=0.189 72.

The influence of the first subgrid parametriza-
tion, (2.7a), on the stability of the Kolmogorov so-
lution has also been checked. Figure 2 shows the
regions of instability in the p-7 plane. The initial
decrease of B* with 7 and its subsequent rise can
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\ L P -
00 0.005
T

FIG. 2. Curve of B* vs T for «=10"3, b=2, and N=8.
The solution, (3.1) of Egs. (2.4a), (2.4b), and (2.7a) is
linearly stable (unstable) for 3> (<)B*(7).

best be understood after the nonlinear solutions to
(2.4) are examined. '
It should be noted that the vortex stretching term

5‘3-1 x"/(x Lt axfs)llz

in Eq. (2.4b) is responsible for the instability. It
causes a small initial x, to grow exponentially if
X,.; is large, while the term proportional to g
leads only to algebraic growth. If the time deriva-
tive of p=322Y b2"/3| ¢,|? is computed from (3.2),
one finds

N-1 N-1
p°=—|§1]2—|£N|2+Z Ignlz"'Z(E:ﬂ n—z‘smlg:)
2 1 . ,
N
N N ENEED SRR
N-1 !
£3 @8- St ).
1 ,

With g sufficiently small, it is clearly possible to
arrange the phases of £, to make p grow, while for
large Bthis is not possible.

IV. NUMERICAL SOLUTIONS OF EQ. (2.4)

Two questions cannot be answered by stability
analysis: (a) how do solutions to (2.4) develop for
B < B*; (b) are there finite amplitude instabilities
for B> pB*. We have examined both questions by
integrating (2.4) numerically with e=1.

It will become evident that the time scale in the
nonlinear problem goes as b" for excitations in-
volving the »nth mode as contrasted with the Kolmo-
gorov scale b27/3.3 In either case, the range of
frequencies in the system increases exponentially
with N, necessitating a rather small time step to
resolve the smallest scales. Fortunately, solu-
tions to our equations tended to what appeared to
be their asymptotic form N-— « after only a few
cascade steps and it was never felt necessary to
integrate more than eight equations at a time.

For the integration we used Fehlberg’s fourth—
fifth-order Runge-Kutta scheme as coded by

Shampine and Watts. This code has automatic step
size adjustment capabilities which proved particu-
larly useful since a small step was only used when
the last few shells were excited. The step size is
adjusted to make an error estimate less than a
given bound. The bound used was a factor of 103
smaller than the value at which any change was
noted in the statistics. Such accuracy is super-
fluous and it will be seen that the nonlinear solu-
tions are generally very stable, and correlation
functions are unaffected by a moderate amount of
noise with one exception. This property is grati-
fying since it suggests some insensitivity to the
many possible couplings that have been dropped
from Eq. (2.4). In particular, spacial diffusion
within a shell might be modeled by an appropriate-
ly chosen noise source. Integration codes based
on Gear’s method were not judged necessary for
N<8. )

A further numerical difficulty occurred when «
was zero in (2.4). If x,_,, x,~0 while x,,,~1 the
integration code would proceed in very small steps
and x, would oscillate about zero. Instead of modi-
fying the step size adjustment routine, we took «
>0 and verified that correlation functions were in-
dependent of « in the range from 107 t00.03. To
calculate the curves in Fig. 3 required about a
second on a C.D.C. 7600 computer once the initial
conditions had washed out.

We also experimented with a number of subgrid
parametrizations. It was found possible to make
the last level scale in accordance with the pattern
established in the earlier levels. The results are
discussed after those for 8>0.

A. Resultsfor=0

Generally speaking, the instability of the Kolmo-
gorov solution gave rise to rather well-defined
pulses that propagated down the cascade out to %
=, The period between pulses was set by the
time needed to accumulate sufficient energy in the
first level. If we had not kept ¢,, (2.5), positive
and omitted the absolute values in (2.3), as oscil-
lations developed from initial conditions with x,
>0, one level would flip sign and remain negative,
causing energy to flow toward large scales and the
cascade to collapse.

Approximately one cycle of the motion for 8=0.0
is shown in Fig. 3. Levels 5-8 are plotted on an
expanded scale and are nearly zero prior to the
arrival of the pulse from above. The solution
rapidly assumes the form of a nearly square pulse
after a few cascade steps. It narrows as it goes
from level to level, but its height is fixed by ener-
gy conservation. “Bursts” of the kind shown, oc-
curred more or less regularly in time. The sys-
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FIG. 3. Approximately one cycle of Eq. (2.4) for o
=0.01, B=0, b=2, and N=8, Shells 1-4 are plotted in (a)
‘and shells 5-8 in (b) on an expanded scale.” The last
four shells are zero until the times shown. The origin
of time has been shifted to zero. There is no longer
any dependence on initial conditions.

tem of equations (2.4) was observed over many
burst cycles to be statistically stationary. Equal
time correlation functions were computed by time
averaging the numerical data. Using just the mid-
dle levels, that seem to scale, one finds

(Ey~b@/30n, £=0.3+0.04
(E€DH~b"", p,=k-1.

Only 2=2,3 were checked in the second equation.
The errors in the relation for u, are small and
reflect the errors inherent in the numerical al-
gorithms employed. Somewhat better scaling data
was obtained with the subgrid models.

Actually (4.1) can be understood analytically by
observing that

x, =Vet,
%,=6,, n*l,m,

x,=0(1),

(4.1)

where 9§, is infinitesimal, is a quasistationary so-
lution of (2.4) for =0. The propagation of the
pulse simply corresponds to transitions between
these solutions.
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To investigate this process in more detail, solve

2=ob™x2, R =bMix K (4.2)
with the initial conditions,
n=(1- 5?:*1)1/2 5 Xpey = Opay (4.2b)

Equation (4.2a) conserves x2+x2,, and applies so
long as x,>0. It is readily seen that after a time
~b™V|1n(36,,,)|, x, has reached zero and x,,,=1.
The average of E, over a cycle of the system is
just proportional to the lifetime of x, or

(E,)~b™|In(35,.,)|. (4.3)

The energy transfer is only nonzero while one
shell is rising and the preceding one falling.
From (4.2)

ey~ ptEm, (4.4)

Equation (4.4) is independent of §,,.
Actually x, does not reach zero when « is posi-
tive. For x,sVa and x,,,~ 1, :

£,==b"y, x,,. Va.

Thus x, decreases exponentially from a value of
order Va for the lifetime of x,,,. The 5, are re-

" lated in a rather complicated way and depend on

end-point effects (i.e., shells 1 and N). The fact
that (4.1) and (4.3) agree, indicates 5, does not
vary greatly with n. It also cannot fall below a
value set by the average truncation error. The
introduction of significant noise whose rms value
varied with » would disrupt the scaling implied by
(4.3), but not affect the energy transfer fluctua-
tions.

B. Results for 3> 0

Any small positive g in (2.4) gives rather differ-
ent results than the g8 =0 case. Again there are a
series of pulses that propagate to k=« with a re-
peat period governed by x,. Figure 4 shows data
for 8=0.05. The pulses were investigated by de-
fining for each x,(¢) a function f£,(b"(t* ~ £)) and at-
tempting to collapse all the data onto a single
curve by varying #*, i.e.,

x,(8)=f(O"(t* - 1)) =f(2) . (4.5)
The pulse shape, f(z), derived from levels 3-6 is

shown in Fig. 5. The remaining levels are in-
fluenced by end-point effects; see Fig. 4. The

" parameter t* is the time the energy reaches in-

finite n or k. It is finite because we are dealing
with a local cascade in which the characteristic
time decreases by a factor larger than 1 at each
step.

It is trivial to demonstrate that any solution to
(2.4) of the form beF(b*"(t* — 1)), with ['7 €, (t)dt
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FIG. 4. Approximately one cycle of Eq. (2.4) for
=0.01, B=0.05, b=2, and N=8. Other conventions are
the same as in Fig. 3.

finite, must have c=0 and d=1. The existence and
stability of such a solution have only been demon-
strated numerically. The equation for f(z) with «
=0 is? '

Yy 12(:0)+ Br()r (b))

Lo (2) (2] R

f(0)=f(+=)=0.

1.5

0.5

T T T T T T T T T T T T

10 20

OC)

z

FIG. 5. Pulse shape defined by (4.5) obtained by
collapsing x5, x4, ¥5, and x; down to a single curve,
The trajectories were obtained by solving (2.4) with
a=107%, B=0.05, b=2, and N=8, °

For any solution f(z) of (4.6), cf(zc) is also a so-
lution for any constant c.

Equation (4.6) possesses at least two distinct
solutions in the neighborhood of infinity. The first
is expressed as a power series in z'1/3 that Bell
has shown does not match onto any solution of
(4.6) for small z.'* The second is of the form

b2 @ Yzt 1o =1 + O(Z""l)
B "z 1) ’
y= an/lﬁb .

flz)=

4.7

Neither higher-order terms nor the convergence
of the series in z have been checked. However,
the exponential factor has been verified numerical-
ly for =2 and 1.6. For small z, there is a solu-
tion to (4.6) that appears to go as

f(2)= bz“le'z'y( Yzt o E(Zyb+117+ O(z""l)) . (4.8)

This form was also checked numérically, but now
a is expected to influence the result since as z—~0
using (4.8), f3(z) < af?(bz). It is uncertain whether
a solution of the form (4.5) to (2.4) exists for a>0.
The difficulties, if any, are confined to small z
when f itself is very small. Equation (4.7) is not
affected by « and numerical data for =10 and
10™ fit (4.5) perfectly.

Provided only that [,"f™(z)dz for m > 2 is finite,
(4.5) implies,

(E)~b", (ER~preD (4.9)

There is no longer any ambiguity about the energy
exponent. '

We believe that a computation with 8 shells gives
a true indication of the asymptotic (N —«) form of ‘
solutions to (2.4). With only four shells, the
pulses are already quite distinct and have the
same form as for N=8, Fig. 6.

A series of numerical runs have been made with
a=0.01, b=2, N=8, and Bvariable to examine

0.5

L B B B s B B S UL S e |

TIME

FIG. 6. Shells 1—-4 from Eq. (2.4) solved with @=0.01,
B=0.05, b=2, and N=4, Note the resemblance to Fig. 4.
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how the nonlinear solutions change near g*
=0.14510, the point of linear stability. For 8
=0.1, the first few levels oscillated about their
Kolmogorov values, but the oscillations increased
with n so that the last few levels are very similar
to the B=0.05 results. A qualitatively similar
picture was found for 8=0.14 except that the os-
cillations were of smaller magnitude and the
pulses required more shells to develop. It is now
less clear that (4.5) represents the limiting solu-
tion as N—e. With 8=0.15 and 0. 3 no finite am-
plitude instabilities of the Kolmogorov solution
were found. For the smaller value of 8, however,
it took some time for the solutions of (2.4) to set-
tle down to (3.1). Pulselike solutions developed
during the relaxation. Small perturbations to
(2.4) which do not admit the scaling solution (3.1)
favor the persistence of the pulses.

C. Subgrid models

The stability properties of the first subgrid pa-
rametrization (2.7a) were discussed in Sec. II.
For a number of values of Band N=8, we at-
tempted to adjust T in (2.7a) to make the last level
fit (4.5). One could equally well have worked with
only six equations and attempted to fit the sixth
level to the N=8 data. The best results for 8
=.05 are shown in Fig. 7. Shells 1-4 were unaf-

" fected by the subgrid model and were not redrawn.
A number of runs were also made in the second
unstable region of Fig. 2 for 7=0.013. Again, only
the last level was affected and although it looks
different than Fig. 7, it is not in better agreement
with (4.5).

The second subgrid model was somewhat more
successful. The lag time T was again varied to
make the last level scale with the preceding ones.

05

LN B S S B B S S s S s s

o
oy

0 0.04 0.08
TIME

FIG. 7. A solution of (2.4a), (2.4b), and (2.7a) for
.@=0.01, B=0,05, b=2, N=8, and 7=0.0031. The lag 7
has been adjusted as best as possible to make the last
shell scale with the preceding ones. The first four
shells are unchanged from Fig. 4(a), and only levels
5—8 are redrawn.
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FIG. 8. Test of the subgrid model, Eq. (2.8), combined

with (2.4a), (2.4b) and (2.4d) for &=0.01, b=2, and N=8.

In (a) =0.05, 7=0.004 and in (b), B=0, 7=0.007. The

lag times have been adjusted to make the last level

scale. Shells 1-4 are unchanged from Figs. 4(a) and

3(a). Only the last four shells are plotted.

The results for 8=0.05 are shown in Fig. 8(a)..
Actually the agreement is-not perfect, since the
last level does not cut off as sharply as it should.
This has a negligible effect on both the average en-.
ergy and €. Figure 8(b) shows the results for g
=0.0 that should be compared with Fig. 3(b).

A stability analysis has not been done with (2.8)
in place of (2.4c), but a number of runs have been
made with increasing B. Again the trend is for the
lagged feedback to favor the Kolmogorov solution.
With B in the range 0.07-0.08, a=0.01, and the
same lag T as was used to generate Fig. 8; the
bursts became irregular in the first few shells but
more pronounced in the latter ones. For 8= 0.09,
the Kolmogorov solution reappeared, but with a
small amount of noise because g*> 8. There is
also the suggestion for 8=0.05, that increasing
7 leads to stability, i.e., no pulses, andthen in-
stability again, Fig. 2. :

V. CONCLUSION

It is commonly thought, though we know of no
definitive models, that the measured intermittency
spectra are due to the convection of coherent struc-
tures variously associated with ribbons, tubes or
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sheets of vorticity.®® Such ideas presumably are
motivated by experience with laminar flows while
our models are statistical from the beginning. Is
there any reconciliation?

We suspect, that to obtain agreement with the
inertial range spectra for the velocity structure
functions® ([v(r) — v(0) ", it is necessary to hy-
pothesize some distribution of thicknesses for the
imbedded structures. It would seem difficult, for
instance, to get the correct scaling behavior of
higher-order correlation functions from a crinkled
sheet of thickness the Kolmogorov microscale. If
some small patch of vorticity of size A in the iner-
tial range had a much greater life time against
stretching or’crinkling than a Kolmogorov esti-
mate based on A would imply by virtue of its in-
corporation in a larger structure, then our model
is incorrect. The model outlined in the introduc-
tion describes correctly vortex stretching at least
locally.? It would correctly predict on average the
crinkling and stretching of some small segment of

a vortex sheet which would appear as the transfer -

of energy into higher bands.

Single point measurements cannot identify struc-
tures and by comparison with these experiments
the model of Ref. 2 does quite well. The only mul-
tipoint experiments we know, that indicate the
presence of small-scale structures in approxi-
mately homogeneous isotropic turbulence, are
those of Kuo and Corrsin.? A certain amount of
modeling, which did not fit experiment for scales
larger than several times the microscale, was re-
quired, however, to interpret the results.

The model outlined in.the introduction and a
model derived for two-dimensional turbulence by
Lorenz both employ a uniform number of modes
per band to simplify the theory.!® A number of
distinctions between the two models should be em-

phasized. Most important is the physical meaning .

of the degrees of freedom; ours are local in both
real space and Fourier space. Lorenz collapsed
the modes in a wave number band down to a dis-
crete subset. The sum of the squared-velocity
magnitudes at these wave vectors should represent
the volume averaged energy in that wave-number
band. For stationary turbulence, this quantity is
independent of time. Similar remarks apply to the
models constructed by Obukhov,'® Bell and Nel-
kin,*17 and Desnyansky and Novikov*® which bear
a superficial resemblance to (2.4). With respect
to a wave packet basis, we are able to say physi-
cally that retaining only a constant number of
modes per band neglects diffusion in real space,
i.e., coupling between different boxes in the same
shell. We know of no physical characterization of

" the effects missed by wave vector sampling meth-
ods.

It is frequently thought necessary that a turbu-
lence model should achieve the same equipartition
solution as do the suitably truncated Navier-
Stokes equations when dissipation is turned off.!®
Our model fails this test for two reasons: (i) The
number of modes does not increase with &; (ii)
Equation (2.4) does not satisfy Liouville’s theo-
rem. The first deficiency is true for any sampling
method applied to the equations of motion and we
regard it as unimportant, The second difficulty is
a consequence of using variables that represent
the mean amplitude of a number of modes and does
not disqualify our model. We suspect a similar
problem would arise in solving the direct interac-
tion approximation numerically in a homogeneous
isotropic system,'® if one first discretized in wave
number and then introduced a sufficient number of
auxiliary variables to make the retarded interac-
tions local in time. A system of the form

: ‘x’,i=fi({xj})

would result which would probably also violate
Liouville’s theorem. .

All previous theoretical work on intermittency
that we are aware of for homogeneous isotropic
turbulence is kinematic in that one exploits sym-
metries and conservation laws or makes physical
assumptions about equal time correlation functions
rather than solving equations in time.'®2 It is in-
teresting to note that the exponents in (4.9) satisfy
a relation first proposed by Mandelbrot and given
a more physical interpretation by subsequent au-
thors. Mandelbrot proposed,

§=§#2, L‘Lk: I-Lz(k"l)" (5-1)
with
p=1

required to satisfy (4.9). This relationship is a
consequence of the simplest possible assumption
for the probability distribution of a local velocity
amplitude or eddy velocity x, in shell » that goes -
beyond a % law,

®(x,)=(1 = b7")6(x,) + b™p(b5"x,) . (5.2)

The first constraint imposed on the three param-
eters e, f, and g is that @ integrate to 1. For the
second constraint, the energy transfer rate be-
tween shells » and »+1 is estimated as b"x3 and
its average in a stationary system assumed inde-
pendent of #n. The three parameters in (5.2). can
now be expressed in terms of the single variable,
Wy, that appears in (5.1),

e=“2: f=é"'%“'27 g=%(1_“2)-

The large number of modes required to span a
reasonable range of wave numbers and the in-
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creasing characteristic frequencies in small
scales combine to effectively prohibit high-Rey-
nolds-number simulations. The former problem
is the principal constraint in three dimensions
and the one wave vector sampling techmques are
designed to overcome.

Experiments have tended to confirm Kolmo-
gorov’s ideas that small scale properties such as
the exponents in (4.9) are independent both of geo-
metry and initial conditions. One is then lead to
ask if an exponentially increasing number of modes
in successive shells are all really needed to calcu-
late such “universal properties,” or whether an
approximation that greatly reduces the number of
degrees of freedom could in principle be exact.
More generally, are there any properties that are
universal, i.e., the same for all equations in a-
given class or perhaps just with respect to some
domain of parameters in a given equation. Even
the weaker form of universality would be of great
assistance since it would mean that the parameters
entering a model such as the one given here do not
have to be calculated from the Navier-Stokes
equations. ’

Equations (2.4) probably possess the weak form
of universality. The physically relevant parame-
ter space of a, B,b can be divided 'into two regions.
In one, the exponents in (5.1) apply while in the
other Kolmogorov’s % law obtains with no fluctua-
tions in the energy transfer. Near the boundary
between the two regions, our numerical calcula-
tions do not preclude other exponents or even the
absence of scaling laws altogether.

To investigate the stronger form of umversahty,

_a number of models with two modes per band but
in other respects similar to (2.4) were integrated.
The second degree of freedom permitted the actual
energy transfer to lag the value given in (2.5). A
preliminary search through the enlarged parame-
ter space has revealed only an intermittent solu-
tion obeying (5.1) and a static Kolmogorov solution.

One should also ask if scaling exponents will
change if intrashell diffusion and coupling between
second-neighbor and more-distant shells are in-
cluded. Will there again exist regions of parame-
ter space where exponents do not vary? These
questions are just beginning to be studied.

The second potential difficulty for numerical
simulations and the limiting factor in wave vector
sampling methods is the increasing characteristic
frequency with N. To solve (2.4) with N=60 and a
constant time step would require about 10*° years
of computation on a C.D.C. 7600 computer. For
this reason we were unable to investigate if solu-
tions to (2.4) scaled near the boundary between the
intermittency region and the 33"- region.

The increasing frequency of small scales is

what generates their statistical independence of
the larger scales. Physically, the obvious method
of solution is to let the system evolve until the
smallest scales have settled down to a stationary
state. They could then in principle be removed and
their effects on larger scales parametrized. The
step size could then be increased and the same
procedure applied to the next group of modes.. The
practical success of such a scheme is favored by
a local cascade and an inertial range with no in-
trinsic length scales. Numerous variants of the
above method are easily constructed, but the phys-
ics is always the same.?* Models such as‘(2.4) in-
corporate a sufficient number of qualitative pro-
perties of the Navier-Stokes equations at high
Reynolds numbers that they may prove a useful
tool in evaluating such computations.
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APPENDIX

A plausible and simple representation of (2.4)
for @ =0 in the limit b~ 1, N -« can be constructed
as follows. Define

y=nlnb
-and

x,(E)=w(y, 1),
and let

B=w=x 1nb—- (A1)

"11

To first order in lnb, (2.4) becomes
dw ow
-53)—=-(1+[3)h1be3’<|w|w+3|w|-5;>. (A2)

In substituting (A1), we have assumed that x, and

%,,, have the same sign. This need not be strictly
true, but (A2) will be shown to have the correct
conservation laws. An equation for the energy,
E(y,t)= %wzy

EE—,—(I+ [3)1nb-—(e”|w|w

implies an energy transfer to highér wave numbers
of

e(y,0)=(1+ P Inbe*|w|w?.
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Thus the continuum limit of (3.1),
w=ce?'3,
satisfies (A2).
Equation (A2) assumes a more familiar form

with the substitutions,

w(y,t)=e3p(z,t), z=e?¥3,
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namely,
v _ v
: -57—2(1+B)1nb[v|§y-. (A3)

To the limited extent we have used (A3) to analyze
solutions of (A2), they do not resemble those found
for (2.4) with b>1. In addition, continuing a model
with only nearest-neighbor interactions to the limit
b—1 is rather unphysical.

IM. Rosenblatt and C. Van Atta, Statistical Models and
Turbulence, (Springer Verlag, New York, 1971),

’E, D. Siggia, Phys. Rev. A’ 15, 1730 (1977).

3L. D. Landau and E. M. Lifshitz, Fluid Dynamics
Addison-Wesley, Reading, Mass., 1959).

‘R. H. Kraichnan, J. Fluid Mech. 62, 305 (1974).

5C. Van Atta and J. Park, in Ref. 1.

SR. H. Kraichnan, J. Atmos. Sci. 33, 1521 (1976),

"Wave packets, without any superimposed Fourier
modes, proved to be a useful device for “thinning”
the degrees of freedom in early renormalization-group
‘calculations. : See K. G. Wilson and J. Kogut, Phys.
Rep. C 12, 77 (1974).

8A. Y.-S. Kuo and S. Corrsin, J. Fluid Mech. 50, 285
(1971). A. Y.-S. Kuo and S. Corrsin, J. Fluid Mech.
56, 447 (1972).

%P. G. Saffman, in Topics in Nonlinear Physics, edited
by N. Zabusky (Springer Verlag, New York, 1968),
p. 485.

1%y, N. Desnyansky and E. A. Novikov, Prikl. Mat, Mekh.

38, 507 (1974); Izv. Adad. Nauk. SSSR, Fiz. Atmos.
Okeana [Atmos. Oceanic Phys. 10, 127 (1974)].

13, W. Deardorff, J. Fluids Eng., 429 (1973).

1ZPath integrals were first used in the context of Brown-
ian motion by N. Wiener; see M. Kac, Bull. Am. Math.
Soc. 72, 52 (1966).

BR, P. Feynman and A. R. Hibbs, Quantum Mechanics
and Path Integrals (McGraw Hill, New York, 1965).

Usimilar equations have been investigated by T. Bell
and M. Nelkin, J. Fluid Mech. (to be published).

5E. N. Lorenz, J. Fluid Mech. 55, 545 (1972).

16A. M. Obukhov, Atmos. Oceanic Phys. 7, 471 (1971).

1'T, Bell and M. Nelkin, Phys. Fluids 20, 345 (1977).

83ee, for instance, the article by J..R. Herring and
R. H. Kraichnan, in Ref. 1.

198, Mandelbrot, in Proceedings Journées Mathématique
suv la Tuvbulence, edited by R. Teman (Springer Ver-
lag, New York, 1976). :

20M. Nelkin, Phys. Rev. A 11, 1737 (1975); U. Frisch,
P. L. Sulem, and M. Nelkin, J. Fluid Mech. (to be
published); M. Nelkin and T. Bell (private communica-
tion).

%Y, Rose, J. Fluid Mech. (to be published).



