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The time-dependent motion of a vortex ring obeying the Hall-Vinen equations 
in a superfluid He counterflow is shown to be locally stable. Both the real and 
imaginary parts of the normal modes of oscillation scale as wave number 
squared. 

1. I N T R O D U C T I O N  

J. J. Thomson 's  calculation of the normal modes of a ring vortex has 
proved of more enduring value than W. Thomson 's  theory of vortex atoms, 
which was its motivation, l ' t  Vortex rings in an ideal fluid are neutrally stable 
and superimposed on their translational motion are a discrete set of 
oscillatory modes with a frequency proportional to m (m 2_ 1)1/2 for integer 
m. The m = 0, 1 modes correspond respectively to a uniform change in 
radius R and a rigid motion of the plane of the loop. Now in a counterflow 
experiment in superfluid 4He as a consequence of the core-normal  fluid 
drag, an isolated ring will retain its shape while its orientation and radius 
vary. 3"4 Its radius can increase no faster than linearly in time. The latter 
motion can be likened to a weak instability of the m = 0 mode and one is lead 
to ask, in view of the close correspondence between vortex motion in an 
ideal fluid and a superfluid at sufficiently low temperatures, whether in a 
counterflow any of the m > 1 modes might also be weakly unstable. We have 
addressed a somewhat more comprehensive problem, namely the stability of 
the t ime-dependent motion of an isolated vortex ring in a counterflow. The 
analysis in particular shows that the coupling between the m = 0, 1 and 
higher modes does not induce any new instabilities. 

*Work supported in part by the National Science Foundation through the Cornell materials 
Science Center, Grant Number DMR-76-81083, MSC Report Number 4027, and by the NSF, 
Grant Number DMR-77-18329. 

tReference 1 was written without the benefit of vector calculus. Reference 2 is more useful. 
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The stability of an evolving ring vortex is not unexpected. A continuum 
analysis of a rectilinear vortex parametrized with a line tension gives a 
damping (and frequency) proportional to the squared wave number. 
Furthermore, experiments on isolated vortices in He II have not suggested 
any new instabilities. 4 

The stability of growing vortex rings is also pertinent to the Iordanski-  
Langer-Fisher theory for the decay of a supercurrent. 5 It demonstrates that 
a ring, once nucleated, will grow until it reaches the walls if interactions with 
other vortices are neglected. If rings were unstable, one could imagine that 
they fragment into subcritical pieces, thereby suppressing nucleation. It is 
interesting to note that under certain conditions growing vapor bubbles are 
not stable, while drops growing in a vapor are. 6 Lastly, in working through 
the stability calculation we were able to clarify what, from our reading of the 
literature, appeared to be several minor ambiguities in the mathematical 
description of a time-evolving vortex. 

2. ANALYSIS  

Points x along the vortex will be labeled by either the arc length s or an 
angle 8 measured from an origin at the ring center. The tangent t, normal n, 
and binormal b = t x n constitute a right-handed orthonormal system of basis 
vectors at each point. The sense of t will coincide with the circulation. By 
definition, d x / d s  = t and d t / d s  = n / R ,  where R is the local radius of 
curvature. For a circle, d n / d s  = - t / R .  

The velocity vL of a point on the vortex is given implicitly by the 
equation 3 

- D t x [ t x ( v L - v ~ ) ] + D ' t x ( v l - v , . ) = p ~ ( h / r n ) t x ( v L - v ~ )  (1) 

where v~ and v~ are the normal and superfluid velocities, p~ is the superfluid 
density, and h / m  is the quantum of circulation. Within the local induction 
approximation and neglecting boundaries, 

vs = v ~ + ( G / R ) b  (2) 

where v ~ is the spatially uniform background superfluid velocity. 4 The time 
dependence of G = l G l = ( h / 2 m ) [ l n ( R / a ) + O ( 1 ) ]  through R will be 
neglected. The core size is a. 

The principal damping term in (1) is the first, which is customarily 
written as D(vt  -v, .) .  It must, however, be perpendicular to t, so a trans- 
verse projection operator was inserted. 7 Our equation for vt_ differs from the 
conventional one only in terms proportional to t. ~'~ Any such term can be 
removed by adjusting the labeling parameter, since motion of a vortex 
filament along itself is redundant. In particular, it does not correspond to any 



Hydrodynamic Stability of an Evolving Vortex Ring 295 

change  in the  m a n y - p a r t i c l e  H e  wave  funct ion .  No te  tha t  (1) l eaves  the  
c o m p o n e n t  of VL pa ra l l e l  to t i nde te rmina te �9  T h e  cons t an t  D '  is too  smal l  to 
m e a s u r e ,  excep t  poss ib ly  nea r  Tx. 8 B o t h  D and  D '  a re  pos i t ive  and  vanish  at 
T = 0 .  

If t e rms  expl ic i t ly  p r o p o r t i o n a l  to t a re  omi t t ed ,  then  

1 [ h ( h _ D , )  h 
VL-V, , -D2+(D,_psh /m)2  p, ps ( v , - v n ) + D p s - - t m  

x (v.-vA] (3) 
and  at  T = 0, vL = vs. W e  hence fo r th  m e a s u r e  all ve loci t ies  re la t ive  to vn.* 
T h e  l ine ve loc i ty  is the  to ta l  t ime  de r iva t ive  of x. F o r  this r ea son  the  arc 
length  is an i nconven i en t  p a r a m e t e r  when  the  r ing cu rva tu re  changes  in 
t ime.  T o  s impl i fy  our  n o t a t i o n  we will r ewr i t e  (3) in t e rms  of two new 
pos i t ive  cons tan t s  E and  F,  the  first of which  is nea r ly  uni ty  b e l o w  1.9K, 8 

=VL = E v s  - F t  x v~ (4) 

A do t  will d e n o t e  a t ime  der iva t ive .  
To  check  tha t  a vo r t ex  r ing  is a so lu t ion  to (4) and  to  d e t e r m i n e  its t ime  

evo lu t ion  we set 

x = x 0 -  R0n (5) 

w h e r e  x0 is the  r ing cen te r ,  Ro  is its u n p e r t u r b e d  rad ius  and  all quan t i t i e s  a re  
func t ions  of time�9 If (5) and  (2) a re  subs t i tu t ed  into (4), on ly  n and  t d e p e n d  
upon  0, and  the i r  in tegra ls  a r o u n d  the  loop  vanish  by  def ini t ion.  T h e r e f o r e ,  
(4) b r e a k s  in to  two equa t ions ,  

�9 0 
Xo = E[v~ + (G/Ro)b] (6) 

and  

/~on + f i r  0 = F ( t  x v ~ - F(G/Ro)n (7) 

T a k i n g  the  do t  p r o d u c t  wi th  n impl ies  (n �9 fi = 0) 

/~o = - F ( v  ~ �9 b + G/Ro) (8) 

which  is jus t  the  w e l l - k n o w n  resul t  tha t  vor t ices  mov ing  u p s t r e a m  with  
Ro > G/]b �9 v ~ I will grow. 3 N o t e  tha t  the  d i ss ipa t ive  coefficients  e n t e r  on ly  
the  t ime  scale.  T h e  c o m p o n e n t s  of (7) n o r m a l  to n y ie ld  

= v s b  (9a)  il (F/Ro)n" o 

*We are assuming vn is spatially uniform and have not explicitly noted that the mean 
phonon-roton velocity near the ring differs from vn at infinity. Reference 7 shows this effect 
does not modify the form of (1) provided R exceeds the viscous penetration depth and the 
mean free path in the normal fluid. 
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If the ring rotates rigidly, (9a) is equivalent to rotation about  an axis parallel 
to v ~ • b through the center of the ring with an angular velocity F ly  ~ • bl/Ro. 
The  axis of rotation, without loss of generality, may be taken perpendicular  
to b. For the vectors t and b one has 

i (F/Ro)t  o = �9 v ,b  (9b) 

= - (F/Ro)(V ~  v~ (9c) 

If q~ is the angle between b and v ~ then, 

(o = (F / R o )v  ~ sin ~0 (10) 

Both q~ = 0 and q~ = ~- are stationary solutions of (10), but only the latter 
is stable. The plane of the ring rotates to make  b antiparallel to v ~ 

To  examine the stability of the solution represented by (8) and (9) to (4), 
we assume 

x = Xo- Ron +ott  +/3n + y b  (11) 

and work to first order  in the small quantities a,/3, and % each assumed of 
order  e and an arbitrary function of t ime and 0. All other  quantities, in 
particular t, n, and b, are given by the unper turbed solution. The length scale 
is set by Ro given in (8). The  term proport ional  to t has been included only in 
order  to check that a does not enter  the equations for/3 and ~. 

To compute  the change of (4) to first order  in e. it is convenient  to 
rewrite (2) in invariant form: 

o G d X  d2x 
v s = v s +  ds Xds---- 2 (12) 

and change the dependent  variable to the angle 0, 

S' = RoW o r ' - / 3  § ~p(e 2 ) (13) 

Derivatives with respect to 0 will be indicated by a prime. Substituting yields 

d x / d s  = t +  (a +/3 ' )n/Ro + y ' b / R o  + r 2) (14) 

and 
o vs = vs + Gb/ Ro - Gy't/ R ~ - Gy"n/R~ + G (/3' +/3)b/R 20 + ~o (e 2) 

(is) 

Substituting (14) and (15) into the right-hand side of (4), (Ii) into the 
left-hand side, and remember ing  to take the t ime derivatives of t, n, and b 
yields for the coefficients of n and b 

R~I3 = - E G y " + F G ( / 3  +/3") + F R o ( y n  �9 v ~ - y ' t .  v ~ (16a) 
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and 

R2y =EG(3+[3")+FGy"+FRo(fl ' t .  v ~ - f i n .  v ~ (16b) 

The  equation for & corresponds to the coefficients of t, which may be 
t ransformed away by adding an 0(e) multiple of (14) to the r ight-hand side 
of (4). Note  that  oL does not appear  in (16). 

For F = 0 and E = 1 (T  = 0), the first term of (16) yields Thomson ' s  
result, 

2 G2m2(m 2 - 1 ) / R  4 (17) 

for integer m. For  F nonzero,  R0 and possibly t and n are t ime dependent .  
Consider first the case b parallel or antiparallel to v ~ which eliminates 

the third term in (16). The  m = 0, or 0- independent ,  mode  may be computed  
directly f rom (6) and (8) by replacing R0 by R 0 - 3  and expanding in B. 
This mode  simply corresponds to a change of Ro. The rn = 1 mode  is no 
longer trivial " o since vs establishes a preferred direction. 

0 To complete  the solution for t .  v ~  = 0 ,  define a new time 
variable ~- as a mono tone  increasing function of the time, 

d': = dt/ R 2 

or,  

r = F__~ in R o •  (18) 

An additive constant has been omit ted in (18). The -4- signs refer  respec- 
tively to b parallel and antiparallel to v ~ and R*=G/Iv~ Assuming 
/3, y ~ e-X~, 

A 1.2 -- FG(m 2-1 /2 )  + i[E2G2m2(m 2-1)  -F2GE(m 2-1/2)2] 1/2 

(19) 

so that Re  h 1,2/FG > 1 for m > 1. Equat ion (19) then implies 

fl, y ~ (Ro/IRo + R*[) A1/2/~ (20) 

When m = 1 one finds 

dy/d~" = - F G y ,  dfl/d-c = EGy  (21) 

The m = I modes  correspond to rigid motions of the ring whose precise form 
is given below. For  v ~ parallel to b[ + in (20)], R0 decreases to zero along with 
the m > 1 components  of 3/Ro and y/Ro, 

With the direction of b reversed [ -  in (20)], Ro increases to infinity if it 
is greater  than R *  initially, and fl/Ro and y/Ro then decrease to zero. When 
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Ro < R *  initially, it decreases  to zero along with/3 and 3'. If R0 = R*,  then Ro 
remains time independent  and/3,  3" - exp( -A 1.2t). 

For  the general  case of b �9 v ~ arbitrary,  it is convenient  to chose 0 such 
that  t(0) o �9 v~ = 0 and define 

t(O) = cos 0 t(O)+ sin 0 n(O) 

n(O) = - s i n  0 t (O)+cos  0 n(O) 
(22) 

r o 
Only  n(0) is time dependen t  tv~ �9 n(0) = Iv ~ ] sin ~o using (10)], since t(0) is 
the axis about  which the loop rotates.  Rewri t ing (16) 

R~I3 = -EG3""+FG( f l  + /3" )+FG(Ro /R*)  sin ~0 (3' cos 0 - 3 "  sin 0) 
(23a) 

R2"V = EG(/3 +/3") + EG3"" + FG (Ro/R*)  sin ~0 (/3' sin 0 - / 3  cos 19) 
(23b) 

The  physically relevant piece of the R o - ~  plane, 0-< ~o -< zr, Ro-> 0, is 
divided into two regions according to whe ther  l i m , . ~  Ro = 0 or  oo. In the 
latter case ~o approaches  ~r and (10) can be linearized about  this point.  
Setting ~ = ~r in (8) permits  an explicit solution for  ~0 as a funct ion of  Ro, 

= "rr - c / I R o - R * I  

where  c is a positive constant .  As  Ro-~ co, the factor  Ro sin ~0 in (23a) and 
(23b) approaches  a constant .  The  time variable can again be el iminated in 
favor  of z defined in (18). Now an infinite range of R0 maps  out  a finite range 
of r, and irrespective of the eigenvalues of (23),/3 and V will remain  finite as 
g o ~  co. 

For  the collapsing ring, ~0 may not reach 7r by the time Ro = 0. Changing  
f rom time to r, Ro - e -"  and r runs to infinity as Ro decreases  to zero.  W h e n  
Ro/R*<< 1, the last terms in (23a) and (23b) lead to a nar row band  of 
eigenstates centered  about  each of the discrete e igenmodes  (19). The  modes  
that  cor respond  to m > 1 are all stable since Re(h 1.2)/FG > 1. The  m = 0, 1 
modes  decouple  f rom the rest and cor respond  to various rigid mot ions  of the 
vortex ring wi thout  change  of shape. The  two modes  with /3, 3 ' - s i n  0 
decouple  fur ther  and satisfy (21). They  cor respond  respectively to a rigid 
t ranslat ion along n(0) ( f requency zero) and a rota t ion about  an axis parallel 
to n (0) th rough  the center  of  the ring [see (22)]. The  remaining four  modes  
with/3, 3' ei ther  constant  or  propor t iona l  to cos O cor respond  respectively to 
a charge in radius, a translation parallel to b, a translation along t(0), and a 
rotat ion about  t(0) [i.e., t (0 )x  n(0) = (cos 0)b]. 
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Finally, if the initial values of R0 and ~ are such as to make  R0 ~ R *  as 
t ~ ~ ,  then r approaches  7r and linearizing (10) yields 

= 7 r - c  exp (-Fv~ *) 

Thus the last terms in (23a) and (23b) again tend to zero, and the above 
analysis with ~- replaced by t may be repeated.  

3. C O N C L U S I O N  

We have demonst ra ted  the linear stability of a vortex ring evolving in a 
superfluid counterflow within t he  local induction approximation.  Cor- 
rections to the local induction approximation are a factor of In (Ro/a) 
smaller than the last term in (2), and for Ro/a sufficiently large cannot 
reverse the sign of the damping of the m > 1 modes, in this context the work 
of Grant  should be cited; he calculated the excitation spectrum of a vortex 
ring at zero t empera ture  f rom the Gross-Pi taevski i  equation. 9 He  did not 
consider the hydr0dynamical  problem. 

Recent  work in an ideal fluid by Widnall and others has revealed a 
number  of instabilities of finite core vortices. ~0 We believe that the unstable 
modes are confined to large wave numbers,  k a -  1, where in the helium 
problem quantum mechanical  effects would be important.  We are not aware 
of any deficiencies in the vortex filament idealization when applied to 
long-wavelength modes.  

Hydrodynamic  damping, as we have seen, tends to suppress high wave 
numbers.  Numerical  simulations of a vortex tangle in helium for T > 0 with a 
Biot-Savart  code would be bet ter  controlled than in an ideal fluid where 
h igh-wavenumber  noise can contaminate  the larger scales. 11 Note  should 
also be taken in the helium literature of the smoke ring experiments  of 
K a m b e  and Takao,  who observed a ring coll ision) Somewhat  surprisingly, 
the two rings combined and separated each more  or less intact. The  behavior  
of finite-amplitude per turbat ions to a vortex ring in helium remains an open 
question. Numerical  experiments  in an ideal fluid have shown how per tur-  
bations on a smooth section of line rapidly grow, twist up, and possibly, in a 
real fluid, pinch off, shortening the line. 1~ The  numerical codes go beyond 
the local induction approximation within which, as Has imoto  has shown, the 
evolution of a vortex line is isomorphic to the nonlinear Schr6dinger 
equation. 12 

A C K N O W L E D G M E N T  

The author has profited f rom discussions with J. S. Langer  on the 
importance of hydrodynamic stability theory to nucleation problems. 
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