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The density-correlation function S(k,w) for liquid helium near T is calculated in the symmetric planar-spin
model in three dimensions, both above and below the transition. The approximation used is a self-consistent
generalization of the lowest-order € expansion, which resembles the mode-coupling expressions of Kawasaki
and others. The spectrum is evaluated numerically for different values of k&, and predictions are made for the
exponents and amplitudes of various singular dynamic quantities. The results are consistent with earlier ones
based on an extrapolation of the second-order € expansion. Comparison with experiment is possible without
any adjustable parameters, and it is found that the results are consistent with existing measurements of the
thermal conductivity, but inconsistent with the observed amplitude of second-sound damping. The results also
disagree with light-scattering experiments at and below T,. These disagreements are at present unexplained.

I. INTRODUCTION

The critical dynamics of liquid helium near the
superfluid transition may be investigated experi-
mentally by macroscopic measurements of the
thermal conductivity above T,,' and the damping of
second sound below T,,% and by light-scattering ex-
periments®* at finite wave vector both above and
below the transition. The phenomenological theory
of dynamic scaling®® has been quite successful in
explaining the temperature dependence of the ma-
croscopic quantities, but seems to disagree with
the scattering experiments. Specifically, although
the second-sound damping coefficient measured
macroscopically increases as T - T, in accord with
scaling predictions, no such variation was found in
the light-scattering data.®** An expected variation
in the thermal-diffusion width above T, is also
absent from the light-scattering results.*” The
renormalization-group® approach to critical dy-
namics gives a microscopic justification for dy-
namic scaling, and in addition allows one to calcu-
late, at least approximately, scaling functions and
universal amplitude ratios® (Ref. 9, hereafter re-
ferred to as I). These determine the magnitude of
the critically varying quantities and are clearly an
important part of the comparison between experi-
ment and theory. Estimates obtained in I from ex-
trapolations of the € expansion were in rough
agreement with thermal-conductivity measurements
above T,. A similar estimate'® (Ref. 10, hereafter
referred to as II) of the second-sound damping in
the hydrodynamic region below T,, given in II, was
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found to be smaller than the experimental values
by a factor!!=5.

The present paper applies the renormalization-
group method in three dimensions to an approxi-
mate calculation of the density-correlation function
S(k, w) near the transition, based on the symmetric
planar model (E) introduced in I. Calculations are
performed both above and below T,, for various
values of k£, in order to permit comparison with
the light-scattering measurements. The approxi-
mation used is a self-consistent generalization to
three dimensions of the first-order ¢ expansion
valid near four dimensions.*!® The resulting ex-
pressions are analogous to those of the mode-cou-
ping theory,*"** which had been solved earlier at
T, by Wegner*® and Joukoff,' for the case of an
isotropic antiferromagnet. Below T, we have in-
cluded dissipative coupling® between modes, in
addition to the nondissipative mode-coupling terms
usually considered.'*!® In principle, such dissipa-
tive terms appear also at and above T, but not in
first order, so that our approximation corresponds
precisely to the mode-coupling equations in that
case. The generalization to temperatures below
T, involves considerably more complicated expres-
sions than at and above T, and we have made
further simplifications in obtaining numerical solu-
tions. We estimate the final accuracy of our model
calculations to be of the order of a factor of 2 or
better in the dimensionless ratios and scaling func-
tions.

The results are consistent with those obtained
earlier®!° on the basis of the ¢ expansion, and
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therefore only agree with experiment above 7', and
at long wavelengths. In the hydrodynamic region
below T, we again underestimate the damping of
second sound by a factor of 5.!' In the light-scat-
tering regime, our theory would predict measure-
able temperature dependence in the width of the
second-sound and thermal-diffusion peaks, and no
such variation has been observed. Although a de-
tailed comparison between experiment and theory
remains to be carried out, it seems unlikely to

us that the symmetric planar-spin model will ex-
plain the light-scattering data, even qualitatively.
A possible explanation of the discrepancy below T,
is the existence of slow relaxation processes as-
sociated with the temperature dependence of the
specific heat. Although these terms are absent in
the symmetric model, they appear as slow “tran-
sients” in the more realistic asymmetric planar-
spin system (model F of I), and may well have to
be considered. It is unlikely, however, that these
terms could explain the apparent discrepancy at
and above T,.

Section II contains a description of the self-con-
sistent equations and the resulting frequency spec-
trum for arbitrary values of # and £. The full
correlation function is calculated in the symmetric
planar-spin model, with no adjustable parameters.
In Sec. III the results are applied to superfluid
helium. The nonuniversal frequency scale is de-
termined at each pressure by fitting to the mea-
sured second-sound velocity below T,, and the
scale of lengths is obtained from other measure-
ments, as discussed previously.!” The effects of
departures from the symmetric model are dis-
cussed briefly, but no calculations are carried out
in the asymmetric model.

Il. DERIVATION OF THE SELF-CONSISTENT EQUATIONS

We start from the equations of motion for the
symmetric model (E) of I, for T=T,

om . _,0F, OF,
Y o 8oy,

5F, oF,

SF, , OF, 2.1

oo (0 g -0 3 )+ @0

6 oF oF,
_gfhro&ﬁ ~&obr 5,2+ 6., (2.2)
59y oF, oF, 5F,
N7 T, O +&o¥o 5,0 +80¥z Bt 0r. (2.3)

We have rewritten the complex field y of I in terms
of the average order parameter

Y=, (2.4)
and the real fields ¥, and ¢, as

V=Y +dp - idyp. (2.5)

The free energy F, is

Fo= [ at{ir,+ 4o,
+3 [(rg+ 12002) 0% + (Vi )?]
+3 [(ro+ 4u )V + (V9 ,)°]
+ 9 ($ + V) dugdy + (W + U7 uo+ 2x5'm*,
(2.6)
and the noise sources obey the equations
(6,(x, )0 (x", ')y =2T,8(x — x")8(t - '), (2.7)
(O p(xy )0 (", ')y =2T16(x = x")0(¢ - '), (2.8)
(€lx, e, 1)) = = 23 V20(x = 2)8( - '), (2.9)
(0,07)=(0,8)=(6,)=0. (2.10)

We wish to calculate the dynamic correlation
functions for the fields m, ¥, and ¢, self-consis-
tently to the lowest nontrivial order in the vertices
Sos Uy, and uyd,. This means that we expand the
equations of motion up to order g2, u,, (uy¥,)°, and
(go#o¥,). Invoking (2.4), we write the free energy
to the necessary order as

Fo= [P+ (4,7]+ 5V

+%X51m2+4uo¢o¢z,(¢2f,+ Z/’%‘)}; (2.11)

where

K2 =7+ 12uy8 = Buy Yt . (2.12a)

We shall eventually replace x, and «, by renor-
malized quantities Ko (T, - 7T)” and u <k *"?, such
that

K2 =8uyt, (2.12p)
and Y <%%?, The dynamic correlation functions
may now be obtained by a perturbation expansion
of the equations of motion. We have used the
formalism described in I, which necessitates the
introduction of auxiliary fields ¢, J,, and /, and
a large number of self-energies, coupled together
by matrix equations. The general structure of the
self-energy diagrams is as shown in Fig. 1, where
the vertices are g, or u,y,, and the propagators in-
volve the coupled fields ¥, and m, and their ad-
joints, or i, and its adjoint.® The fully self-con-
sistent equations are therefore coupled nonlinear
integral equations involving a large number of
such correlation and response functions. In order
to obtain a manageable theory we have made a
number of approximations to these integral equa-
tions by choosing simple forms with free parame-
ters for the intermediate propagators. The pa-
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FIG. 1. Self-energy diagram contributing to the lowest-
order self-consistent approximation. At and above T,
the vertex is gy, and the solid lines represent matrix
propagators involving the fields ¥ and m and their “ad-
joints” d), . Below T, there is an additional vertex
uowo, and the propagators involve the fields ¥, ¥7, zLL,
and sz, as well as m and .

rameters were then fixed by various self-consis-
tency conditions.

A CaseT=T,

Let us illustrate our general procedure by spe-
cializing to the case T=T_, (k=0), where the equa-
tions simplify considerably. We begin by consider-
ing the more general case T=T, where we need
only retain the vertex g,, since #,=0, and u, does
not enter the dynamics in linear order. The self-
consistent equations for the correlation functions
for T=T, are [see Egs. (B4), (BT), and (B15) of I]

C,(k,w)=C,, =D, =2, ReD(k, w), (2.13a)
3C xR, w)=3G,, = 2xy(k) ReG,,(k, w), (2.13b)

D,,(k,y w) =[—iw+ A EPXE = T, (R, W)™, (2.14a)
G,(k, w)=[-iw+T X3! (k) - Z,,(k, w)] ™, (2.14b)

Lo [di 4
Malls 9= X165 [ G g7 D) = 3+ P
XX b+ )Xl P)
X [Glz(p+ k’ W - w,)Glz(p’ w,)] b

(2.15a)

21(k w)~—xll(k)x ng(gj;d dzw Xw(p)

XD,,(k+p,w - 0 )G,(p, w').

(2.15b)

We now make the Ornstein-Zernike approximation
xg(R) = (k3 + R7)H, (2.16a)
Xm(R)=Xo 5 (2.16b)

where «, = £;! is the inverse correlation length

above T,. The above equations correspond precise-
1y to the ones written down by Kawasaki'? for the
case of model G (the isotropic antiferromagnet),
and they have been solved numerically in that case
by Wegner!® and Joukoff'® as function of k and «,
for T=T,. [For the antiferromagnet the right-hand
side of (2.15b) is multiplied by 2.]

Instead of repeating this calculation we have made
approximations to the functions appearing in the
integrals (2.15), since similar approximations are
necessary below T,. Let us note that for T=T(«,
=0), Egs. (2.14)-(2.15) possess a self-consistent
solution with the scaling form

I, (k, w)=A k%0 (w/A.g%'?), (2.17a)

Z,1(k, w) =Bk 20 (w/Bq*?), (2.17b)

if we neglect the terms in ), and I, in Eqgs. (2.14)
[these terms are small (of order k*) compared to
the terms in T and I, which are of order %£*/2].
The approximation we shall make for the interme-
diate propagators is to neglect the frequency de-
pendence in (2.17), i.e., we assume a Lorentzian
spectrum with

M,,(k, w)=AR/?, (2.18a)

D1k, w)=BE*2, (2.18b)
and determine the parameters A, and B, by a
self-consistency requirement. Specifically, we
calculate the “median frequencies”® of C,,, and
C,,x using (2.18) in (2.14) and (2.15), for given
values of A, and B,, and require that these me-
dians be equal to (2.18a) and (2.18b), respectively.
The ensuing values of A, and B, are expressible
in terms of the dimensionless ratios

RY=xy/?A./g0, (2.19)

R;’Exé/sz/gO, (2.20)
which take on the self-consistent values

Ry=0.34, Rp-=0.25. (2.21)

In order to obtain manageable equations in the
calculation below T,, it was necessary to make the
additional approximation

A,=B,, (2.22)

sowe have also solved (2.13)—-(2.18) with this restric-
tion, by requiring thatthe geometric mean of the
median frequencies of C,, and C,« be given self-

consistently. The value obtained is
=R;r=0.28, (2.23)

which is rather close to the geometric mean of the
numbers in (2.21).



2868

B. Case T<T,

As explained above, in the ordered phase there
are two additional vertices, u,y, and u,, and many
additional correlation and response functions. We
have made the Lorentzian approximation in the
intermediate propagators by choosing the correla-
tion functions of the form

2T
CL((I, w) =<¢L¢L>(fla w) =E—F2_(—m s (2.24)
Cm(q’ w)=<m7n>(q, w)
_ 2% —iw+ Tq21|:+ 2T %X 12q? . (2.25)
CT(‘I; w)= <wT¢T>(q, w)
_ 2T -iw+Tq?*+2Tuiq” (2.26)

A ’

J
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40T 2
Wrm)q, 0) =B (2.27)
A= |(~iw+ X3 (—iw+ Tg?) +uiq?|?, (2.28)

with corresponding formulas for the other response
functions which arise in our formalism. The quan-
tities T and X are for the moment arbitrary func-
tions of £ and k, but are independent of w. We
shall, however, impose the additional approxima-
tion

x=T. (2.29)
Similarly, in Egs. (2.24)-(2.25), the approxima-
tion was made that the same T occurs in the longi-
tudinal and transverse functions.

With the above ansatz for the intermediate propa-
gators, a long but straightforward expansion of the
equations of motion up to order g2, ui,g, and u
yields the expressions

X C ke, w)=

d'q (¢ -4 <—z‘w+ L>
)

- -1
Zalk, =805 | (i e\ D

—iw+ L

[(—iw+ XX B2+ 2 )(—iw+ T X7 + o) + goxg vixg |2 ’

_ -1 ddq = 5
Zz(k, w) ——ggxo W (m> - BuT(k)/e

— 16u[—iw+ T (R)R?] L
d%q

1 1
-1_ 3,2 =2 _
X7 =K+ Buk (2ﬂ)“<q?(7<2+qf) qz(;z+qz)> ’

4,=q+3k, (2.34)

L=T(q.)¢°+T(q,)(®+q?), (2.35)

D=(-iw+ L) +u3q?, (2.36)
with

U3 = goXs KT = goXs E7 = goxg UG - (2.37)

(Note that k,=£7 was denoted «_ in I.) In obtaining
Egs. (2.30)-(2.37) we have freely used Egs. (2.12b)
and (2.29). Near four dimensions Eq. (2.30) re-
duces to Eq. (1) of II, with T independent of » and
k. In three dimensions we shall make the scaling

ansatz
x;‘X=f(q,Tc)=A_(?2+ acg®) 4, (2.38)

which involves one additional parameter, since a.
and A_ are related to the T, value A, of (2.18a) by

A =Aa?/?. (2.39)

When Eq. (2.38) is used for T, it may be verified
once again that the self-energies Z, and Z, scale

(2.30)
(2.31)
d’q (23q°+ T (q )R (—iw+ L)>
@m2\ & +q°)D
d’q (g2 - q)uiq®+ T (g )k*(—iw+L)]
( ©q (R +q5)D ) ’ (2.32)
(2.33)

r

as k%/2, so for small & or ¥ we may neglect the
terms in I'j and A, in Eq. (2.30) for C,(k, w). We
shall therefore set

Ty=2,=0,
in calculating the asymptotic expression for the

correlation function. Let us set the frequency
scale in (2.30) by

Q.=A k2,

(2.40)

(2.41)

and the length scale by £,. Then it may be seen

that C,(k, w) is entirely determined as a function
of the reduced variables w/Q, and k£, by the pa-
rameters X{,,a. [Eq. (2.38)], and the dimension-
less vertex

Z2=g2/2mx A= g2/2 "X, A2a.
=1/27%(Ry)Va. =2k, /20°A% .

The parameter Ry was already determined at T,
[Eq. (2.21)], so there are only two further parme-
ters. The first of these, k&,, is a purely static

(2.42)
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parameter, since from Eq. (2.24) we see that in
the present approximation the static longitudinal
correlation function is given by

C@)=(g*+%)™.
It is known'® that this approximation is not accurate
as ¢ —~0, but we are interested in C,(g) for finite
q, of order £7}, and Eq. (2.43) is to be considered
a simple parametrization of this function. Given
an expression for C,(g) we could fit it to (2.43) and
thus determine ¥. In the limit d -4 Eq. (2.43) be-
comes correct and we find

(EgT)d-.‘; = (5K4/€)1/(E-2) X

Since we do not at present have a reliable expres-
sion for C,(¢g) in three dimensions, we shall ex-
tract ¥ from experiments. Specifically, we shall
assume that k™! is the healing length £,, which de-
termines the depression of T, in finite geome-
tries.?° This length has been measured in helium,
and is equal to?°

(2.43)

(2.44)

o

£, =1.2{[T\(P) - T)/T,(P)} %" A (2.45a)

at all pressures. The transverse correlation
length &, has also been measured,'’

£,=3.5T{[T\(P) - T)/T,(P)}**" A, (2.45Db)
so the ratio is
REp=Ep/E,=3.0. (2.46)

The only remaining parameter is a_, which we
determine by requiring approximate self-consis-
tency of C,(k, w) below T,. We have evaluated Eq.
(2.30) numerically for k£,=1.5 as a function of
w/Q,, for different values of a_ in Eq. (2.38), with
the other parameters fixed by Egs. (2.23), (2.46), and
(2.42). The resultant value of T was found by
setting the full-width at half-maximum of the
second-sound peak equal to 2T%? [see (2.24) and
(2.29)]. For self-consistency this value of T was
required to agree with Eq. (2.38), with the same
value of a.. The result is

a.=0.32. (2.47)

In this way the correlation function x;'C,(k, w)
is completely determined as a function of #£, and
w/Q.,. The correlation length £, is known from
measurements of p,,'” and the nonuniversal fre-
quency scale ©_ is fixed by fitting to the measured
second-sound velocity for k&, —~0 [cf. Eq. (2.42)],

Am :R;uz ELT/Z . (2.48)
C. CaseT>T,

For T>T, the starting equations are (2.13)—
(2.16), and the approximate II,, is given by

- ddq q2 - q2
In,,(k, w)= 1 + -
alls 280" | o Er )

X [—iw+T(q,) (k2 +q2)

+T(g )2+ qD], (2.49)
with §,=d+k/2. We now make the ansatz
T(q)=A,(K5+alg?) ™V, (2.50)
with -
A =Aat'?. (2.51)

The new parameters are thus £, and a,. The
former was discussed in Ref. 17 where it was de-
termined, from specific-heat measurements in

helium and series expansions, to be equal to
L=k =1.41{[T - T,(P)]/T\(P)}>¢" A. (2.52)

The parameter a, is determined by self-consisten-
cy on the half-width at half-maximum of (2.14b),
and the value obtained is

a,=0.417,
when A, is given by (2.19) and (2.23).

(2.53)

III. RESULTS AND DISCUSSION

A. Results for the symmetric model

Numerical results for x;'C,(k, w) as a function
of w/Q, are shown in Fig. 2, for representative
values of k&y (T<T,) and k&, (T>T,). The quali-
tative behavior is as expected from dynamic scal-
ing,>® with second sound gradually broadening and
merging into a single peak at and above T, The
most interesting quantitative features are that sec-
ond sound retains its “propagating” character up
to k£;= 10, and that the spectrum at T, has signifi-
cant departures from a Lorentzian shape. The
fact that the latter spectrum has its maximum at
w# 0 may be an artifact of our approximation,
however. Similar features were found in earlier
studies of the antiferromagnet at T ..'*'%2' The
results may be summarized by evaluating a num-
ber of the dimensionless ratios defined in I and II.
The parameter R, of I is equal to

Ry= lim (R&*/g /%) =Rial?=019,  (3.1)
[

whereas the corresponding values at T, are given
by

R:=0.28, (3.2)

RZ=0.28, (3.3)
with the constraint (2.22), and

R7=0.34, (3.22)

RZ=0.25, (3.3a)
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(a)
T<T,.
k& =05

. 32
W/Ag k

10 20 30 40 o} 1o
w/Awkslz

WAk 3?2

° 1 — .
10 20 30

o
o
IN
o

o

W/Ag k32

FIG. 2. The correlation function xg 1Cm(k, w) which is proportional to S, w), plotted as a function of the reduced fre-
quency w/A k%2, for fixed values of k&. The function is only shown for positive w, and it has been normalized so that
its integral from 0 towis m. For T >T, the correlation length is £,, given in Eq. (2.52), and for T <T,, the correlation
length is &7, Eq. (2.45b). The numerical value of A, is discussed in Sec. III.

without the constraint. Since the computed spectra
at T, are non-Lorentzian one may define their
characteristic frequencies in a number of different
ways. The definition leading to (3.2), (3.3), (3.2a),
and (3.3a) was in terms of the median frequency,’®
but one can also use the values C,(k, w= 0) and
C,(k, w=0)."1° We shall denote the corresponding
ratios obtained using the latter definition by RSt
and R{™*. The numerical values obtained for these
are

ReMt=0.31, (3.2b)
RSt=0.31, (3.3b)
with the constraint (2.22), and

RFt=0.42 (3.2¢)
RSTt=0.217, (3.3¢)

without the constraint.

The parameter R, of II, which is the ratio of the
half-width'! of second sound at 2= &3 to its fre-
quency, is
D,y

2u,

1}

R, = Rpa/*(k£,)/2=0.09. (3.4)

The above values of the amplitude ratios may be
compared with the e-expansion estimates obtained
in I and II,

R,=(K,/€)/?(1+0.6€)=0.36, (3.5)
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RSTit= (K ,/€)'/%(1 - 0.3¢)~ 0.16, (3.6)
ReMt= (K, /) ?%(1+1.4€)~ 0.54, (3.7)
R,=(5)""/%(1+0.028¢)(1/£ %) ~0.15. (3.8)

In view of the erratic nature of the € expansion,
and of the variations introduced by the constraint
(2.22), the order of magnitude agreement between
(3.5)-(3.8) and the self-consistent values obtained
in (3.1)~(3.4) must be considered satisfactory.

An alternative presentation of our results is in
terms of the effective damping constant of second
sound D$k? for T <T,, obtained from the full-
width at half-maximum of the calculated peaks.

In Fig. 3 we plot this width in units of ©, as a
function of k£;, up to the value k£,= 6, beyond
which the second-sound width is difficult to define.
Similarly, for T= T, and T>T_ we can obtain an
effective thermal diffusivity D& from the half-
width at half-maximum of the correlation function.
This half-width is also plotted in Fig. 3 in units of
Q,, as a function of £, above T, and for 10<k&,
< 10% below T,. Of course these various parame-
trizations are only strictly valid in the limits 2§,
<«<1or k& <1, but they give a rough idea of the
behavior for all . The second-sound frequency
obtained from the Brillouin peak is also shown be-
low T,. A more complete representation of the
data could be obtained by fitting the calculated cor-
relation function to Eq. (2.25) at each value of k¢
and plotting the functions X(%, &), T(k, &), and u,(k, &)
thus obtained.

B. Application to liquid helium

As explained in I, the variable m is the linear
combination of entropy and mass density that enters

L T<T ! TS,
30 l
uz k
251 ’
o |
eff, 2
mx 20 \, DT k
< 15 |
< 15k
3 |
10+ I
it 2 |
0.5+ D7 K |
o __1_4441._1_L_uj_|_|_u_l_llelu4‘J_J‘Lu~‘L_lu_L_L_L__
ol ) o 10%10° 0 I 0.
ka N€+-

FIG. 3. Characteristic frequencies in the spectrum of
Cq(k,w), plotted as a function of kfp (T'<T() and k&,
(T >T,;). Below T, the second-sound frequency Uk and
damping D§k? (full-width at half-maximum) are shown.
Near and above T, the effective thermal-diffusion fre-

quency D$'%? (half-width at half-maximum) is plotted.

second sound and thermal diffusion near T,

and it is “orthogonal” to the pressure fluctuations
which enter first sound. The function C, (%, w)

is therefore proportional to the second-sound or
thermal-diffusion contribution to the density corre-
lation function S(k, w).

In order to compare our calculation to experi-
ment we must fix the nonuniversal frequency scale
Q.. As discussed in I, the principal difficulty one
encounters in making such a determination is that
the symmetric model we are using to describe
helium can only be correct in an asymptotic limit
where all transients have reached their critical
value. A particularly slow transient is the speci-
fic heat x,=C,, which reaches a constant at T, for
a <0, but is temperature dependent in the experi-
mental range. Thus, strictly speaking, our calcu-
lations are only applicable for temperatures at
which the measured values of u,£}/? and A£;*/2 no
longer vary. Since this range is never attained in
practice, we must correct for the variation of the
specific heat, at least approximately.

As was discussed earlier,>®° the most impor-
tant effects of the slow transient may be taken
into account at long wavelengths below 7, by using
the measured®? second-sound velocity in Eq. (2.48),
to define a temperature-dependent quantity

A(T)=Rau,(T)EY 2. (3.9)

Similarly, we can define a corresponding quantity
above T, in terms of the measured' thermal con-
ductivity and specific heat

AT =[NT)/CAD)EF a2

In order to generalize the above euqations to finite
k£ we must be able to take into account the tran-
sients present at finite # and T=T,. To accomplish
this we propose the following approximate scheme,
which has the advantage that it is simple to carry
out in practice. Near T,, the second-sound veloci-
ty may be written in the form [see Eq. (4.5) of 1],

u(8) = ud(t)(-1)"2, (3.11)

where v is the correlation exponent. In (3.11) we
have used the slowly varying amplitude

us(t) =g,/ £2C, (), (3.12)
and the reduced temperature at the given pressure

t=[T = T\(P)J/T\(P). (3.13)

(3.10)

The vertex g, is proportional to the entropy per
particle 0=S/R (g,=kyT,0/f), and &, =£%(-£)" is
obtained from the superfluid density by Eq. (4.4)
of I (£, was denoted k=' in I). Let us introduce a
k-dependent effective temperature

t2=t[1+ (/KPP = f1+0.11(REVP/*.  (3.14)
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For k£, <<1, #* is proportional to £7%/2, and for
kEp> 1, it goes as /2. We define the effective
second-sound velocity

u(k, 1) =ud(tH(-1)"'2,

by using #* in place of ¢ in (3.12b), and employ this
in Eq. (3.9), so that we obtain an effective value
of A,

A_(k, 1) =Ry EY 2u¥ .

The use of this expression for the frequency scale
Q.=A_kF'? below T, should yield a first approxi-
mation to the effects of the slow transients on the
spectrum, for arbitrary values of k&,.

Similarly, above T,, we may represent the mea-
sured thermal diffusivity as [see Eq. (4.21) of I],

(3.15)

(3.16)

Do(t)=Mt)/C (t) =R, g [£/C)]*/2¢/2, (3.17)
and define

tx=¢[ 1+ (kE )1, (3.18)
and

D (t¥)=R, g [ £2/C (t¥) ]/ 272 (3.19)

We then insert this expression into Eq. (3.10) and
use

A (ky ) =Dy (t¥) £ 2a7t?, (3.20)

in Q,=A4_k%/? for finite k above T,.

The above scheme is of course only consistent to
the extent that the R, extracted from experiment
in (3.17) agrees with our value (3.1). More im-
portantly, this scheme does not take into account
various higher-order effects of the slow transients,
which were discussed in Sec. IVB3 of I. These
lead, in particular, to a departure of the ratio
C,,(t)/ C,(~?) from its asymptotic value of unity, and
to effects represented by the function ¢(a,) in Eq.
(4.21) of I. We estimate these effects to introduce
corrections of order 30%, which are within the ac-
curacy of our calculations.

Let us note that the correlation function calculated
in Fig. 2 is

C ool 2)= X5 C o, w) (3.21)
and is normalized by the condition
f ém(k,z)dz=1r. (3.22)

(o]

We thus obtain the physical correlation function
X;'C,(k, w), by changing the frequency scale from

z to
w=zA_k/?, (3.23)

using Eqgs. (3.16) and (3.20) for A, at the appropri-
ate values of £ and T'.

C. Comparison with experiment

The dimensionless ratios describing the hydro-
dynamic regime are R, and R,, and these may be
compared to macroscopic experiments. As men-
tioned earlier, the value R,=0.09 given in (3.4) is
roughly a factor'* of 5 smaller than the experimen-
tal value R$*=0.5, obtained from the second-sound
damping.? The relevant ratio above T, is R, whose
calculated value R, ~0.19 is somewhat smaller
than the experimental value' R{**~ 0.3 quoted in I.
The discrepancy is in part due to the approxima-
tion (2.29) which replaces R, by the geometric
mean of R, and R, and probably reduces R,, as is
the case at T, [compare Egs. (2.21) and (2.23)]. A
similar effect would not seem to occur for R,,
since the damping of second sound arises from
both T and X below T, [see Eq. (2.28)], and the
approximation (2.29) should not have as large an
effect. Thus our calculations can be considered
to agree with the long-wavelength experimental
numbers above T,, but to disagree below T,. Sim-
ilar results were found in the € expansion.®'°

Turning to the light-scattering measurements,*
we first obtain the frequency scale by noting that
at P=23 atm the second-sound velocity is given
by22

4, =1340(=£)*/3[1+2.12(-#)"/°%] cm/sec. (3.24)

Although we have not analyzed (3.24) in terms of
the measured C,, we may use a procedure analo-
gous to the one leading to (3.16) to find

Q,=T.1X10%[1+2.12(-t)"/°)k*/? sec™ ,
(3.25)
with %2 in em™. This leads to the values
Q,=8.6x10°% sec™ for T=T,,
£=1.9%X10° cm™,
and
Q,=9.45%X10° sec? for T=T7,-1 mK,
£=1.9x10°% cm™.

From Fig. 3, we see that the normalized half-width
at T, is 1.8, so the absolute value of the half-width
in frequency units is

(279, ,,=2.5 MHz, £=1.9x10° cm™, (3.26)

which is larger than the value (27)™D,4*~ 1.5 MHz,
reported by Vinen, et al.* (at P=20 atm). More-
over, we expect (3.26) to be an underestimate, be-
cause of the constraint (2.23), and because the ex-
periments must also include a background term.

A preliminary comparison with data at 7', by Tarvin
et al."® for £ =1.78 X 10° cm™ and P=23 atm, also
leads to a similar discrepancy between experiment
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and theory. Thus, although a more detailed com-
parison is advisable, it appears that our results
disagree rather strongly with the finite-# measure-
ments. In particular, we would have expected to
see an increase in the thermal-diffusion width by
at least a factor of 2, between T=T,+1 mK and
T=T,+0.05 mK for wave vectors £~2 X 10° cm™,
and no such variation has been found.* 23 Similar-
ly, we predict a marked temperature dependence
in the second-sound width below T, at these wave
vectors, which has also not been observed.>*7

We believe that these discrepancies, as well as
the disagreement in the absolute value of R,, rep-
resent deviations from the theory which are beyond
the expected uncertainty of our calculations. We
must therefore search for an explanation in terms
of more fundamental corrections to the symmetric
planar-spin model, than those already considered.

A correction which comes to mind is the pres-
ence of background terms, represented by A, and
T, in Eq. (3.20). These have to some extent been
taken into account in determining the frequency
scale (2.41), but their effect in Eq. (3.20) is clearly
more complicated. In particular, such terms will
yield corrections to the observed ratio R, which
we have not taken into account. On the other hand,
the background damping is still expected to scale
as k? in going from the macroscopic measurements
to the light scattering, as long as k§,<1. Such
terms can therefore not fully explain the light-
scattering data, although they might be important
in quantitative comparison.

The enhanced damping of second sound at low
frequencies suggests the presence of a slow relax-
ation process, which has not been taken into ac-
count. Such a process may in fact be significant in
the asymmetric model (F) discussed in I, at finite
temperatures below 7,. In the asymmetric model,
a second-sound wave couples linearly to the longi-
tudinal fluctuations via the term ym|y|? in F,

[see Egs. (2.16) and (3.9) of I], which is absent in

the symmetric model. At low frequencies w
<u,t7', and long wavelengths k£,<1, the longitudi-
nal mode has a slow relaxation time, which might
contribute significantly to the damping of second
sound in this regime. For a <0, of course, the
vertex ¥ has a vanishing fixed-point value, so this
process may be neglected asymptotically close to
T,. However, it represents an extremely slow
transient, which decays as the effective exponent
a,(t) [see Sec. IVB3 of I], and is not negligible in
the experimental range. A crude estimate of the
longitudinal relaxation rate 77} is obtained from
the Ornstein-Zernike approximation (2.24), and
yields

(3.27)

which is slower than the characteristic rate u,x
entering in the intermediate propagators of the
symmetric model, by a factor 3.6. Of course, the
approximation (2.24) is highly unreliable at long
wavelengths, since it is known” that the static sus-
ceptibility x,(k) diverges, and the longitudinal
spectrum is certainly not Lorentzian. A more
careful analysis of second-sound damping in model
F, which takes these features into account, is
therefore necessary in order to estimate the im-
portance of the longitudinal relaxation.

Concerning the behavior at 7,, the asymmetry
corrections do not seem to be important, and we
cannot account for the discrepancies. It is hoped
that further experimental and theoretical work will
clarify this issue.
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